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1. ABSTRACT 
 

Osteoarthritis (OA) is the most common form of 
joint disease. OA frequently affects knees, hips, hands, and 
the spine. It is characterized by the progressive destruction 
of articular cartilage and subchondral bone accompanied by 
low-grade inflammation that together result in pain and 
deformity. Recent studies have shed light on the nature of 
OA genetic susceptibility and confirmed a number of 
candidate genes involved in the destruction of the 
synovium, articular cartilage, and subchondral bone in OA 
pathogenesis. During the progression of OA, there are 
several cellular changes in joints, including an increase in 
the number of activated osteoclasts and macrophages and 
an infiltration of the synovium by activated T-cells and B-

 
 

cells. Pro-inflammatory mediators (e.g. interleukin 
IL-1, IL-1beta, IL-6, IL-17, and IL-18, and Tumor 
necrosis actor-alpha), proteinases (e.g. matrix 
metalloproteinase 9 and cathepsin K), and regulators 
of cartilage and bone formation (e.g. BMPs) have 
been shown to have important roles in OA progression at 
the molecular level.  Studies have suggested that OA shares 
several common characteristics with rheumatoid arthritis 
(RA). To systematically understand OA, this review 
summarizes OA disease genes, mouse models of 
human disease experimental mouse models, 
mechanisms of OA pathogenesis, and current OA 
therapies. 
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2. INTRODUCTION 
 

Epidemiologic data shows that OA affects people 
in many countries, including 27 million adults in the United 
States (approximately 10% of the population)(1), and 3 
million individuals in Australia (15% of the population)(2). 
There are multiple risk factors for OA, such as old age, 
genetic predisposition, sex, trauma, repetitive stress, 
obesity, inflammation, lifestyle issues, and 
comorbidities(3). Muscle weakness and afferent sensory 
dysfunction are considered predictors of OA onset and 
progression(4). Recently, Hypoxia-inducible factor-2alpha 
(HIF-2alpha, encoded by EPAS1) was reported to be the 
most potent transactivator of COL10A1, and a functional 
single nucleotide polymorphism (SNP) in the human 
EPAS1 gene was associated with OA. Others such as 
COL2A1, COL11A1, and AGC1 are related to OA in both 
humans and genetically-modified animal models. However, 
there is still long way to go to confirm these mutant genes 
in OA pathogenesis. Spontaneous models have been used 
less in recent years because they have been investigated for 
long periods of time. Currently, the common techniques for 
model creation are anterior cruciate ligament transaction 
(ACLT) and enzymatic alteration such as intra-articular 
injection with papain, trypsin, or collagenase. Genetically 
modified models such as Cre-Gdf5/Bmpr1afloxP mice, 
Gt(ROSA)26Sortm1(Smo/YFP)Am-transgenic mice have also 
been utilized for the study of OA mechanisms. 
Chondrocytes, osteoclasts, synovial lining cells, and many 
cytokines and growth factors participate in OA 
development. MMPs, IL, TNF, Cathepsin K, IGF, TGF, 
FGF, VEGF, RANKL, etc. BMP-2, 4, 7 and their 
downstream genes play different roles in OA occurrence 
and development, especially in disparate components of 
joints. Although Non-steroidal anti-inflammatory drugs 
(NSAIDs), glucosamine and chondroitin, are still widely 
used in clinics, the use of traditional Chinese medicine and 
acupuncture are becoming popular in OA patients. This 
review is focused on the genetic background, model 
systems, cellular and molecular mechanisms, and 
therapeutic strategies for OA. 

 
3. GENETIC FACTORS 
 

Several studies have demonstrated that some 
individuals are genetically susceptible to OA. The genes 
that facilitate this vulnerability are involved in 
chondroplasia (cartilage development). Below, we 
demonstrate that the OA mutant genes developed in animal 
models are similar to those found in humans.  
 

3.1. Cartilage ECM structural genes 
In order to establish the genetic basis for OA, the 

initial studies focused on cartilage extracellular matrix 
(ECM) structural genes, such as COL2A1(12q13.11) that 
encodes alpha-1 polypeptide chain of type II collagen. Five 
studies identified five patients and families with the same 
cysteine for arginine substitution at position alpha-1-519 of 
the pro-alpha-1(II) chain who showed joint degeneration 
similar to early-onset OA. Moreover, some have evidence 
of mild chondrodysplasia; however, other individuals in 
these studies did not display any symptoms (5,6). Recently, 

Hypoxia-inducible factor-2alpha (HIF-2alpha, encoded by 
EPAS1) has been reported to be the most potent 
transactivator of COL10A1, and a functional single 
nucleotide polymorphism (SNP) in the human EPAS1 gene 
was associated with knee OA in a Japanese population (7). 

 
Mutations in different cartilage collagen genes 

are also associated with OA. For example, mutations in 
COL11A1(1p21.1) and COL11A2(6p21.32), encode type XI 
collagen, cause symptoms such as mild spondyloepiphyseal 
dysplasia and Stickler Syndrome, a disease characterized 
by sensorineural hearing loss, caused by a splice donor site 
mutation resulting in "in-frame" exon skipping(8). A 
mutation in AGC1(15q26.1) that encodes aggrecan protein 
is associated with severe, premature OA along with 
spondyloepiphyseal dysplasia(9). The D14 polymorphism 
with 14 D residues of ASPN, an extracellular matrix 
protein, belongs to the SLRP family, and was identified as 
the risk allele of OA and lumbar disc degeneration. The 
function of this gene is to inhibit in vitro chondrogenesis 
and expression of Col2a1 and Agc1 through inhibition of 
TGF-beta signaling(10,13).  

 
COMP (19p13.11) 

encodes cartilage oligomeric matrix protein, non-
collagenous components, and expresses the phenotype of 
multiple epiphyseal dysplasia with OA symptoms(14). 
Matrilin-3, another non-collagenous cartilage extracellular 
matrix protein, encoded by MATN3(2p24.1), is found to 
cosegregate with OA of the hands. The missense mutation 
frequency is slightly greater than 2% in patients in the 
Icelandic population(15). FRZB (2q32.1), which encodes 
both the chondrogenic regulator secreted frizzled-related 
protein 3, and CILP (15q22.31) that codes for a cartilage 
intermediate-layer protein, has also been reported to be 
associated with OA in females (16,17).  

 
3.2. Bone mass related genes 

OA pathology involves subchondral sclerosis and 
increased bone density; therefore, attention has also been 
devoted to genes that encode for proteins influencing bone 
density. For example, VDR (12p13.11) encodes the vitamin 
D receptor. CALM1,2 encodes calmodulins, KL encodes an 
enzyme with a key role in calcium and phosphate 
homeostasis, CALCA encodes calcitonin. In turn, ESR1 
(6q25.1) encodes the oestrogen receptor alpha, BMP2 
(20p12.3), BMP5 (6p12.1), that then encodes bone 
morphogenetic protein and OPG (8q24.12). These latter 
proteins encode osteoprotegerin. Leptin is a peptide 
hormone playing a role in bone metabolism. Haplotypes in 
LEP, a gene encoding leptin is related to OA in Chinese 
patients. This cascade demonstrates the relatively 
pronounced association with OA (17-29). However, the 
effect of these gene mutations on disease occurrence might 
be moderate for the complex pathogenesis in OA.  

 
3.3. Inflammation related genes 

Inflammatory cytokines, which are synthesized 
not only in synovial cells but also in articular cartilage 
chondrocytes, play an important role in OA. Polymorphism 
within the IL-1 cluster gene (2q13) and variation in 
IL1R1(2q12-q13) and IL4R (16p12. 1) are considered OA 
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Table 1. Mutant gene locus and its phenotype in OA disease 
Locus Gene Phenotype Reference 
1 PTGS2 , PLA2G4A Knee OA 17 
1p21.1 COL11A1 Stickler syndrome (mild spondyloepiphyseal dysplasia, OA, sensorineural hearing 

loss) 
13 

1q25 COX2 Female OA 22 
2p24.1 MATN3 Hand OA (CMCL11, DIP2) 20 
2q12-q13 IL1R1 Hand (DIP) 35,36,39 
2q31.1  Hip OA 51 
2q32.1 FRZB Female OA 21 
3p12.3-p13  Hand (DIP) 20 
3p21.31 TNA Female OA 50 
3p24.3 DVWA Knee OA 54 
4q13.1-q13.2  Female hip OA 52 
4q26-q27  Hand (DIP) 37 
4q32.1-q32.2  Hand (DIP) 15 
6p12.1 BMP5 Female OA 20 
6p21.32 COL11A2 Stickler syndrome 8 
6q12.3-q13  Female hip OA 17,48 
6p21 BTNL2 Knee OA 55 
6q25.1 ESR1 Female OA 18 
7p15-p21  Hand (DIP) 18 
7q21.11 CD36 Female OA 17 
7q22 GPR22 Knee OA, hand OA 54 
8q  Early-onset OA, Chondrocalcinosis 49 
8q24.12 OPG Female OA 21 
10q26.2 ADAM12 Female OA 17 
11q  Female hip OA, knee OA 50 
11q13.4-q14.3  Female hip OA 51 
12p13.11 VDR OA 17 
12q13.11 COL2A1 Early-onset OA 5,6 
12q24.31 NCOR2 Female OA 17 
13q22  Hip OA 52 
15q22.2-24.2 SMAD3 Knee OA, Hip OA 42 
15q22.31 CILP Female OA 17 
15q26.1 AGC1 Spondyloepiphyseal dysplasia (SED) 9 
16p12.1 IL4R OA 34 
19p13.11 COMP Multiple epiphyseal dysplasia (MED) 14 
20p12.3 BMP2 OA 19 
20q GDF5 Knee OA, Hip OA 27,28 
Xp22.2 SEDL Spondyloepiphyseal dysplasia tarda, OA 38,39 
Xcen  Hand (DIP) 38,39 
 BLP2, CIAS1 OA 37 
 RHOB, TXNDC3 OA 37 
 ASPN OA, LDD3 10-13 
 CALM1,2 Hip OA 23,24 
 KL Knee OA 25 
 EDG2 Knee OA 40 
 PITX1 Knee OA 43 
 ANP32A Hip OA 45 
 HLA-DQB1 Knee OA 55 
1 The first carpometacarpal 2 distal interphalangeal 3 lumbar-disc degeneration 
 
risk factors (30-34). A genome-wide association scan 
identified that rs4140564 on chromosome 1 mapping 5’ to 
both PTGS2 and PLA2G4A genes, promotes susceptibility 
to knee OA. Both of these genes are part of the 
prostaglandin E2(PGE2) synthesis pathway whose role will 
be mentioned in a subsequent section(35). COX2 (1q25), 
which encodes a cyclooxygenase, and ADAM12 (10q26.2), 
which encodes a metalloprotease, were reported to be 
associated with OA prevalence in a cohort of females(17).  

  
3.4. Other loci variants 
Allelic imbalances, such as a cis-regulated gene expression for 
TXNDC3 (encoding for Thioredoxin domain containing 3), 
RHOB (encoding for RHOB, a GTP-binding protein), and 
BLP2 (encoding for BBP-like protein 2), or trans-regulated 
gene expression of CIAS1 (encoding for Cold auto-
inflammatory syndrome 1), showed a statistically significant 
association with OA(36). However, some investigators 

confirmed a negative association between RHOB and 
TXNDC3 genes with OA(37). Literature pertaining to the 
identification of the gene for the X-linked recessive form 
(Xp22.2) may explain the different incidence of OA according 
to sex(38,39). CD36 (7q21.11)(encoding for a thrombospondin 
and collagen receptor), NCOR2 (12q24.31)(encoding for a 
nuclear receptor co-repressor), EDG2 (a functional variant of 
lysophosphatidic acid G-protein-coupled receptor 2 gene), 
DIO2 (encoding type II iodothyronine deiodinase), SMAD3 
(functions in TGF-beta signaling), PITX1 (transcription factor 
pituitary homeobox1), ACE (angiotensin-converting enzyme 
gene), and TNA (3p21.31)(encoding for tetranectin), were 
involved in OA prevalence and progression in females(17,40-
44). The acidic leucine-rich nuclear phosphoprotein 32 family 
member A gene (ANP32A) encodes a tumor suppressor 
molecule involved in apoptosis and Wnt signaling, which is 
reported to be associated with hip OA in women(45). 
Furthermore, several loci are reported in (Table 1). Some 
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Table 2. Comparison of human genetic mutant and animal genetic modification related to OA 
Human genetic target Animal genetic target 
COL2A1 COL2A1-(Dmm/+) 
COL11A1  COL11A1-(Cho/+) 
COL11A2 COL9A1-/- 
AGC1 AGC-(Cmd/+) 
ASPN(SLRP family) BGN, FM (SLRP family) 
COMP Integrin-alpha-1 mutant 
MATN3  
FRZB  
CILP  
VDR  
ESR1  
BMP2 Cre-Gdf5/Bmpr1afloxP 
BMP5  
OPG  
IL1R1 TNF transgenic mice 
IL4R  
PTGS2 , PLA2G4A(PGE2)  
COX2  
ADAM12 ADAMTS5(-/-), MT-1-MMP-deficient 
BLP2, CIAS1  
RHOB, TXNDC3  
CD36  
NCOR2  
SEDL  
SMAD3 SMAD3(-/-) 
GDF5 GDF5 deficient mice 

 
chromosomes were frequently positive such as 
chromosome 2, 6, and 16. Animal models have been used 
to study the mechanisms of OA more fully in relation to 
human genetic mutations.  

 
4. ANIMAL MODELS 
 

Animal models include genetically modified and 
experimentally induced models that mimic OA 
pathogenetic mechanisms. 
 

4.1. Genetically modified models 
4.1.1. Factitious models 

Many studies have exploited the availability of 
knockout or transgenic mouse models to address the roles 
of certain molecules in OA pathogenesis. It has been 
revealed that polymorphisms or mutations in genes 
encoding extracellular matrix genes and signaling 
molecules are associated with OA susceptibility (11,56). 
Thus, the loss or mutation of a single gene in a mouse 
model, such as Collagen IX (57,58), Col2a1, Col11a1, 
aggrecan, MT-1-MMP(59), alpha-1 integrin subunit (60), 
and ADAMTS5 (61) may lead to cartilage degeneration 
similar to that in OA patients. More specifically, the 
disruption of chondrocytes results in the interruption of the 
formation and remodeling of the cartilage matrix, such as 
the production of proteoglycans and aggrecan (62,63).  

 
SLRPs are extracellular molecules that bind to 

TGF-betas, collagens, and other molecules. In vitro, SLRPs 
were shown to regulate collagen fibrillogenesis. Biglycan 
(BGN) and fibromodulin (FM) were two of the most 
prominent and widely expressed SLRPs. Cre-loxP sites 
flank the gene encoding BMP receptor type 1a (Bmpr1a). A 
promoter of the gene encoding growth differentiation factor 
5 (Gdf5) is used to deplete this BMP receptor and direct 
cre-recombinase expression. Thus, Cre-Gdf5/Bmpr1afloxP 
mice are conditional knockout mice that are unable to

 
produce BMP receptor type 1a selectively in developing 
joints(64). The BGN-deficient, FM-deficient, and BGN/FM 
double knockout, Cre-Gdf5/Bmpr1afloxP mice develop 
earlier and more severe osteoarthritis (61-67). Ptch1+/-, 
Col2A1-Gli2, COL2-rtTA-Cre, 
Gt(ROSA)26Sortm1(Smo/YFP)Am-transgenic mice were also 
chosen for the development of OA. Among these, the 
Col2A1-Gli2-transgenic mouse overexpressed the 
hedgehog (Hh)-activated transcription factor Gli2 under 
Col2A1 regulatory elements in chondrocytes. The 
Gt(ROSA)26Sortm1(Smo/YFP)Am-transgenic mouse expresses 
the constitutively active W539L point mutation of the SMO 
homolog protein (SmoM2) by Cre-mediated recombination. 
SmoM2 was expressed in chondrocytes when this mutant 
mouse was crossed with COL2-rtTA-Cre mice under 
doxycycline administration (68). Other mutant mice such as 
TNF transgenic mice develop a severe destructive arthritis, 
osteophyte, and subchondral bone stiffness. The 
relationship of human genetic mutations and animal genetic 
modification is documented in (Table 2).  
 
4.1.2. Spontaneous models  

Spontaneous models refer to certain breeds of 
animals that are genetically predisposed to OA and can 
develop symptoms at a relatively young age. In the 
laboratory, these models include rhesus macaques, dogs, 
guinea pigs, and mice. In some views, these models could 
be seen as genetic mutant species with unclear 
backgrounds. 

 
The Rhesus monkey model is described to be 

particularly suitable for studying changes in cartilage 
collagen because the animal’s long life span allows for the 
development of osteoarthritis over time. Morphological 
studies demonstrate that in these monkeys, as in humans, 
the disease is characterized by persistence of the 
chondrocyte density typified by an increase in (Ca) 
calcium, (P) phosphorus, (Mg) magnesium, (S) sulfur, (K) 
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potassium, glycosaminoglycan (GAG) and collagen(69) in 
the cartilage of young animals(70). An epidemiological 
study showed increased incidence of OA disease with 
aging, and in females with increased parity. Therefore, 
these models are ideal because of the high prevalence rate, 
available age matched controls, and joints large enough for 
radiological and morphological studies. However, the 
drawbacks of using these big animals are their relatively 
long lifespan, uncontrolled environmental factors, ethic 
concerns, and the limitation of financial funding.  

 
Immunologic reactivity has been observed with 

anti-type I, II collagen antibodies existing in sera and 
synovial fluids of dogs(71). Moreover, the changes in 
proteoglycan levels in the cartilage of the canine model 
were very similar to those observed for human OA 
cartilage(72). However, compared to human OA in the 
early phase of the disease, dogs display more serious 
changes in synovitis and joint capsule fibrosis. 

 
Degenerative arthritis has been extensively 

studied in guinea pigs. The OA observed in this model has 
been found to have similar histologic, radiologic, and 
biochemical changes as those observed in human OA, such 
as breakdown of cartilage aggrecans(73), meniscal 
ossification(74), chondrocyte ATP depletion(75), and 
subchondral bone remodeling(76). Moreover, findings 
indicate that body mass in guinea pigs is an important 
predisposing factor for the development of spontaneous OA 
of the knee. There are several disadvantages pertaining to 
the guinea pig model. Some researchers observed the effect 
of matrix metalloproteinase inhibitors and ascorbic acid on 
OA from this spontaneous model (77-80). Also, OA 
progresses slowly in the guinea pig, which is not cost 
effective. Both of these reasons limit application and 
advancement of this particular model.  

 
Recently, attention has been focused on small 

animals such as mice of STR/ORT, C57Bl/6, and BALB/c 
strains(81,82). Mice are utilized to examine cartilage 
degeneration(83), including loss of glycosaminoglycans in 
cartilage matrix, and type II collagen degradation(84), 
disturbed protein transport and sugar synthesis in 
chondrocytes, and irregularity of the free margin of the 
anterior segment of the meniscus. Nevertheless, cruciate 
ligament collagen metabolism is upregulated in this 
model(85). Additionally, it was observed that a horizontal 
cleft developed along the tidemark and eburnation of the 
subchondral bone(86). Moreover, the mice model also 
lacks morphological changes, such as fibrillation of the 
cartilage matrix, chondrocyte clustering, osteophyte 
formation or inflammation, possibly because of the 
animal’s small joints and poor reparative ability. Smaller 
joints also instigate many other problems for investigators. 
 

4.2. Experimentally induced models  
Experimentally induced models evolved due to 

the demands of the research field. Previous reviews 
separated these models into monoarticular and polyarticular 
OA. However, monoarticular OA does not exist, because 
bilateral joints systemically or biomechanically interact, 
resulting in the bilateral articular OA.  

4.2.1. Biomechanical factors 
Biomechanical models of arthroses are of three 

types: surgical (intra-articular and extra-articular), 
immobilized, and overload.  

 
        Intra-articular surgical models 

usually induce instability of the joint. The original joint 
disease models developed historically were induced by 
patella dislocation(87) and patellectomies(88). However, 
these models showed severe erosive and proliferative 
lesions of the joint. As a result, less severe injury and more 
gradual degenerative progression were required for OA 
model creation. The Hulth-Telhag model is the classical 
OA model made by transecting the anterior and posterior 
cruciate ligaments and removing the meniscus. Degradation 
of type II collagen was seen as early as 3 weeks in this 
rabbit model(89). Recently, the popular surgical models are 
the anterior cruciate ligament transaction (ACLT) and the 
partial meniscectomy model(90,91). The combination of 
patella removal with ACLT could accelerate the occurrence 
of OA to approximately two weeks after the surgery, and 
further advance its development(92). Other methods such 
as tibial osteotomy(93), below-knee amputation, femur 
valgus osteotomy(94), or pelvic osteotomy(95), could also 
lead to degenerative arthritis. In these surgically-induced 
animal models, joint inflammation and repair were 
produced primarily in cartilage and synovium. One 
interesting surgical variant is the groove model made by 
Marijinissen. This model induces cartilage degeneration by 
one-time trauma (with features of OA at 10 weeks after 
induction), without causing synovial inflammation 
characteristic of the original model. This method increases 
the sensitivity of detecting defects of therapy aimed at 
cartilage protection and repair(96,97). 

     
Extra-articular procedures which include 

ovariectomy(98), myomectomy(99) and tendonotomy(100) 
could also produce progressive OA. Ovariectomized 
models are useful for studying the effect of estrin and 
estrin-like substances on OA in postmenopausal 
women(98).  

 
Immobilization models of OA were made in 

forced fixed position including flexed, intermediate, and 
extending posture. It was found that in both early and 
advanced OA, the synthesis rate of glycosaminoglycans 
and collagen increased, especially after half to one month, 
but the collagen content did not change(101). Moreover, a 
non-specific inflammatory cell response was rapidly 
induced in the synovial tissue in three days by 
abrasion(102). In the immobilization and subsequent 
remobilization experiment, plasma hyaluronate was 
maximally regulated shortly (45min) after splint 
removal(103). These studies elucidate the significance of 
joint motion. 

 
Overload models include compression induction either 

without surgery or with excessive exercise. In the past, 
these models were combined with other methods to 
accelerate and aggravate the degenerative 
process(104,105). To initiate OA-like changes in an in vitro 
single-impact load model, a simple drop-tower device was 
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used. This model would be valuable for understanding the 
early molecular pathways involved in the process(106,107). 
 

4.2.2. Structural factor 
In experimental structural OA models, tissue 

composition of one or more structural components of joints 
is degraded(105). Traditionally, structural OA models have 
been classified into groups  (e.g. physical, chemical, and 
enzymatic) based on the selectivity of their action on target 
tissues or tissue components, such as collagen, 
proteoglycan, chondrocytes, or synoviocytes. Endocrine 
manipulation such as intra-articular corticosteroid 
administration, a high fat diet, or oral administration of 
quinolone analogues can promote the development of OA 
from a systemic view. These animal models help us to 
investigate the mechanisms of OA, especially at the cellular 
and molecular levels. 

 
In physical alteration models, freezing, 

electrolysis, or ionizing radiation of articular cartilage may 
cause lesions in an anatomically discrete manner(108). 
Micromechanical models of surgical trauma induced by 
incision, shaving, abrasion or contusion perpetuate similar 
results(109-111). These models are useful to investigate the 
replication and matrix regeneration of chondrocytes. For 
example, defects that penetrate the subchondral bone could 
induce chondrocyte regeneration from reparative 
fibrocartilageinous calluses growing toward the marrow, 
while lesions that do not invade into subchondral bone 
usually fail to show this regeneration(112).  

 
Chemical alteration refers to intra-articular 

administration of chemical agents such as heat, fixatives, 
protein denaturants, acids, alkalis, or ionic solutions to 
degrade the matrix and the superficial articular 
cartilage(105). Saline injection spawned synovial 
inflammation.  

 
Currently, the most common technique used to 

generate models is enzymatic alterations. These models are 
created by proteolysis induced by the enzymes papain, 
trypsin, hyaluronidase, and collagenase(82). This model 
has been used to investigate broken collagen framework, 
synovial inflammation, cartilage proteoglycan depletion, 
chondrocyte necrosis, and ligament matrix injury and 
subsequently regeneration. Furthermore, intra-articular 
injection of cytotoxic drugs, including thiotepa, nitrogen 
mustard, colchicines, osmic acid, or iodoacetate directly 
damage articular cells. Indirect agents such as vitamin A 
and Filipin stimulate chondrocytes to produce and secrete 
matrix proteolytic enzymes by labializing cells and 
lysosome membranes(113). Sometimes, it’s hard to 
differentiate between biochemical agents and chemical 
agents. Croton oil, carrageenin, zymosan, and dextran 
sulphate have been used to induce degenerative arthritis. 
However, changes in these models are complex. For 
instance, specific biological mediators such as IL-1/OSM, 
TNF, and TGF-beta2 may be intra-articularly injected. IL-1 
has a more direct inhibitory effect on proteoglycan 
synthesis, which is mediated by metalloproteinases(114). 
Ectogenous TGF-beta2 induces synovial fluid, synovial 
cells hyperplasia, cartilage edema, and proteoglycan 

degradation. Moreover, synovitis observation requires the 
application of magnesium tetrasilicate, or talcum powder, 
via intra-articular injection. These models provide an 
opportunity to study the effect of endogenous factors on the 
progression of OA.  
 
5. MECHANISMS 
 
5.1. Cellular changes 

Damage resulting from OA can be observed in 
the three components that constitute a joint: articular 
cartilage, subchondral bone, and/or synovium. The degree 
of pathological changes in OA is determined by the 
aforementioned factors(115).  

 
Articular cartilage is 

unvascularized, aneural, and full of ECM, which is mainly 
composed of water, type II collagen, and proteoglycan 
aggrecan(116). Other components have been identified in 
the matrix, such as type IX and XI collagen, cartilage 
oligomeric matrix protein, matrilin-3, decorin, biglycan, 
and fibromodulin(117). Chondrocytes are another 
important component of cartilage. Chondrocytes are 
encapsulated within a lacuna, which hinders their ability to 
migrate to the site of injury. Thus, chondrocytes do not 
have the capacity for renewal, proliferation, or repair(118). 
In normal cartilage, there are four zones of chondrocytes: 
resting cells orientating within the collagen fibers in the 
superficial zone, large and randomly distributed cells in the 
middle zone, columns of chondrocytes in the deep zone, 
and hypertrophic cells in the calcified zone(116).  

 
The pathological changes of OA in articular 

cartilage are less anabolic and more catabolic, such as the 
loss of ECM and cell apoptosis. Cartilage matrix 
degradation products like type II collagen, proteoglycans, 
and fibronectin seemed to aggravate cartilage destruction 
with the fibrils at the articular surface(119). When OA 
occurs and proceeds, the regular cellular populations 
change into one of three types. The first type of cellular 
population is singular and clustered.  The second type is 
elongated and secretory like fibro-chondrocytes or other 
dedifferentiated phenotypes, which express several proteins 
such as biglycan, decorin, perlecan, and type I and X 
collagen to form repaired fibrocartilage(120,121). The last 
type is irregularly shaped cells such as those that undergo 
pyknosis. The thinning of the soft articular surface 
accompanied with the thickening of the hypertrophy 
chondrocytes layer lead to upward shift of the tidemark 
between articular and calcified cartilage(122). 
Neovascularisation was found to break the tidemark through 
microcracks and fissures that occur in the cartilage, which 
seems to produce mesenchymal stem cells (MSCs) or bone 
progenitor cells like the second type of cells previously 
mentioned(123). Features of OA in the subchondral bone are 
fibrillation, sclerosis, even collapse, together with bone 
cysts, thickened cortical plate, extensive remodeled 
trabeculae and osteophyte formation surrounding articular 
margins(115,124,125). Increase in subchondral bone 
stiffness are considered as an adaptation to changes in the 
biomechanics of the joint, but it simultaneously limits the 
strain in the articular cartilage(122). 
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Osteoclasts also play a crucial role in the process 
of OA. In OA-like lesions in the mandibular condyle of rat, 
osteoclastogeneis occurred by increased osteoclast numbers 
and proportion of surface area in the subchondral bone 
regions(126).  The subchondral bone plate could be 
thinning 4 weeks after instability-, collagenase-induced 
OA, with osteoclasts observed underneath it(127). 

 
There are three types of synovial lining cells 

within the superior and middle layers: macrophages, 
fibroblasts, and undifferentiated precursors. The deep layer 
includes adipose, fibrous, and areolar tissue. Synovial fluid 
is produced by fibroblasts in the synovium, and is 
considered an ultrafiltrate of plasma because of the 
presence of hyaluronate and lubricin(128). In the normal 
state, nutrients in the synovial fluid and cellular repair 
components are diffused within the cartilage. In OA, 
synovial fibers thicken and more pro-inflammatory 
mediators arise in the synovial liquid. There is also 
evidence that activated T-cells, B-cells, and macrophages 
infiltrate the synovium in OA (129). However, mature and 
activated osteoclasts could not found in the OA 
synovium(130).  

 
Thus, OA is distinguished by the following 

features: thin, fibrillated articular cartilage, reduced joint 
space, thickened capsule, and angiogenesis with possible 
innervation, synovitis, subchondral bone sclerosis, and 
osteophytes at joint margins (131). 

 
5.2. Molecular changes 

Many cytokines and growth factors, some of 
which participate in cartilage development, are produced by 
the synovial fibroblasts, chondrocytes, osteoblasts and 
osteoclasts in OA.  

 
Synthesis of catabolic factors, such as matrix 
metalloproteinases (MMPs), membrane-type I MMP, 
MMP-1,3,8,9,13,14 and the aggrecanase protein 
ADAMTS1,4 and 5, is increased (59,74,118,132-135) and 
synthesis of their inhibitors such as TIMP is decreased by 
pro- or inflammatory cytokines like interleukin IL-1, IL-6, 
IL-17 and IL-18, TNF-alpha(136-139), nitric oxide (NO), 
PGE2, COX-2, and netrins along with their receptors(140). 
Some chemokines including CC-chemokine ligand-5 
(CCL5), IL-8, growth-related oncogene-α (GROα) and 
monocyte chemotactic protein (MCP-1) are also elevated in 
OA tissues to induce inducible nitric oxide synthase 
(iNOS), MMP-1, IL-6 and stimulate proteoglycan 
depletion(141). However, some of these factors such as 
MMP-1 also show opposite changes depending upon the 
severity of OA(142). Recently, it was demonstrated that the 
signaling pathway of shear-induced IL-6 expression is 
related to the roles of E prostanoid (EP)2 and EP3 in 
cAMP/protein kinase A- and PI3-K/Akt-dependent NF-
kappaB activation(143).  Cathepsin K, TRAP, and 
osteocalcin mRNA levels were raised in the 
intertrochanteric region of the proximal femur of OA 
patient with femoral neck fracture(144). Besides cathepsin 
K, cathepsin B, L from the chondrocytes play a role in 
further cartilage destruction with the local fallen pH value 
of the cartilage(145). Moreover, nuclear factor of activated 

T cells 2 (nfat2), osteoclast-associated receptor (oscar), and 
alkaline phosphatase (ALP) mRNA expressions were found 
to be enhanced in the synovial fluid of OA patient (146). 

 
Anabolic factors such as insulin-like growth 

factor (IGF-1), TGF-beta, connective tissue growth factor 
(CTGF), fibroblast growth factors (FGFs), vascular 
endothelial growth factor (VEGF), OPG/ receptor activator 
of NF-kappaB ligand (RANKL), and BMPs either decrease 
or increase proceeding reaction with damaged 
spatiotemporal variations(147-149). Additionally, some 
neuropeptides like substance P, corticotropin-releasing 
factor, urocortin, and vasoactive intestinal peptide may also 
be involved in OA development(150,151). In RANKL- and 
TNF-induced OA, increasing NF-kappaB p100 protein and 
TNF receptor-associated factor 3 (TRAF3) accumulations 
in osteoclast precursors (OCPs) could limit bone 
destruction, indicating an anabolic effect for these two 
proteins(152). Anti-inflammatory cytokines including IL-
4,10,13 etc play a role in inhibiting IL-1beta, TNF and 
proteases, upregulating IL-1Ra and TIMP production(153). 

 
Senescence markers such as senescence-

associated enzyme beta-galactosidase (SA-betagal), p53, 
p21, p16, superoxide dismutase 2 (SOD2), reactive oxygen 
species (ROS) and telomere shortening are also exhibited in 
OA(154). However, the function of these factors is 
complex. For example, a reduction in SOD2 has been 
reported to be associated with an increase in ROS in the 
earliest stages of OA, but also with a reduction of 
collagenase gene expression(153). Moreover, these 
findings pose difficulties in distinguishing age-related 
changes from OA.  

 
Nowadays, more and more novel initiators of OA 

have being found such as transmembrane serine proteinase 
matriptase in cartilage destruction, which activates 
selective proMMPs and induces collagenase 
expression(155). HIF-2alpha, induced by NF-kappaB, is 
crucial for endochondral ossification(7). Three of the 
autophagy-related factors, Unc-51-like kinase 1 (ULK1), 
Beclin1, and microtubule-associated protein 1 light chain 3 
(LC3), showed a reduction or loss of expression in the 
development of OA(156). The cytokine levels in OA have 
been reviewed in detail (157). These biochemical 
substances interact and contribute to cellular changes. 
Several cytokines, such as inflammatory factors(158), and 
the Wnt signaling pathway(159), have been widely 
reviewed. Therefore, the focus in this paper is on BMPs, 
and the molecules mentioned above or in other reviews 
would be summarized in Figure 1. 

 
5.3. BMPs 

BMP-2 is present in chondrocytes during 
neonatal growth of articular cartilage, but is scarcely 
expressed in normal adult articular cartilage. However, the 
BMP gene has been genetically linked to OA. 
 

5.3.1. BMPs and articular cartilage 
BMP-2 mRNA and protein were found in both 

clustering and individual chondrocytes in moderately or 
severely damaged OA cartilage. In moderately damaged 
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Figure 1. Molecular pathogenesis of OA. OA is characterized by progressive destruction of articular cartilage and subchondral 
bone accompanied by low-grade inflammation. Damaged chondrocytes secrete MMP1,3,8,9,13, ADAMTs, NO, PGs, Hh, etc, 
and the degradation products produce ColII, proteoglycans and fibronectin, which accelerate cartilage degeneration including 
chondrocyte apoptosis and ECM loss. Fibrocartilage would be formed as compensation by increased biglycan, decorin, perlecan, 
ColI, ColX expressed by fibrochondrocytes. Subchondral bone is characterized by fibrillation, sclerosis and osteophyte 
formation. Osteoclasts on the surface of destructed cartilage and subchondral bone express increasing cathepsin B,L,K, RANKL 
and decreasing OPG. The expressions of BMP-2,4 ,Wnt, PAR-2, Leptin are upregulated in the osteoblasts in the periosteum, and 
that of BMP-2, Wnt and Dkk-1 is also upregulated in the osteophyte. Upregulation of VEGF and downregulation of TIMPs and 
TGF-beta could be found in neovascularisation. The thickened synovium secretes several pro-inflammatory mediators such as 
MMPs, ADAMTs, IL-1,6,8,17,18, TNF-alpha, NO, PGE2, COX-2, LTB4, neuropeptides, adpokines etc by macrophages and 
fibroblasts. The anti-inflammatory mediators are downregulated such as IL-4,10,13,1Ra, TIMPs etc. Fibroblasts could transform 
into B cells by high level of CXCL-13 while into T cells by high level of IL-12. Macrophages could also transform into these 
immunocytes through V-CAM1 E-Seclectin by VEGF, bFGF, EGF etc. 

 
OA cartilage, cellular localization of BMP-2 mRNA was 
limited in both upper and middle zone chondrocytes. In 
severely damaged OA cartilage, it extended to the deep 
zone chondrocytes(160). Phosphorylation of Smad-1, 
Smad-5, the downstream of BMP-2, were upregulated, 
meanwhile Smad-2 and -3 were degraded in a Smurf2-
dependent manner in OA conditions(161,162). In a 
posttraumatic OA (PTA) model generated by a single high-
energy impact load, proteoglycan loss was detected along 
with decreased BMP-2, indicating that BMP-2 may 
participate in PG synthesis(107). Furthermore, 
chondrocytes overexpressing BMP-2 showed increased 
aggrecan synthesis(163). On the other hand, genetic 
variation in BMP receptor signaling may be involved in 
human OA development(64, 164). 

Asporin, an extracellular matrix protein up-
regulated in disease states, binds to BMP-2 and negatively 
regulates its activity(165). The actin-binding protein 
calponin 3, which interacts with Smad-1 and -5, was 
reduced in OA cartilage. Since calponin 3 provides a 
negative regulatory mechanism for the BMP signaling 
pathway, its down-regulation could contribute to the 
increase of BMP-2 expression in OA joints(166). Noggin is 
one of the BMP binding proteins, and it acts as an 
antagonist. Noggin null mice exhibit defects in joint 
morphogenesis, indicating that the overexpression of BMPs 
plays a critical role in OA pathogenesis(167). Chordin is 
another antagonist of BMP. It was found not only in the 
superficial layers in normal cartilage, but also at a 
significantly higher level in the last two thirds of the OA 
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cartilage. However, the mRNA and protein levels of 
chordin were downregulated in OA(168).  

 
It has been reported that Smad3 knockout (TGF-

beta deficient) mice display OA phenotypes. The gene 
profiling and PCR examination showed that BMP signaling 
pathways involving Smad-1, Smad-5, BMP-2, and BMP-6, 
were more active in Smad3 knockout chondrocytes(169), 
suggesting a shift from TGF-beta toward BMP signaling. 
Thus, as an extracellular BMP inhibitor, noggin could 
abrogate its maturation (170). In vitro and in vivo OA 
models demonstrated that BMP-2 induced growth arrest 
and DNA damage, stimulated (GADD)45beta transcription 
factor depending on the suppression of COL2A1 by NF-
kappaB, and upregulated matrix meatalloproteinase-13 
(MMP-13) expression(171). Up-regulation of BMP-2 might 
be caused by pro-inflammatory cytokines IL-1beta and 
TNF-alpha (but not TGF-beta and IGF-1), which are 
known to be present in synovium and cartilage of patients 
with OA(172,173).  

 
BMP-7 is considered an anabolic mediator. It 

may stimulate superficial zone protein, function as a key 
mediator of boundary lubrication of articular cartilage in 
joints, and it may also improve damaged intra-articular 
tissues by synthesizing and secreting chondrogenically 
differentiated infrapatellar fat pad (IFP) progenitor cells. 
These functions indicate that BMP-7 would potentially be a 
useful source for inducing superficial zone of articular 
cartilage(174). Furthermore, it generally had a more 
significant stimulatory effect in cultures of immature 
bovine cartilage explants than in cultures of mature 
explants(175). 

 
Human meniscus cells, which came from 

meniscectomy of the knee joint in individuals with OA, 
also expressed BMP-2, and -4. These cells were stained 
with AS.02, which recognizes a protein on human 
fibroblasts that is highly homologous or identical to human 
Thy-1 antigen (CD90), which is one of the markers for 
mesenchymal stem cells (MSCs). These findings suggest a 
mesenchymal origin of human meniscus cells(176).  

 
5.3.2. BMPs and subchondral bone 

Interestingly, OA osteoblast mineralization in 
tibial plateaus was less than that of normal osteoblasts, 
even in the presence of BMP-2(177). The vascular invasion 
of bone marrow tissue into the subchondral plate was 
observed in articular cartilage in OA patients, who also 
expressed BMP-2 and -4 in reparative levels(178).  
 

5.3.3. BMPs and synovium 
In the collagenase-induced OA model, BMP-2 

and -4 are strongly expressed in deeper layers of the 
synovium, periosteum, and lining. Presence of BMP-2 and 
-4 in the lining is induced by synovial macrophages(179). 
On the other hand, overexpression of Smad-6 and -7, two 
BMP antagonists, caused a reduction in synovial 
thickening, indicating that BMPs are also involved in this 
process(180). Mechanical load would be one of the factors 
that stimulate BMPs. For example, exposure of synovial 
fibroblasts (SFs) of the rat temporomandibular joint (TMJ) 

to hydrostatic pressure (HP) causes significant up-
regulation of BMP-2, which may influence pathological 
conditions, such as temporomandibular disorders(181). 
However, BMP-2 alone in vitro hardly induces 
chondrogenic differentiation of synovium-derived stromal 
cells; however, it can induce chondrogenesis and synthesis 
of cartilage-like matrix when combined with TGF-
beta1(182). 

 
The expression of BMP-4 and BMP-5 expression 

decreases in synovial tissue of OA patients, and their 
distribution varies within the lining and sublining of the 
layer(183). Levels of BMP-7 are found to increase in both 
plasma and synovial fluid of OA patients. Conclusively, 
there exists a positive correlation between BMP levels and 
OA: overexpression of BMP-7 in plasma and synovial fluid 
is associated with OA development(184).  

 
5.3.4. BMPs and repair  

Osteophyte formation is considered a repair 
process of bone. BMP-2 induced early osteophytes, which 
bulged from the growth plates on the femur and grew on 
top of the patella. Moreover, BMP-2 was strongly 
expressed in the late-stage osteophytes in STR/ort and 
collagenase-induced models(185). Other scientists found 
that BMP-2 mRNA was most prominently localized in 
fibroblastic mesenchymal cells, fibrochondrocytes, 
chondrocytes, and osteoblasts in newly formed 
osteophytes(160). This osteophyte formation could be 
completely blocked by Ad-Gremlin and significantly 
reduced by Smad-6 and -7(180). However, this osteophyte 
formation is different from those induced by TGF-beta and 
experimental OA(82).  

 
BMP-2 has been proposed as a tool for cartilage 

repair and as a stimulant of chondrogenesis. In healthy 
cartilage, BMP-2 is hardly present, whereas it is highly 
expressed in cartilage of OA individuals. When BMP-2 
was overexpressed in healthy murine knee joints, PG 
synthesis, aggrecan mRNA expression, collagen type II 
expression, and aggrecan degradation increased in patellar 
and tibial cartilage. BMP-2 boosts matrix turnover not only 
in intact but also in IL-damaged cartilage. Thus, BMP-2 
contributes to the intrinsic repair capacity of damaged 
cartilage matrix(186). This may be related to increasing 
TIMP-1 production(187). Chondrocyte or stem cell 
transplantation with cells expressing BMP-2 may improve 
cartilage repair(188). 

 
In vivo, skeletal muscle-derived stem cells 

(MDSCs) expressing sFlt-1(one of the VEGF antagonists) 
and BMP-4 demonstrated better repair without osteophyte 
formation, higher differentiation/proliferation, and lower 
levels of chondrocyte apoptosis in the OA model. In vitro, 
coculture of BMP-4-transduced MDSCs and OA 
chondrocytes produced the highest gene expression of type 
II collagen, and SOX9, as well as type X collagen, 
suggesting terminal differentiation of chondrocytes(189). In 
the OA rat model produced by excessive running or ACLT, 
periodical injections of BMP-7 could delay the cartilage 
degeneration (91,190). Furthermore, BMP-7 may be 
chondroprotective after traumatic injury in patients via an 
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increased survival of chondrocytes, which is evidenced by 
stimulating proteoglycan synthesis to participate in the repair 
process(191-193). 

 
Others involved in potential prevention of OA 

include HrtA1 (high-temperature requirement protein A1), 
programmable cell of monocytic origin (PCMO), and 
Periodontal ligament-associated protein-1 (PLAP-1)/asporin. 
HrtA1 is a key regulator of physiological and pathological 
matrix mineralization in vitro, which is proposed to be related 
to TGF-beta/BMP signaling inhibition(194). PCMO is a new 
adult pluripotent cell derived from human peripheral blood 
monocytes. After 6 weeks of stimulation with BMP-2 and 
BMP-7, PCMO have the potential to differentiate into 
chondrocytes by producing collagen type II(195). PLAP-
1/asporin is a member of the small leucine-rich repeat 
proteoglycan family, which has been proven to be a negative 
regulator of mineralization most understandably by 
regulating BMP-2 activity involved in ankylosis 
prevention(196). 

 
5.3.5. Others 

Microarray expression profiling of osteoarthritic 
bone suggested altered bone remodeling and revealed many 
genes that are differentially expressed. Many of these genes 
are targets of either the WNT (wingless MMTV 
integration) signalling pathway (TWIST1, IBSP, S100A4, 
MMP25, RUNX2 and CD14) or the transforming growth 
factor (TGF)-beta/bone morphogenic protein (BMP) 
signalling pathway (ADAMTS4, ADM, MEPE, 
GADD45B, COL4A1 and FST). Other differentially 
expressed genes included WNT (WNT5B, NHERF1, 
CTNNB1 and PTEN) and TGF-beta/BMP (TGFB1, 
SMAD3, BMP5 and INHBA) signalling pathway 
component or modulating genes. In addition, a subset of 
genes was identified to be differentially expressed in OA 
between males and females such as GSN, PTK9, VCAM1, 
ITGB2, ANXA2, GRN, PDE4A and FOXP1, which were 
involved in osteoclast function(197).  

 
At the present time, several therapies for OA 

have been used clinically and pre-clinically besides 
cytokines, such as BMPs. However, clinical efficacy is the 
gold criterion for evaluating the quality of therapy. Of 
course, the side effects, difficulties of execution, and level 
of grief for the patients are also taken into consideration. 
The effects of the treatment regarding pain relief and 
functional improvement are usually evaluated clinically for 
OA treatment. 

 
6. THERAPIES 
 

Current therapeutic strategies for OA include 
clinical and preclinical procedures. 
 
6.1. Clinical therapy 

A comparison of the clinical therapies available 
for OA patients is provided below and in Table 4. 
 
6.1.1. Global treatments 

Non-steroidal anti-inflammatory drugs (NSAIDs) 
are the most popular therapy for OA, due to their 

effectiveness in relieving pain and improving function. 
These drugs significantly reduced PGE2 and 
downregulated COX-2 in the synovium and 
cartilage(198,199). However, NSAIDs are associated with 
significant adverse effects on the integrity of the 
gastrointestinal (GI) mucosa and on the cardiovascular 
system(200). The countermeasures for these side-effects 
include concomitant use of gastric-protective medicine 
such as misoprostol, a PGE1 analog(201), using an enteric 
coated formulation(200), improving health-related quality 
of life(202), or changing administration routine as 
mentioned in the section titled “External applied agent”. 
Nowadays, new lower-risk NSAIDs are available, but at a 
greater monetary value.  

 
Non-opioid analgesics, such as acetaminophen, 

also known as paracetamol or Tylenol, is equally effective 
at achieving relief of mild to moderate joint pain as 
NSAIDs(203,204). However, NSAIDs appear to be more 
effective at relieving moderate to severe pain. A study 
including fifteen randomized controlled trials (RCTs) and 
5986 participants demonstrated no significant difference 
between the safety of acetaminophen and NSAIDs(205), 
although previous meta-analysis indicated this compound 
was safer and should be the first line of treatment(206). 
Acetaminophen should be used cautiously in patients with 
liver defects and those who chronically abuse alcohol (207-
209).  Other drugs like tramadol could be used in patients 
in whom acetaminophen therapy has failed (210).  When 
NSAIDS and non-opioid analgesics have no significant 
effect, opioid therapy (211) may be considered. However, 
tolerance, dependence, and other adverse effects may be 
not avoided while using this treatment.  

 
                Acupuncture & Traditional Chinese 

medicine may also be effective as treatment for OA. A 
systematic review of seven trials employing a total of 393 
patients with knee OA revealed real acupuncture is more 
effective in pain relief than needles placed at non-
acupuncture points on the body. However, real acupuncture 
has not conclusively shown better effects in functional 
improvement. Furthermore, the comparison of efficacy of 
acupuncture with other treatments need more 
evidence(212,213). Some Traditional Chinese medicines 
have been reported to be safe, tolerable, and effective for 
symptomatic improvement of pain and physical function, 
such as willow bark extract, ginger extract, boswellia-
curcuma mixture, avocado-soybean unsaponifiables 
(americana Glycine max), boswellia serrata gum resine 
extract, cat’s claw extract, arnica tincture, comfrey extract, 
Tipi tea, stinging nettle leaf, the Chinese herbal mixture 
SKI306X, Duhuo Jisheng Wan (214,215), and a seaweed 
extract nutrient complex(216). Recently, it has been 
reported that human placenta extract (HPE) suppressed the 
histological changes in monoiodoacetate (MIA)-induced 
OA by inhibiting PG degradation and MMP-2 activity and 
that HPE may reduce deformity of knee joints (217). Other 
treatments such as exercise, Tai Chi, bracing and corrective 
footwear, pale vitamin E, behavioral interventions, spa, 
pulsed signal therapy, and hyperthermia have been shown 
to improve OA(4, 145, 218-224). 
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6.1.2. Local treatments 
Glucosamine and chondroitin naturally exist in 

the body to repair and maintain cartilage. These natural 
supplements have become popularized because of their 
safety and their effectiveness in relieving arthritis 
symptoms(225). Two RCTs, proceeded by a follow-up of 8 
years, showed that treatment with glucosamine sulphate for 
1 to 3 years may prevent total joint replacement for an 
average of 5 years after drug discontinuation(226). These 
compounds are absorbed through the gastrointestinal tract and 
are able to increase proteoglycan synthesis in articular 
cartilage(227,228). Animal experiments showed oral 
glucosamine sulfate not only attenuates the development of 
OA, but also reduces nociception and modulates chondrocyte 
metabolism. The mechanism would be related to mitogen-
activated protein kinases (MAPKs), by inhibiting cell p38 and 
c-Jun N-terminal kinase (JNK) and increasing extracellular 
signal-regulated kinase 1/2 (ERK) expression(229). 
Chondroitin sulfate may reduce degradation of cartilage 
collagen and proteoglycans by partially inhibiting leukocyte 
elastase(230,231). However, recent meta-analysis found that 
chondroitin has minimal or insignificant benefits for OA 
symptomology(232). A meta-analysis of 15 RCTs of 
glucosamine and chondroitin compounds showed that all but 
one of these trials were classified as positive(219). Moreover 
the effects were greater for chondroitin than for glucosamine. 
Further studies are highly suggested to assess the relationship 
between time, dose, patient baseline characteristics, and 
structural efficacy; moreover, these studies may provide an 
accurate, disease-modifying characterization and a biological 
mechanism of these two compounds (233-235). It has been 
recently reported that undenatured type II collagen (UC-II) at a 
dose of 480 or 640 mg was more effective than glucosamine 
and chondroitin in arthritic horses and that it was tolerated well 
(236). However, it still needs clinical evidence. Other related 
compounds such as sodium hyaluronate and undenatured type 
II collagen have been reported to be efficacious in the 
treatment of knee OA(237,238). However, in a recent, 
multicentre, randomized, placebo-controlled, double-blind 
study of 337 patients followed for 1 year there was no clinical 
effect of intra-articular hyaluronan was shown(239).  

 
Only 5% of OA patients need surgical treatment 

when conservative treatment displays no satisfactory effect. 
There are four categories of surgical procedures: 
osteotomy, arthroscopy, arthrodesis, and arthroplasty.  

 
The purpose of the osteotomy is to transfer the 

load bearing from the pathologic to the normal 
compartments of the knee. Thirteen studies involving over 
693 people indicated that valgus high tibial osteotomy is 
effective in improving knee function and relief of pain. 
However, it is uncertain which treatment, osteotomies or 
conservative treatment is more effective(240). Furthermore, 
a successful result of the osteotomy (about 60.3%) depends 
on proper patient selection, stage of osteoarthritis, and 
achievement and maintenance of adequate operative 
correction(241). 

 
Arthroscopy is an alternative procedure to 

osteotomy(242). It is not only useful for the treatment of 
the same symptoms, but also for diagnosis of the disease. 

Although arthroscopic methods are widely used, they are 
not suitable for patients who have displayed OA symptoms 
for more than 2 years, or who display tibial osteophytes and 
joint space narrowing of less than 5mm (4 or more of these 
factors)(243). Arthroscopy is effective only temporarily in 
reducing the pain of mild to moderate hip OA(244).  

 
 Arthrodesis is an efficient procedure for OA of 

the hands, feet, ankles, and spine, but usually not for the 
hip and knees(245-248). In arthrodesis, multiple Kirschner 
wires, cannulated screwsiliac, and crest bone graft are 
frequently utilized to reduce nonunion rates(249).  

 
Arthroplasty refers to the insertion of an artificial 

joint in order to restore the integrity and the function of the 
joint withered by OA. Joints commonly deteriorate after 
more than ten years, depending on the composition(250). 
The perioperative morbidity of unicompartmental knee 
arthroplasty would be less than total knee arthroplasty; 
furthermore, this arthroplasty has been reported to be used 
in very elderly patients (79-94 years) with tricompartment 
OA. Therefore, age is not a limiting factor for this surgical 
treatment(251). 

 
Use of local topical analgesics, such as capsaicin 

cream and NSAID gel (eltenac), function as either an 
adjunctive treatment or monotherapy for pain relief in OA 
patients(252, 253). These treatments have low incidence of 
local skin reactions, such as local burning sensations.  
 
6.2. Preclinical therapy 

Preclinical therapy is proven only effective in 
animals or cells, and marginally in clinical cases. 
 
6.2.1. Anticytokine/cytokine therapy 

Anticytokine therapy targets the activity of 
catabolic cytokines, including proteinases, cytokine-
induced signaling pathways, inflammatory factors (statin, 
recombinant IL-1Ra as anakinra), monoclonal anti-TNF 
antibody (adalimumab, infliximab), iNOS inhibitors SD-
6010, MMP inhibitor PG-116800, cathepsin K inhibitor 
SB-553484(254-258), and chondrocyte apoptosis related to 
cytokines(259,260). Some growth factors, such as TGF-
beta, BMP-7 and FGF-18, are perhaps effective in 
improving OA. Recently, an angiogenesis inhibitor 
thrombospondin-1 (TSP-1) has been reported to be 
intraarticular transferred and to inhibit OA development, 
probably by inducing TGF-beta production and by reducing 
microvessel density, macrophage infiltration, and IL-1 beta 
levels(261). Tanezumab, a humanized monoclonal antibody 
that inhibits nerve growth factor has been reported to 
reduce joint pain and improve function of patients with 
moderate-to-severe knee OA(262). However, these factors 
may be secreted from multiple cell types at different phases 
of OA, causing difficulties in their application. 

 
Other anticytokines, such as the kinin B2 

receptor antagonists, MEN16132, and icatibant are helpful 
for reducing pain, as evidenced in the monosodium 
iodoacetate-induced OA model(263). The highly selective 
A(3) adenosine receptor agonist CF101 was described as a 
cartilage protective agent by inducing apoptosis of 
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Table 3. Methods, application, limitation of OA animal models 
Models  Methods Application/ 

Advantages 
Limitations 

Factitious genetic 
modification 

Knock-out/deficiency 
Cho/+(Coll11a1-/-), Dmm/+(Col2a1-/-), Cmd/+(aggrecan-deficient), 
alpha-1/beta-Integrin deficient, SLRP-deficient, Cre-
Gdf5/Bmpr1afloxP mice 
Knock-in/overexpression/transgenic mice 
Col2a1, Conditional MMP-13 transgenic, Bovine growth 
hormone(bGH) fusion , MT-DNIIR heterozygote (truncated TGF-
beta-R2 overexpression), TNF-alpha transgenic mice 

Molecular pathology Questionable physiologic 
relevance, 
time-consuming, expensive, 
high requirement for 
researchers  

Spontaneous disease 
model 

rhesus macaques, Hartley albino guinea pigs, dogs 
STR/ORT, C57Bl/6, BALB/c mice 

Epidemiology, pathogenesis, evolution, 
diagnosis, treatment, comparison, 
complication 

Long time 
slow and mild changes 
relatively expensive 
individual differences 

Pathogenic mimic  model Surgical procedure intra-articular injection Short time, widely, successfully, stably 
used 

External factor (trauma, 
inflammation)  

a. Intra-articular surgery patella dislocation, patellectomy, Hulth-Telhag model, ACLT, 
meniscectomy, tibial osteotomy, pelvic osteotomy, myomectomy,
tendonotomy, groove 

anti-inflammation 
cartilage protection 

Ethical problem  
Surgical trauma and 
inflammation  

b. Extra-articular surgery Ovariectomy, myomectomy, tendonotomy Imitate different etiological factor  Ethical problem exist 
Surgical trauma and 
inflammation  

c. Immobilization in forced fixed position(flexed, extending, intermediate posture) elevate the motion of joint fixture loosen 
d. Overload Compression, excessive exercise(treadmill running) elevate the load of joint (overweight, 

obesity) 
 

e. Physical alteration Freezing, surgical trauma induced by incision, shaving, abrasion,
contusion 

chondrocytes replication, matrix 
regeneration 

 

F. Chemical alteration Intra-articular administration(papain, trypsin, hyaluronidase,
collagenase) 
cytotoxic drugs(Thiotepa, nitrogen mustard, colchicines, osmic acid,
iodoacetate) 
Indirect agents(vitamin A, Filipin) 

Inflammatory for a very limited time  

G. Endocrine alteration Intra-articular corticosteroid administration, a high fat diet, oral
administration of quinolone analogues 

endocrinic factor (obesity)  

H.Biochemical alteration Croton oil, carrageenin, zymosan, dextran sulphate 
IL-1, TNF, substance P, TGF-beta2 
Magnesium tetrasilicate, talcum powder 

  

 
inflammatory cells via deregulating the NF-kappaB 
signaling pathway(264). Calcitonin could promote matrix 
synthesis of chondocytes and inhibit cartilage degradation, 
which may involve in attenuation of MMP activity(265). 
Subcutaneous or intranasal administration of calcitonin has 
been shown to have effects on inhibition of bone resorption 
by binding to the calcitonin receptors on osteoclasts(266). 

 
Since the equilibrium between OPG and RANKL 

plays a role in the pathology of OA, this system was 
expected as a new strategy for OA treatment(267).  
 
6.2.2. Gene therapy 

OA has a surprising degree of heritability and multiple 
interacting loci; thereby, much progress has been made to 
genetically modify synovium, cartilaginous matrix(268,269). 
However, the successful modification of relevant gene mutations 
that are associated with OA seems impossible to accomplish in the 
near future. Nonetheless, gene therapy is believed to be a powerful 
tool in gene modification techniques. 
 
6.2.3. Tissue/Cell transplantation 

In 1994, Brittberg et al. introduced autologous 
chondrocyte implantation. However, due to articular cartilage 
defects exhibited in OA patients, usage of this technique poses 
some difficulty. Recently, several researchers are attempting to 
treat OA by tissue-engineering methods, which are based on 
stem cells and scaffolds, but not on chondrocytes (270). 
Ideally, the most effective approach is to combine these 
methods to promote cartilage regeneration and inhibit 
destruction(271).  

 
7. SUMMARY AND FUTURE DIRECTIONS 
 

Although several genes have been found to be 
associated with OA, genetic epidemiology demonstrates 
that these genes rarely undergo mutation, are limited to the 
human species and demographic location of these species, 
and do not have a sufficiently high frequency to confer 
significant population risks of primary OA(272). Moreover, 
molecular studies of larger cohorts may be required to yield 
more conclusive results concerning the genetic factors of 
OA and to exclude false positives. Table 2 lists several 
target genes recommended for further validation and study 
in animal models. 

 
No consensus currently exists regarding which 

animal model is most relevant to the study of OA. Each 
model offers advantages and disadvantages (Table 3). 
Genetically modified mice are the best tools for 
mechanistic studies aimed at understanding the functional 
role of specific molecules in OA pathology; still some 
reservations remain concerning the mouse model, 
particularly their physiological relevance to the human 
disease, and their use as drug-screening tools. Furthermore, 
mouse models are also time-consuming and expensive, and 
they require cooperation between researchers in different 
fields. Spontaneous OA models are less affected by 
external factors such as these, so the consequences 
resulting from manipulation could be eliminated. These 
models are beneficial in studying the primary onset of OA, 
biochemical changes of articular cartilage, prevention and 
treatment, and the causation in several physiopathological 
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Table 4. Comparison of clinical therapies for OA patients 
Agent Administration route Effects Adverse effects 
NSAIDS oral Moderate to severe pain relief Gastrointestinal toxicity 

Cardiovascular risks 
Hepatic & renal toxicity 

Nonopioid analgesics oral Mild to moderate pain relief Gastrointestinal reaction 
drowsiness 

Opioid analgesics oral Moderate to severe pain relief Tolerance 
Dependence 
Respiratory depression 
constipation 

Acupuncture puncture Pain relief Relatively safe 
TCM oral Pain relief, physical function improvement Relatively safe 
Glucosamine 
Chondroitin 

Injection  Symptoms relief Potential effect on OA progression 

Osteotomy 
Arthroscopy 
Arthrodesis 
Arthroplasty 

Surgical methods Pain relief 
Function improvement 

Invasion 
Motion limitation 

Topical analgesics External applied Local pain relief Local skin reaction 
 
changes. However, similar to the factitious models, they are 
time-consuming, and more individual differences exist in 
the progression of the disease (as in humans). Surgically 
induced models develop rapid and reproducible damage. 
They are especially useful for studying anti-inflammation 
and cartilage protection. However, these models are not 
suitable for observation of biochemical and metabolic 
changes associated with the progression of OA because 
surgical trauma and inflammation may have an affect. 
Intra-articular administration of agents may generate 
models in little time, and can mimic the final step of 
cartilage injury. Thus, these models are valuable for 
investigating cartilage pathology and the therapeutic effect 
of drugs. Despite this, agent-dose should be monitored in 
the joints of different OA models. Clearly, the biochemical 
and structural models of OA are complementary. In 
practice, they are usually combined. The utilization of 
several species increases the number of models available. 
However, the discrepancies in the animal size, lifespan, 
disease progression, and response to treatment should be 
taken into consideration.  

 
So far, the 

mechanisms of OA development seem clear both at the 
gross anatomical and the molecular levels. However, the 
global effects, such as the connection between individual 
molecules, have been modestly revealed. Even single 
cytokine families, such as the BMPs, play different roles in 
different phases of OA. These varying effects present more 
difficulties when studying signaling crosstalk. It is of great 
necessity to discover the precise actions and interactions of 
these cytokines in further studies. Interestingly, studies 
have suggested that rheumatoid arthritis and OA share 
some common characteristics (264). 

 
In this review, 

we use the gold criterion to elevate therapeutic effect. 
However, the clinical trials in meta-analysis usually only 
measured the symptoms, which might omit the effect of 
therapies on the pathological progression of OA. 
Furthermore, larger cohorts of patients for longer time 
periods are needed to verify the usefulness of these 
therapies. In the future, preclinical therapies call for more 
validation and application. For example, replacing OA 
tissues with ideal scaffolds, introducing proper 

stem/progenitor cells, creating a suitable microenvironment 
for their function, and rehabilitating the function of the 
regenerated tissues, is recommended for future exploration. 
Moreover, it takes a long lead-time for the development of 
OA, therefore, the structural failure might begin several 
years before symptoms appearance. So preventive 
treatments could be used in adult populations (273).  
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