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 1. ABSTRACT

The growing epidemic of the metabolic syndrome
is now well recognized and there is widespread effort to
understand the pathogenesis of this complex syndrome and
its major metabolic consequences. One of the severe
complications accompanying insulin resistant states is the
hypertriglyceridemia that appears to occur largely due to
overproduction of triglyceride-rich, apolipoprotein B
(apoB) containing-lipoproteins. As a result, mechanisms
regulating the overproduction of these atherogenic apoB-
containing lipoproteins have been the focus of much
investigation in recent years.  Both in vitro as well as in
vivo models of insulin resistance are currently being used to
further our understanding of the mechanisms involved in
the deregulation of lipid metabolism in insulin resistant
states. Evidence from these animal models as well as
human studies has identified hepatic very low density
lipoprotein (VLDL) overproduction as a critical underlying
factor in the development of hypertriglyceridemia and
metabolic dyslipidemia. In recent years, a dietary animal
model of insulin resistance, the fructose-fed hamster model
developed in our laboratory, has proven invaluable in
studies of the link between development of an insulin
resistant state, derangement of hepatic lipoprotein
metabolism, and overproduction of apoB-containing
lipoproteins. Evidence from the fructose-fed hamster model
now indicates oversecretion of both hepatically-derived
apoB100-containing VLDL as well as intestinal apoB48-
containing triglyceride-rich lipoproteins in insulin resistant
states. A number of novel intracellular factors that may be
involved in modulation of VLDL have also been identified.

This review focuses on these recent developments and
examines the hypothesis that a complex interaction among
enhanced flux of free fatty acids from peripheral tissues to
liver and intestine, chronic up-regulation of de novo
lipogenesis by hyperinsulinemia, and attenuated insulin
signaling in the liver and the intestine may be critical to
lipoprotein overproduction accompanying insulin
resistance.

2. DEREGULATION OF LIPOPROTEIN
METABOLISM IN INSULIN RESISTANT STATES

2.1. Metabolic dyslipidemia in insulin resistance
Insulin resistance results from the insensitivity of

tissues to the normal effects of insulin, consequently
leading to hyperglycemia, hypertriglyceridemia, and
elevated plasma levels of free fatty acids (FFA) (1-5).  As
the body attempts to normalize plasma glucose levels, a
compensatory mechanism by which insulin is oversecreted
may ultimately lead to pancreatic failure. Prospective
studies have shown that type 2 diabetes occurs once
pancreatic B cells fail to compensate for the insulin
resistant state. The pathophysiology of the insulin resistant
state, in addition to the development of type 2 diabetes,
includes obesity, atherosclerosis, hypertension, and
dyslipidemia. The atherogenic dyslipidemia associated with
insulin resistant states is characterized by
hypertriglyceridemia, an increase in VLDL secretion from
the liver (6-9), an increase in atherogenic small dense low
density lipoprotein (LDL) (10), and a decrease in
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Figure 1. Insulin Resistance in Adipose, Liver, and
Intestine Leading to Metabolic Dyslipidemia: Insulin
resistance causes reduced FFA absorption and enhanced
lipolysis by adipocytes resulting in enhanced FFA flux into
peripheral tissues including liver and intestine. Enhanced
core lipid availability due to higher FFA flux in
combination with hepatic and intestinal insulin resistance
appear to lead to a considerable overproduction of both
hepatically- and intestinally-derived apoB-containing
lipoprotein particles which cause fasting and postprandial
metabolic dyslipidemia

antiatherogenic high density lipoprotein (HDL) cholesterol
(11).

2.2. Insulin regulation of apoB-containing lipoproteins
Studies have shown that insulin acutely inhibits

VLDL secretion both in vitro and in vivo, in animal
studies, as well as in fasting human subjects (12). In
partially hepatectomized rats, apolipoprotein B (apoB)
secretion was found to be more responsive to the effect of
insulin (13). In addition, studies in glucose injected rats
confirmed the suppressive effects of insulin on VLDL
triglyceride (TG) and apoB secretion (14). Studies in our
own laboratory using a cell-free system have demonstrated
an attenuation of apoB mRNA following insulin
modulation (15).

In contrast, chronically hyperinsulinemic subjects
appear resistant to the inhibitory effects of insulin on
VLDL secretion (16). Upon fructose feeding, a mildly
diabetic rat model showed elevated plasma levels of free
fatty acids and triglycerides in addition to impaired
clearance of VLDL (17,18). Much the same has been seen
in obese diabetic human subjects. A significant
improvement was seen in hyperinsulinemic and type 2
diabetic subjects upon administration of atorvastatin, a 3-
hydroxy-3-methylglutaryl coenzyme A (HMG coA)
reductase inhibitor with TG lowering properties. Over a
forty day treatment period, there was a significant decrease
in plasma total cholesterol, LDL cholesterol, TG, and apoB.
There was also an increase in LDL particle diameter (19).
These results suggest that atorvastatin treatment may be
beneficial in modifying the lipoprotein profile of these

subjects and decreasing LDL particle density to more
buoyant, less atherogenic LDL particles.

It has been postulated that there may be an acute
effect of insulin directly on apoB synthesis, stability and
subsequently secretion that is modulated by FFA
availability (12). This effect has been attributed to
increased lipolysis leading to reduced FFA uptake by
adipocytes resulting in increased FFA flux to the liver and
muscle (reviewed in (20). The increase in FFA can further
attenuate insulin signaling and exacerbates insulin
resistance (Figure 1). On the other hand, FFA may
stimulate the secretion of apoB-containing lipoprotein in a
number of hepatocyte model systems.  Within hepatic
tissue, FFA is accumulated and stored in the liver as TG,
which correlates positively with VLDL secretion. Insulin
may directly control the rate of hepatic VLDL production
by influencing the rate of apoB synthesis and degradation
(15,21-23), or indirectly via its effect on the supply of FFA
to the liver for lipoprotein production (8,24). Therefore, an
increased FFA flux as is observed in insulin resistance may
cause increased TG availability that may, in turn, stimulate
assembly and secretion of VLDL (25). In in vitro studies,
this has been observed in HepG2 cells (26-28) and some
primary hepatocyte experiments (29-31). Conversely,
studies in other primary hepatocyte systems including rat
(32,33), hamster (34,35), and human hepatocytes (36) have
failed to demonstrate FFA-mediated stimulation of apoB
secretion. More recently, treatment of HepG2 cells with
anti-retroviral protease inhibitor compounds resulted in an
increase of ubiquitinated apoB and prevented apoB
degradation (37). There was also a significant
accumulation of intracellular apoB and an impairment of
apoB lipoprotein secretion that was attributed to a sharp
decrease in intracellular synthesis of neutral lipids.
Secretion could be restored by the addition of exogenous
fatty acid suggesting that the intracellular pool of apoB
could be secreted upon lipid availability as in the case of
increased FFA flux to the liver in insulin resistance. It is
possible that under insulin resistant conditions, all
hepatocyte systems may respond to exogenous FFA by
oversecreting VLDL. Studies in a fructose-fed model of
insulin resistance have recently shown hepatic VLDL
overproduction accompanied by elevated plasma FFA
levels suggesting an enhanced FFA flux into the liver (38).

While it has been well established for some time
that triglyceride protects apoB from degradation (39), the
role of cholesteryl ester in apoB secretion has been
controversial (40,41). Cholesteryl ester is believed to be an
important substrate for microsomal triglyceride transfer
protein  (MTP)  and plays an important role in the
protection of newly synthesized apoB from degradation
(42-44). In vitro studies have shown that acyl-CoA
cholesterol acyl transferase (ACAT) inhibitors reduce
apoB100 secretion in primary rabbit hepatocytes (45),
primary rat hepatocytes (46,47), and HepG2 cells (40,48-
50). Several in vivo studies in miniature pigs (50-53),
rabbits (54,55), rats (55), hamsters (45,55), and monkeys
(55,56), have confirmed these in vitro observations. In
contrast, studies have argued against any regulatory role of
cholesteryl ester in apoB secretion (41). Recent studies
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have shown that citrus flavinoids cause a decrease in
ACAT2 and MTP accompanied by a dramatic decrease in
apoB-containing lipoprotein secretion (57). Studies in our
own laboratory using the novel ACAT inhibitor avasimibe
(CI-1011) have shown increased apoB stability in the
presence of the inhibitor as measured by pulse-chase
experiments as well as by trypsin sensitivity assay (49).
However, poor lipidation in the presence of this inhibitor
also suggest that it may exert its inhibitory effect through
novel mechanisms that remain to be further studied.

Within the ER, the generation of lipoproteins
destined for secretion is initially dependent on lipid
transfer catalyzed by MTP and is followed by the MTP-
independent incorporation of additional neutral lipid along
the secretory pathway (58). It was recently shown using an
MTP inhibitor (BMS-197636-01), an MTP and TG
synthesis inhibitor (CP-10447), as well as the TG synthesis
inhibitor (Triacsin C), that the late addition of neutral lipid
to nascent lipoproteins within the ER lumen is independent
of MTP activity and availability of newly synthesized TG
(59). Interestingly, the hepatic expression of MTP appears
to be modulated by insulin in rat hepatocytes suggesting an
additional mechanism for the regulation of apoB by insulin
(60).

Insulin treatment clearly ameliorates the
lipoprotein profile of diabetic individuals, however, the
ability of insulin to directly regulate apoB gene expression
remains controversial. Thus, increased VLDL-triglyceride
production in insulin resistance appears to directly or
indirectly result from decreased sensitivity to the inhibitory
effects of insulin on VLDL secretion. Treatment of rat
hepatocytes with several specific inhibitors has shown that
insulin-mediated inhibition of VLDL secretion may be PI-
3-kinase dependent. A significant increase in insulin
stimulated PI-3-kinase activity was observed within the
same subcellular compartment containing apoB (61).  This
may suggest an insulin-mediated localization and
activation of PI-3-kinase within a compartment also
containing apoB. Current research in several laboratories
has focused on understanding the intracellular events
linking insulin resistance to hepatic VLDL overproduction.

2.3. The hepatic insulin signaling pathway and
disruption in insulin resistance

 Under normal conditions, insulin binding to its
cell surface receptor initiates a cascade of events beginning
with receptor autophosphorylation and activation of
receptor tyrosine kinases (62,63).  This, in turn, results in
tyrosine phosphorylation of adaptor proteins such as
members of the insulin receptor substrate (IRS) family
(IRS-1/2/3/4), and Shc (64-68). Insulin signaling may be
regulated by the activity of phosphotyrosyl-protein
phosphatases (PTPases) through dephosphorylation of the
insulin receptor, IRS-1, IRS-2, and Shc leading to
modulation of insulin action downstream of the receptor
(69). IRS-1 and IRS-2 function as adaptor proteins for src
homology 2 (SH2)-domain containing signaling proteins
including the Grb-2-SOS complex, SHP2, Nck, as well as
the regulatory subunit of the lipid kinase, PI-3-kinase (70-
73). Generation of 3’-phospholipids such as PI-3,4,5-P3

(PIP3) is dependent on activation of PI3-kinase. Binding of
IRS to p85, the regulatory subunit of PI-3-kinase, activates
the PI-3-kinase-PKB/Akt pathway, which is necessary for
insulin action on glucose transport and glycogen synthesis
(65,74,75).

Insulin resistance is thought to result
predominantly from defects in the signaling pathway
downstream of the insulin receptor. Among obese and type
2 diabetes subjects, there was an observed decrease in IRS-
1-associated tyrosine phosphorylation and a decrease in
PI3-kinase activity in skeletal muscle and adipocytes, the
tissues predominantly targeted by insulin (76-79). Obese
hyperinsulinemic human subjects exhibited decreased
insulin receptor expression level and activity as well as
decreased tyrosine kinase activity in skeletal muscle (80)
and adipocytes (81). Patients with type 2 diabetes
exhibited reduced insulin signaling in skeletal muscle and
the liver (80). In lean, type 2 diabetes subjects, insulin-
stimulated PI-3-kinase activity was also decreased. Similar
findings have been reported in numerous genetic (82-86)
and induced (87,88) rodent models of obesity. Studies
involving targeted disruption of the insulin receptor, IRS-1
or IRS-2 (89-94) suggest that insensitivity to the effects of
insulin in a combination of tissues including muscle, liver,
adipose tissue, and pancreatic B cells may lead to insulin
resistance and diabetes (75).

Protein tyrosine phosphatase-1B (PTP-1B) is a
member of the PTPases family of enzymes that are
expressed in insulin sensitive tissues and appears to be an
important candidate for involvement in insulin signaling
(95). Overexpression studies have shown that PTP-1B
dephosphorylates the insulin receptor in vitro (96,97) as
well as inducing the downregulation of IRS-1 and insulin
stimulated PI-3-kinase activity (98). Increased PTP-1B
mass and activity has been associated with carbohydrate-
induced insulin resistance (99) and normalization of PTP-
1B mass and activity results in the reversal of this type of
insulin resistance (100). Elchebly et al (101) have
generated PTP-1B knockout mice which exhibited
increased sensitivity towards insulin-induced IR and IRS-1
tyrosine phosphorylation and were resistant to obesity.  It
has been shown in both transfection studies, as well as
transgenic animals, that PTP-1B dephosphorylates the
leptin receptor-associated kinase Jak2 (102-104). In PTP-
1B deficient mice, there was an enhanced response toward
leptin-mediated loss of body weight. Studies within our
own laboratory have shown a significant increase in PTP-
1B mass and activity with a concomitant decrease in PI-3-
kinase and PKB/Akt phosphorylation in a fructose-fed
hamster model of insulin resistance (105). Interestingly, a
significant increase in PTP-1B protein mass was seen
following two days of insulin treatment in primary
hepatocytes. This was accompanied by a decrease in insulin
receptor mass and phosphorylation suggesting a possible
link between the impairment of intracellular signaling and
overproduction of apoB-containing lipoproteins.

2.4. Animal models of insulin resistance
In animal models, insulin resistance may be

induced by genetic alterations, changes in diet,
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administration of pharmacological agents, or surgical
procedures (reviewed in 106-109). In particular,
genetically modified and diet-induced animal models have
proven invaluable in furthering our understanding of
mechanisms involved in insulin resistance and its
associated dyslipidemia. These animal models almost
always exhibit insulin resistance, obesity, dyslipidemia and
in certain instances hypertension. The classic animal
models used in the past include the ob/ob mouse, the db/db
mouse, and the Zucker fa/fa (fatty) as well as the ZDF/Drt
fa (diabetic/fatty) rat. These rodent models may develop
moderate to severe insulin resistance or diabetes, obesity,
and an increase in plasma lipid and lipoprotein levels.

While whole body disruption of the insulin
receptor causes neonatal mortality in transgenic mice (92),
successful studies using tissue targeted disruption of the
receptor have been performed. Studies using mice
expressing a dominant negative insulin receptor transgene
in skeletal muscle and fat showed decreased insulin
receptor phosphorylation, decreased insulin receptor
signaling, and impaired insulin action in these tissues
(110). Despite this, these mice failed to develop insulin
resistance or chronic hyperglycemia. Liver-specific insulin
receptor knockout mice developed severe insulin resistance
and glucose intolerance at an early age (111). Surprisingly,
the fasting hyperglycemia returned to normal levels as
these animals matured. Taken together these observations
suggest that a defect in insulin action within a tissue such
as the liver may be critical to the development insulin
resistance, but that defects in the liver alone are not
sufficient to cause chronic fasting hyperglycemia.
Furthermore, defects in molecules such as leptin, that are
apparently not directly related to insulin signaling or
lipoprotein metabolism, suggest that the mechanisms of
lipid deregulation may be extremely complex and involve
multiple metabolic pathways originating in several tissues.
These mechanisms may involve tissues such as muscle,
liver, and adipose, in addition to less well understood
tissues such as the brain.

Streptozotocin (STZ) has been successfully used
in rats to induce insulin deficiency, insulin resistance, and
decreased plasma leptin concentrations through the
destruction of pancreatic B cells (112). These animals also
exhibit increased plasma FFA and TG concentrations. In
STZ treated animals that were fat-fed, plasma glucose
clearance by adipose tissue was impaired compared to
controls (113). Transplantation with fetal pancreatic islets
normalized blood glucose, plasma triglyceride, cholesterol,
and VLDL-triglyceride turnover rate among other factors,
suggesting a direct link between insulin availability and
VLDL regulation  (114).

A transgenic mouse has been developed that
overexpresses the A1 adenosine receptor in adipose tissue
(115). This receptor has been implicated in vitro in the
metabolism of intracellular fat accumulation, FFA
metabolism and plasma glucose regulation (116-118).
Interestingly, although the control and transgenic animals
were of the same size and body composition, the
transgenics exhibited lower plasma FFA, and failed to

develop insulin resistance as shown by oral glucose
tolerance tests.

More recently, a model has been developed in
the laboratory of Ginsberg and colleagues in order to
directly study apoB overproduction associated with insulin
resistance. This model, dubbed ApoB/BATless used a
human apoB transgenic mouse crossed with a brown
adipose tissue knockout mouse that exhibits peripheral
insulin resistance (119). The resulting animal developed
obesity, hypertriglyceridemia, hypercholesterolemia, and
hyperinsulinemia when placed on a high fat diet. Although
an increase in apoB was seen in the apoB/BATless mice,
the mRNA levels of both MTP, as well as apoB were
similar between these and control mice expressing only the
human apoB transgene, suggesting VLDL assembly and
secretion were regulated post-translationally. Future
studies of these animals should aid in understanding the
manner by which specific signaling mechanisms may be
involved in lipoprotein regulation.

A significant concern when using rodent models
has been that their lipoprotein profile differs significantly
from that of humans. While humans produce primarily
VLDL and LDL, rodent lipoprotein distribution is shifted
primarily towards HDL. Several models have been
developed that address this issue. The “sand rat”
(psammomys obesus), a gerbil native to the desert regions
of the eastern Mediterranean and northern Africa,
spontaneously develops obesity and insulin resistance
when taken off its habitual diet of succulent plants and fed
standard rodent chow (106,120).  It has recently been
shown that elevated levels of protein kinase C epsilon in
skeletal muscle may contribute to the development of
insulin resistance seen in these animals (121). Reports of
elevated leptin levels and possible leptin resistance in
obese and diabetic animals suggest this factor may also be
involved in the development of obesity. More recently,
beacon, a novel factor was found to be differentially
expressed in the brain of obese and control animals (122).
A recent study characterizing the lipid distribution within
these animals found significant increases in circulating
VLDL and LDL in hyperinsulinemic as well as
hyperinsulinemic and hyperglycemic animals (123).

2.5. The fructose-fed hamster model of insulin
resistance

The Syrian golden hamster has been used with
increasing frequency in recent years to study hepatic lipid
metabolism as its lipoprotein metabolism closely
resembles that of humans (124-127). Our laboratory has
developed and extensively characterized a diet induced
animal model of insulin resistance, the fructose-fed Syrian
golden hamster (38).

Hamsters develop hyperlipidemia and
atherosclerosis in response to a modest increase in dietary
cholesterol and saturated fat (128,129) and can be made
obese, hypertriglyceridemic, and insulin-resistant by
fructose feeding (38). Fructose feeding for a two week
period induced significant increases in plasma TG,
cholesterol, FFA, and the development of whole body
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insulin resistance. Induction of insulin resistance was
accompanied by a considerable rise in the in vivo
production of hepatic VLDL-apoB and –TG. These data
suggest overall improved efficiency of VLDL assembly in
fructose-fed animals. This may be due to the increased
intracellular stability and availability of apoB, elevated
levels of available neutral lipid or increased MTP mass or
activity.  Although increased apoB stability and MTP were
observed, FFA flux to the liver was not determined in this
study. The observed increase in VLDL production may be
due to a direct effect of availability of these substrates. In
addition to providing substrate, the elevated FFA levels
may induce hepatic enzymes such as fatty acid synthase
(FAS) and peroxisome-proliferator activated receptor
(PPAR), thus favouring lipoprotein assembly over
oxidative degradation. Further studies will be required to
understand the interplay between all these factors in
regulating VLDL secretion.

The MTP promoters of human and hamster are
organized similarly (130) and contain a number of
regulatory elements including an insulin response element
(IRE), activating protein 1, hepatic nuclear factor 1, and
hepatic nuclear factor 4 (130,131). Hepatic MTP mRNA
levels can also be upregulated by a high-fat diet in
hamsters (132) and decline in response to sterol depletion
in HepG2 cells (133). This regulation may occur via
activation of sterol response element binding proteins
(SREBPs) which bind a putative sterol response element
(SRE) within the -124 to -116 of the 5’ promoter (133).
There is also evidence that chronic modulation of apoB
and VLDL secretion can be achieved via changes in MTP
expression and activity. Hyperlipidemia in an animal
model of type 2 diabetes with visceral fat obesity, the
Otsuka Long-Evans Toskushima fatty rat, is also
associated with elevated hepatic MTP mRNA (134).

2.6. Link between changes in hepatic insulin signaling
and VLDL secretion in the fructose-fed hamster model

We have obtained evidence for a strong
correlation between the insulin signaling pathway and
regulation of VLDL secretion. Impairment of hepatic
insulin signaling and insulin resistance including reduced
tyrosine phosphorylation of the insulin receptor, IRS-1,
IRS-2, and Akt, elevated protein mass and activity of PTP-
1B, and suppressed activity of PI 3-kinase associated with
IRS proteins (105). In the fructose-fed hamster model, we
have observed a considerable decrease in MTP mass and
IR, IRS-1, and IRS-2 phosphorylation and mass
accompanying VLDL overproduction. Treatment of
fructose-fed hamsters with the insulin sensitizer
rosiglitazone restored these intracellular factors, as well as
plasma lipoproteins back to near control levels (135).
Interestingly, fructose treatment caused a dramatic increase
in PTP-1B that was decreased to below control level upon
treatment with rosiglitazone. The activity of PTP-1B has
been linked to the attenuation of insulin signaling and
knockout of PTP-1B results in enhanced insulin sensitivity
(101). In addition, a single nucleotide polymorphism
within the PTP-1B gene has been shown to correlate to
protection from type 2 diabetes (136). Whether the effect
observed in our model is due to a direct effect of PTP-1B

on hepatic tissues or an indirect effect on peripheral tissues
is currently unknown. However, these observations
strongly implicate PTP-1B in the development of insulin
resistance and potentially in the dyslipidemia associated
with this condition.

2.7. Amelioration of insulin resistance reverses hepatic
lipoprotein overproduction

Studies by Carpentier et al, using the PPAR
gamma agonist rosiglitazone have shown that insulin
sensitization can significantly ameliorate VLDL secretion
in the fructose-fed hamster model, both in vivo and ex vivo
(135).  In addition to normalizing plasma glucose levels of
insulin resistant animals, rosiglitazone treatment improved
the defect in insulin-induced tyrosine phosphorylation of
the insulin receptor, IRS-1, and IRS-2 with a concomitant
decrease in IRS-1 and IRS-2 mass. Rosiglitazone treatment
also decreased the PTP-1B levels that were initially
increased by fructose feeding. Finally, there was a
decrease in the MTP mass that had also been initially
increased by fructose feeding. These observations suggest
that normalization of insulin and glucose metabolism may
attenuate several mechanisms that stabilize apoB in the
insulin resistant state.

2.8. Potential link between alterations in ER proteases
in insulin resistance and overproduction of hepatic
VLDL

There is increasingly strong evidence that apoB
degradation may also occur within the ER as well as further
along the secretory pathway. We have used a permeabilized
cell system to directly demonstrate the existence of a non-
proteasomal degradative pathway that is  responsible for
specific fragmentation of apoB that consistently results in
the generation of a 70 kDa fragment (137,138). Changes in
the insulin signaling pathway coincided with drastic
suppression of ER-60 that was accompanied by an increase
in the synthesis and secretion of apoB. Data from other
laboratories also support the involvement of multiple
proteolytic pathways in apoB degradation. A proteomic
analysis approach has yielded 99 novel and unique proteins
from different subcellular compartments that potentially
bind to apoB (139). More recently, Gillian-Daniel et al
showed that expression of recombinant forms of the LDL
receptor that were retained within the ER caused apoB
degradation within this compartment (140). Work in our
own laboratory has shown that cellular apoB and more
recently ER lumenal apoB-containing lipoproteins
(unpublished observations) are associated with ER-60, an
ER-localized cysteine protease, in HepG2 cells. We had
previously shown that ER-60 is associated with apoB based
on direct cross-linking of ER-60 with apoB in HepG2 cells
(141). Adenovirus-mediated overexpression of ER-60
resulted in a decrease in apoB secretion that was not
affected by proteasomal inhibitors (unpublished
observations). An important observation in the insulin
resistant, fructose-fed hamster model was that livers of
fructose-fed hamsters expressed a lower level of ER-60,
compared to chow-fed control animals. Interestingly, we
have found that treatment of fructose-fed hamsters with
rosiglitazone, an insulin sensitizer, results in normalization
of the ER-60 protein in the liver. This suggests that ER-60
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protein levels are chronically responsive to hepatic insulin
signaling. We have analyzed the 5’ promoter of the ER-60
gene and have found that it contains putative IREs, SRE,
SRE3, and NF-Y motifs that may mediate insulin and/or
sterol regulation of ER-60. Downregulation of ER-60
protease may thus contribute to the enhanced stability of
apoB in livers of fructose-fed hamsters and result in higher
assembly and secretion of VLDL (Figure 2).

2.9. Role of intestinal lipoproteins in metabolic
dyslipidemia

Numerous studies have shown that there is an
increase in postprandial triglyceride-rich lipoproteins in
subjects with insulin resistance and type 2 diabetes (142-
146).  In the fasting state, increased fasting remnant
lipoproteins, such as large VLDL and chylomicron
remnants have been observed in insulin resistant subjects.
Postprandially, a strong correlation exists between plasma
triglycerides and plasma insulin and the TG response to a
fat meal, as well as the postprandial levels of large VLDL
and chylomicron remnants (147,148). Currently it is not
known whether the accumulation of these potentially
atherogenic remnant lipoproteins occurs as a result of
increased intestinal secretion of apoB48-containing
chylomicrons, of diminished clearance from the circulation,
or both (reviewed in 149). There is a noticeable lack of
literature regarding the biogenesis and secretion of apoB48-
containing lipoproteins from the intestine of insulin
resistant and type 2 diabetic patients. Early studies showed
that in the fasting state the intestine is capable of
synthesizing and secreting VLDL-like particles from
endogenously synthesized substrate (150,151). Based on
studies in rats (152) and dogs (153), it has been estimated
that the intestinal contribution to fasting total body TG
production is between 10% to 40% of total plasma TG. It
has been suggested that the intestine maintains a basal rate
of apoB48 secretion in the fasting state, and that this is
increased in the diabetic intestine (144,148,154). The
contribution of the intestine in fasting hypertriglyceridemia
is also markedly increased in diabetic rats (145). Studies in
human subjects with coronary artery disease (144), diabetic
patients (142), and diabetic rats (145), have all pointed to
the important role of the intestine in increased plasma
chylomicron remnants.

In humans, apoB48-containing chylomicrons are
exclusively synthesized within enterocytes, and this
synthesis is believed to be largely driven by dietary fat
consumption. There is some evidence, however, suggesting
that de novo synthesized lipid and plasma FFA can also act
as substrates for the assembly and secretion of apoB48-
containing lipoproteins.

Experiments in our own laboratory using the
fructose-fed hamster have shown that chronic fructose
feeding stimulates intestinal apoB48 secretion in fasted
animals (155). There was a concomitant increase in apoB48
stability accompanying this. This overproduction of
apoB48 was accompanied by enhanced intestinal lipid
synthesis in the form of free cholesterol, cholesteryl ester,
and TG, as well as an increase in both MTP mass and
activity. These results suggest that in insulin resistant or

diabetic animals, there may be a mechanism causing
enhanced intestinal secretion of lipoproteins in the fasting
state. Chronic fructose feeding may enhance this basal level
of lipoprotein secretion through increased de novo
lipogenesis and increased MTP availability. The same
effect was not observed upon acute, two days fructose
feeding or in vitro incubation of hamster enterocytes with
fructose for one hour. In addition, the direct incorporation
of fructose into intestinal lipoproteins was not apparent
suggesting that it is a poor substrate for de novo lipogenesis
in enterocytes. Comparison of plasma lipoproteins from
fructose-fed animals showed a significant shift toward
secretion of larger, less dense, chylomicrons in the insulin
resistant animals. Interestingly, fatty acid synthesis
appeared to be stimulated upon fructose feeding. Using the
fatty acid synthase inhibitor cerulenin, which inhibited the
synthesis of both fatty acid and TG (156,157), we found
that de novo lipogenesis was required for the secretion of
apoB48-containing lipoproteins from enterocytes. There
may be a constitutive rate of lipoprotein synthesis and
secretion that occurs in the intestine. Collectively, these
results suggest that facilitated lipoprotein secretion occurs
in the intestine due to increased de novo lipogenesis and
MTP availability. Intestinal lipoproteins that are
oversecreted may, therefore, contribute significantly to
overall dyslipidemia suggesting a potential new target for
the treatment of metabolic dyslipidemia associated with
insulin resistance and diabetes.

3. CONCLUSION AND PERSPECTIVES

It is only relatively recently, that we have begun
to understand the molecular mechanisms involved in
lipoprotein assembly and secretion in normal and insulin
resistant states. Hepatic lipoprotein overproduction of
VLDL is now widely accepted as a key abnormality
underlying the development of metabolic dyslipidemia.
Emerging evidence appears to support the notion that
hepatic VLDL overproduction requires an interaction
between enhanced lipid substrate availability and hepatic
insulin resistance (Figure 2). High FFA flux as commonly
observed in insulin resistant states is critical to increasing
intracellular substrate availability for augmented assembly
and secretion of hepatic apoB-containing lipoproteins. This
alone appears to be insufficient however to enhance VLDL
overproduction in the context of an insulin sensitive liver.
Development of hepatic insulin resistance is likely to result
in increased intracellular synthesis and stability of apoB
and together with high availability of core lipids, contribute
to a stimulated state of VLDL assembly and secretion. The
contribution of intestinal lipoprotein secretion into the
plasma compartment may also have to be taken into
account as recent results suggest that intestinal lipoproteins
that are oversecreted may contribute significantly to the
fasting and postprandial dyslipidemia associated with the
insulin resistant state. Recent studies have identified a
number of key molecules that may play important roles in
development of insulin resistance (e.g. PTP-1B) and
hepatic and intestinal lipoprotein overproduction (e.g.
MTP, ER-60). Further research is now underway to more
clearly define the critical pathways that link defects in
insulin signaling transduction and processes responsible for
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Figure 2. Postulated Links between Hepatic Insulin Signaling and VLDL-apoB Secretion in Insulin-Resistant States. Insulin
induces signal transduction via two major signaling pathways: the mitogenic, MAP-kinase-mediated pathway and the metabolic,
PI 3-kinase-mediated pathway. Insulin acutely reduces apoB secretion, however in insulin resistance there is reduced sensitivity
to inhibitory action of insulin on apoB. Enhanced expression of PTP-1B, a key negative regulator of insulin signaling, may be a
key initiating factor in inducing hepatic insulin resistance and consequently increased synthesis and stability of apoB. However,
stimulation of VLDL-apoB secretion also requires high availability of core lipoprotein lipid which can be supplied from the high
FFA flux commonly observed in insulin resistant states. Reduced expression of ER-60, a putative protease involved in intra-
luminal apoB degradation, may be an additional important factor in enhanced stability of apoB.

lipoprotein assembly and secretion. Recent development of
specific transgenic and knockout animal models (such as
the PTP-1B knockout mice, and adenovirus-mediated PTP-
1B or ER-60 overexpression in the hamster) will
undoubtedly be invaluable to our further understanding of
these factors and their role in linking insulin resistance with
disorders of lipoprotein metabolism.
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