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1.  ABSTRACT

The brain contains autochthonous neural systems
that evoke waking from sleep in response to sensory
stimuli, prolong or enhance arousal in response to special
stimuli, and also generate and maintain wakefulness
regardless of sensory stimuli during the active part of the
day.  Through ascending projections to the cortex, these
arousal systems stimulate cortical activation, characterized
by high frequency gamma and low frequency rhythmic
theta activity, and through descending projections to the
spinal cord, they stimulate muscle tonus along with
sensory-motor responsiveness and activity.  They are
comprised of neuronal aggregates within the brainstem
reticular formation, thalamus, posterior hypothalamus and
basal forebrain, and they utilize multiple different
neurotransmitters.  Within the brainstem, neurons of the
reticular formation, which predominantly utilize glutamate
as a neurotransmitter, stimulate cortical activation by
exciting the widespread projecting neurons of the
nonspecific thalamo-cortical projection system, which
similarly utilize glutamate, and neurons of the ventral
extra-thalamic relay systems located in the posterior
hypothalamus and basal forebrain, many of which also
utilize glutamate.  In addition, these systems have
descending projections by which they can enhance or
modulate muscle tonus and activity.  Articulating with
these are cholinergic neurons of the ponto-mesencephalic
tegmentum and basal forebrain that promote cortical
activation during waking and also during rapid eye
movement sleep (REMS), in association therein with
muscle atonia.  Dopaminergic ventral mesencephalic
neurons stimulate a highly motivated and positively

rewarding state during waking and may also do so during
REMS.  In contrast, noradrenergic locus coeruleus neurons
promote an aroused waking state and prevent REMS as
well as slow wave sleep (SWS).  Serotonergic raphe
neurons promote a seemingly quiet or satiated waking state,
which though exclusive of REMS, can actually be
conducive to SWS.  Histaminergic neurons of the posterior
hypothalamus act like noradrenergic neurons in enforcing
waking and are joined by neurons in the region that contain
orexin, a neuropeptide recently shown to maintain waking
and in absentia to be responsible for narcolepsy, or the
inability to maintain wakefulness.  These multiple arousal
systems are grossly redundant, since no one system is
absolutely necessary for the occurrence of waking; yet they
are differentiated, since each plays a special role in waking
and sleep.  During SWS, they are submitted to an inhibitory
influence arising in part at least from particular GABAergic
neurons co-distributed with many neurons of the arousal
systems and also concentrated within the basal forebrain
and adjacent preoptic region.

2.  INTRODUCTION

In the early 20th century, many scientists believed
that the flow of sensory input into the brain maintained the
wake state, whereas the cessation of that input resulted in
sleep (1).  This view positing a passive occurrence of wake
and sleep was overturned in 1949 by Moruzzi, Magoun and
their colleagues (2-4), who demonstrated that wake was not
altered in a long-lasting manner by stimulating or
interrupting sensory pathways but was so modified by
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Figure 1.  Wake Promoting Systems.  Schematic sagittal view of rat brain showing the major neuronal systems and their major
excitatory pathways (arrows) involved in promoting the EEG fast activity (upper left) and EMG high muscle tone and activity
(lower right) characteristic of the waking state.  The major ascending pathways emerge from the brainstem reticular formation
(RF, most densely from the mesencephalic (RF Mes) and oral pontine (PnO) fields) to ascend along 1) a dorsal trajectory into the
thalamus (Th) where they terminate upon (midline, medial and intralaminar) nuclei of the nonspecific thalamo-cortical projection
system, which in turn projects in a widespread manner to the cerebral cortex (Cx) and 2) a ventral trajectory through the lateral
hypothalamus up to the basal forebrain where they terminate upon magnocellular basal neurons, shown in the substantia
innominata (SI and present in the medial septum-diagonal band complex), which also in turn project in a widespread manner to
the cerebral cortex (and hippocampus, Hi) (5).  Descending projections collect from multiple levels of the reticular formation
(though most densely from the caudal pontine, PnC, and medullary gigantocellular, Gi, fields) to form the reticulo-spinal
pathways.  The major transmitter systems that promote waking and discharge maximally (“On”) during waking contribute to
these ascending and descending systems and are represented by symbols where their cell bodies are located.  Glutamatergic (Glu)
neurons comprise the vast population of neurons of the reticular formation, the diffuse thalamo-cortical projection system and a
contingent of the basalo-cortical projection system.  Cholinergic neurons, containing acetylcholine (ACh), are located in the
laterodorsal and pedunculopontine tegmental (LDTg and PPTg) nuclei in the brainstem from where they project along with other
reticular neurons dorsally to the thalamus and ventrally to the posterior hypothalamus and basal forebrain, as well as to the
brainstem reticular formation. Noradrenergic (NA) neurons of the locus coeruleus (LC) send axons along the major ascending
and descending pathways to project in a diffuse manner to the cortex, the subcortical relay stations, brainstem and spinal cord.
Dopaminergic (DA) neurons of the substantia nigra (SN) and ventral tegmental area (VTA) project along the ventral pathway in
the nigro-striatal system and meso-limbo-cortical system, respectively.  Serotonergic neurons containing 5-hydroxytryptamine (5-
HT) of the midbrain (including the dorsal raphe, DR) project to the forebrain, including the cerebral cortex (and hippocampus), as
well as the subcortical relay stations, and those of the medulla (in raphe pallidus and obscurus, not shown, as well as pars alpha of
the gigantocellular field, GiA) project to the spinal cord.  Histaminergic (H) neurons of the tuberomammillary nucleus (TM)
project in a diffuse manner to the forebrain and cortex.  Orexinergic (Orx) neurons in the (peri-fornical and lateral) mid and
posterior hypothalamus (PH) project diffusely through the forebrain, brainstem and spinal cord.  Cholinergic and adjacent
glutamatergic neurons that project to the cerebral cortex (and to hippocampus) are located in the basal forebrain within the
substantia innominata (SI, magnocellular preoptic nucleus and globus pallidus, GP, and also in the medial septum-diagonal band
complex).  Modified from (159).

manipulating the brainstem reticular formation.  Thus for
more than half a century now, scientists have recognized
that through autochthonous neural structures, the brain
actively generates and maintains arousal.  The arousal
systems comprise ascending networks projecting to the
cerebral cortex, which stimulate cortical activation
reflected as fast EEG activity, and descending networks
projecting to the spinal cord, which stimulate sensory-
motor activation reflected as high EMG activity, (Figure 1).
They reside within the brainstem, thalamus, hypothalamus
and basal forebrain.  They utilize diverse chemicals as
neurotransmitters or modulators. They are accordingly

multifaceted yet grossly redundant since any one neural
system is not necessary and may be sufficient for
maintaining wakefulness.

3.  BRAINSTEM AROUSAL SYSTEMS

3.1. The reticular formation
The reticular formation is composed of neurons

lying amongst passing fibers within the central core of the
brainstem that accordingly has a net-like (reticular)
appearance.  The neurons have long radiating dendrites that
extend out through passing fibers and thus have the
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capacity to receive input from those fibers and their
multiple sources.  From the medulla through the pons and
into the midbrain, the reticular neurons acquire converging
inputs from different sources including peripheral sensory
systems relaying somatic or visceral sensory, auditory,
vestibular, or visual inputs and the cerebral cortex sending
sensory and motor-related outputs.  They are thus in a
position to respond to peripheral afferents and central
efferents.  As the first experiments by Moruzzi and Magoun
showed (2), electrical stimulation of the reticular formation
elicits cortical activation and increased muscle tonus in an
anesthetized or sleeping animal. The reticular formation
thus has the capacity to awaken, to alert and to render
responsive the animal or human to incoming sensory input
or outgoing central commands.  Moreover, it has the
capacity to maintain wakefulness, arousal and
responsiveness in absence of those signals.  As subsequent
experiments by Magoun and his colleagues proved by
lesions (4), cortical activation and behavioral wakefulness
are maintained despite interruption of sensory pathways in
the brain, whereas they are not maintained after destruction
of the reticular formation in the presence of intact sensory
input.  Accordingly, the reticular formation possesses
autochthonous mechanisms for sustaining activity and
maintaining a waking state of the organism.

Reticular neurons send ascending projections into
the forebrain along two major pathways, a dorsal one
extending into the thalamus and a ventral, extra-thalamic
one extending into the hypothalamus and up to the basal
forebrain (Fig. 1; see for review (5).  The early
physiological studies demonstrated that the activating
influence of the reticular formation upon the cerebral cortex
is transmitted by relay through these subcortical stations
(6).  Neurons with ascending projections to these relays
discharge at their highest rates during cortical activation
(7).  Reticular neurons also send descending projections
into the spinal cord along dorsal funicular pathways to the
dorsal horn and ventral and lateral funicular pathways to
the intermediate zone and ventral horn (Fig. 1; see for
review  (5).  Early physiological studies showed that
different fields of reticular neurons exert facilitatory or
inhibitory influences upon sensory and motor transmission
in the cord (8).  Such influences would be differentially
exerted during states of arousal or sleep.  Although the
reticular neurons with ascending projections are most
concentrated within the mesencephalic and oral pontine
reticular formation (RF Mes and PnO) and those with
descending projections are most concentrated within the
caudal pontine and medullary reticular formation (PnC, Gi,
GiA and GiV), they overlap to a considerable degree and
some have bifurcating axons with ascending and
descending projections (Fig. 1, (9)).  The reticular
formation can thus function in a differentiated but also
integrated manner to influence cortical activation and
sensory-motor activity during wakefulness and sleep.

The neurotransmitter utilized by the large
population of neurons in the reticular formation with long
ascending and/or descending projections is likely the
excitatory amino acid, glutamate (Glu, Fig. 1).
Immunohistochemical studies employing antibodies for

glutamate or its synthetic enzyme, phosphate activated
glutaminase, indicate that the vast majority of these
neurons can produce glutamate for use as a
neurotransmitter (5, 10).  In situ hybridization for the
vesicular glutamate transporter (VGluT) further indicates
that reticular neurons have the capacity to package and thus
release glutamate as a neurotransmitter (11).  Another small
number of neurons distributed through the reticular
formation synthesize GABA and appear in the majority to
project locally onto the larger projection neurons of the
reticular core (5, 12-15).  The reticular projection neurons
are thus under inhibitory control by local GABAergic
neurons, a control which could be differentially exerted
during different states.  Some groups of GABAergic
neurons send long ascending projections from the ponto-
mesencephalic tegmentum or descending projections from
the medullary reticular formation.  Glutamatergic and
GABAergic long projection systems may function
differentially in waking and sleep to respectively promote
or dampen cortical activation and sensory-motor activity.

Many anesthetic agents act by blocking
glutamatergic transmission (16, 17) and would thus block
the action of the ascending reticular activating system and
descending reticulo-spinal facilitatory system.  Many other
anesthetic agents, such as the barbiturates, act by enhancing
GABAergic transmission through GABAA receptors (18)
and could thus act by inhibiting projection neurons of the
reticular formation.

3.2. The cholinergic ponto-mesencephalic neurons
The cholinergic ponto-mesencephalic neurons

utilize acetylcholine (ACh) as a neurotransmitter and are
located in the laterodorsal tegmental and pedunculopontine
tegmental nuclei (LDTg-PPTg) at the level of the oral pons
and caudal mesencephalon (Fig. 1).  Like neurons of the
reticular formation, they also have long dendrites that
extend into the path of traversing fibers, including
importantly those of the central reticular fasciculus, the
major ascending pathway of the brainstem reticular
formation (19).  They thus have the capacity to receive
input from reticular neurons and also the noradrenergic
locus coeruleus neurons, which utilize the same pathway
(see below). The cholinergic neurons give rise to ascending
projections that parallel those of the reticular formation,
extending dorsally into the thalamus and ventrally into the
hypothalamus and basal forebrain (12, 20-23).  Electrical
stimulation of the LDTg-PPTg elicits cortical activation,
while exciting thalamic neurons (24).  Presumed
cholinergic cells, which have been recorded across sleep-
wake states, are most active in association with cortical
activation of wakefulness or that of REMS (25, 26).
Release of ACh is high in the thalamus in association with
cortical activation of both states (27).  These cholinergic
neurons are thus ostensibly important for cortical activation
that occurs in both waking and REMS.  On the other hand,
their influence upon reticulospinal or spinal systems
appears to be inhibitory and more specifically associated
with REMS, since injections of carbachol, the combined
muscarinic and nicotinic cholinergic agonist, into the
pontine reticular formation elicits muscle atonia in
association with cortical activation, typical of REMS (28-
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31).  Enhancement of ACh levels by inhibitors of
acetylcholinesterase (AChE), the catabolic enzyme,
promotes cortical activation and waking, but can also
promote REMS under conditions of monoamine depletion
(32).  Lesions of the cholinergic LDTg-PPTg complex do
not produce deficits in cortical activation and waking but
lead to a loss of REMS (33).  Accordingly, cholinergic
ponto-mesencephalic neurons normally stimulate cortical
activation, perhaps during behaviorally quiet wake periods
and during REMS, when they also promote sensory-motor
inhibition and muscle atonia.

3.3. The noradrenergic locus coeruleus neurons
The noradrenergic locus coeruleus neurons utilize

noradrenaline (NA) as a neurotransmitter and are clustered
in the periventricular gray at the midpons, just behind the
cholinergic cells (LC, Fig. 1).  Their dendrites extend
within the gray and adjacent tegmentum.  In contrast to
reticular and cholinergic neurons, they give rise to a diffuse
innervation of the entire brain that includes the cerebral
cortex and the spinal cord (9, 34).  En route to the cortex,
they also provide an innervation to the subcortical relay
stations in the thalamus, hypothalamus and basal forebrain.
They thus have the capacity to influence the cortex directly
while recruiting the subcortical relays of the brainstem
arousal systems.  Chemical stimulation of the locus
coeruleus elicits cortical activation (35).  Pharmacological
enhancement of NA release by administration of
amphetamine elicits cortical activation in association with
behavioral arousal, which depends also on release of
dopamine (DA, see below) (36).  Across the natural wake-
sleep cycle, the noradrenergic neurons discharge during
waking, decrease discharge during SWS and cease firing
altogether during REMS (37).  They are thus specifically
involved in cortical activation as well as sensory-motor
activity during waking.  In fact, their activity appears to
prevent the appearance of sleep and REMS in a permissive
manner (38).  Their maximal discharge during waking is
often associated with highly aroused conditions, including
stress (39).  Pharmacological depletion of NA by inhibition
of its synthesis leads to a mild hypersomnia (40).  But
lesions of the noradrenergic locus coeruleus neurons do not
have long lasting effects upon cortical activation or waking
(36).  These neurons may accordingly correspond to a
central sympathetic system that stimulates and enhances
cortical activation and arousal, particularly during periods
of stress, but is not necessary for the simple occurrence of
these during waking.

3.4. The dopaminergic ventral mesencephalic neurons
The dopaminergic ventral mesencephalic neurons

utilize dopamine (DA) as a neurotransmitter and are located
in the substantia nigra (SN) and ventral tegmental area
(VTA, Fig. 1), as well as retrorubral field (not shown).
Their dendrites extend out into adjacent regions and those
of the medial SN and VTA amongst fibers ascending from
the brainstem and descending from the forebrain within the
medial forebrain bundle.  They give rise to ascending
projections particularly along the ventral pathway through
the medial forebrain bundle up to the dorsal striatum
(comprising the nigro-striatal system) and to the basal
forebrain, ventral striatum and cerebral cortex (comprising

the meso-limbo-cortical system).  Stimulation of the ventral
mesencephalon promotes behavioral arousal that is
positively rewarding since animals engage in self-
stimulation with electrodes in this region (41, 42).  Drugs
that stimulate release of DA such as amphetamine and
cocaine also lead to an aroused and positively rewarding
state (43).  Surprisingly, recording studies have not found
differences in average discharge rate of dopaminergic
neurons across sleep-wake states (44, 45).  However, the
dopaminergic neurons fire in bursts of spikes during
aroused and positively rewarding waking conditions (46)
and could also do so during REMS (44, 47), when they
would be active in series with the cholinergic ponto-
mesencephalic neurons (47).  DA release is greatest during
aroused and rewarding waking situations, including food
and drug intake (43, 48).  Block of DA receptors
antagonizes the rewarding properties of food and drugs (49,
50).  Pharmacological depletion of catecholamines also
results in a decrease in waking and mild hypersomnia (40).
Lesions of the ventral mesencephalic tegmentum result in
behavioral akinesia and aphagia (51, 52).  There is also
evidence to show that such lesions diminish fast cortical
activity of attentive arousal (53).  While also seemingly
active during REMS, dopaminergic neurons play a special
role in waking, stimulating arousal and attention that
includes locomotor and exploratory behaviors particularly
associated with positively rewarding stimuli and situations.

3.5.  The serotonergic raphe neurons
The serotonergic raphe neurons utilize serotonin (5-

hydroxytryptamine, 5-HT) as a neurotransmitter and are
distributed through midline (raphe) nuclei of the brainstem,
including the midbrain dorsal raphe nucleus (DR), from where
many ascending projections originate to forebrain and cortex,
and pontine and medullary raphe nuclei (including raphe
pallidus and magnus and pars alpha of the gigantocellular field,
GiA), from where descending projections to the spinal cord
originate (Fig. 1).  Stimulation of midbrain raphe nuclei leads
to a behavioral inhibition, arresting movement and eating
during waking (54).  Substances which increase release or
synaptic levels of serotonin produce a quiet waking state
seemingly associated with satiety, since they prevent eating
and sexual behavior, and are also employed in humans as
anxiolytic and anti-depressant drugs (55-61).  Reciprocally,
pharmacological depletion of serotonin leads to acute insomnia
(62) and an aroused waking state marked by increased eating
and sexual behavior (63).  Lesions of raphe nuclei produce
chronic insomnia and agitation (62).  Although serotoninergic
neurons were accordingly once thought to comprise the SWS-
generating system of the brain, they were not found to be
active during sleep, but instead to discharge maximally during
waking (64, 65).  Release of serotonin is also greatest during
waking, less during SWS and minimal during REMS (66, 67).
Certain serotonergic neurons discharge maximally during
waking in association with rhythmic movements such as
grooming (68).  They may accordingly be part of arousal
systems, yet involved in specific waking behaviors or
conditions, such as rhythmic motor pattern generation or quiet,
satiated conditions that might facilitate the onset of sleep.

Collectively, the brainstem arousal systems serve
to generate cortical activation and sensory-motor
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responsiveness as multiple parallel systems that are grossly
redundant, though differentiated in their specific roles and
the waking behaviors or conditions they promote.  In the
forebrain, they all project upon the subcortical relay
stations that also comprise arousal systems of the brain
located in the thalamus, hypothalamus and basal forebrain.

4.  THALAMO-CORTICAL ACTIVATING SYSTEM

The nonspecific thalamo-cortical projection
system comprises multiple thalamic nuclei, including
midline (rhomboid and reunions), medial (centromedial and
ventromedial) and intralaminar (centrolateral and
paracentral) that commonly do not project to one specific
cortical region but to multiple regions.  All of these nuclei
receive ascending input from the reticular, cholinergic,
noradrenergic and serotonergic neurons (9).  Thalamic
neurons are excited by glutamate, ACh and NA, but may be
inhibited by serotonin (69, 70).  They project in a very
widespread manner to the cerebral cortex (Fig. 1, (71, 72)).
Moreover, the midline nuclei project in a very diffuse
manner to all cortical areas (including hippocampus, (72)).
As known from the early physiological studies, stimulation
of the nonspecific thalamo-cortical projection system
evokes widespread and prolonged cortical activation (73).
Containing both glutaminase (74) and VGluT (75, 76),
thalamo-cortical neurons appear to be glutamatergic and
accordingly to excite cortical neurons by release of
glutamate.  The nonspecific thalamo-cortical projection
nuclei discharge spontaneously in association with cortical
activation during waking, as well as REMS (77).  Although
clinical cases and early experimental studies involving
lesions of the nonspecific thalamo-cortical projection
system indicated that these neurons play a critical role in
maintaining cortical activation (78, 79), more recent studies
employing neurotoxins for selective cellular lesions have
failed to document a loss of cortical activation following
destruction of thalamic neurons (80).  Obviously, both
nonspecific and specific thalamo-cortical inputs are
important for cortical activity and the cognitive content of
consciousness, but they may not be essential for
maintenance of EEG fast activity, a waking state and crude
consciousness of that state.  Accordingly the parallel,
ventral extra-thalamic pathway from the brainstem into the
hypothalamic and basal forebrain relays to the cortex plays
a critical role.

GABAergic reticularis thalamic neurons surround
the thalamo-cortical relay nuclei in a net-like (thus the
name) shell from which they project upon the thalamo-
cortical projection neurons.  Receiving input from the
brainstem arousal systems (above), the reticularis thalamic
neurons become disfacilitated and consequently
hyperpolarized when the brainstem systems decrease their
discharge at the onset of sleep (70).  Due to special
membrane properties (notably a calcium low threshold
spike), the reticularis neurons begin to burst from this
hyperpolarized level and through this burst and the
consequent release of GABA to inhibit the thalamo-cortical
projection neurons with sleep onset and continuation (81).
Determined by the frequency of their bursting, they also
participate in the propagation of spindles (12 -14 Hz) and

delta (1-3 Hz) or slower (< 1 Hz) waves during SWS within
thalamo-cortical circuits (82).

5.  HYPOTHALAMIC AROUSAL SYSTEMS

5.1.  The posterior hypothalamus
The posterior hypothalamus comprises multiple

nuclei and regions, including the lateral hypothalamus, that
lie in the path of ascending fibers from the brainstem
arousal systems (Fig. 1, PH).  Like other similarly
positioned neurons through the forebrain, many have
radiating dendrites that extend out into passing fibers of the
medial forebrain bundle, carrying ascending fibers from the
brainstem and also descending fibers from the forebrain
(83).  They accordingly may be responsive to multiple
collateral inputs from brainstem and forebrain arousal
systems.  Stimulation of the posterior hypothalamus elicits
a cascade of arousal responses, including cortical activation
and motor activity together with sympathetic responses
involving pupillary dilatation, increased respiratory rate,
increased heart rate and increased blood pressure (84).
Neurons in the lateral posterior hypothalamus project
directly to the cerebral cortex (85), and others project into
the brainstem and spinal cord, innervating reticular,
monoamine and sympathetic neurons (86, 87).  They also
have an excitatory influence upon the hypothalamo-
pituitary-adrenal axis (88).  Although neurons in the
posterior hypothalamus contain certain peptides (see
below), many contain VGluT and would thus appear to
utilize glutamate as a primary neurotransmitter (89).  In
addition, however, both local and cortically projecting
neurons appear to synthesize GABA (90, 91).  The role of
long, including cortically, projecting GABAergic neurons
depends upon their specific target neurons and remains to
be fully elucidated for the hypothalamus and basal
forebrain (see below).  In studies of unit discharge by
posterior hypothalamic neurons, all cells are reported to fire
maximally during waking and decrease their discharge
during SWS (92, 93).  Many are off during REMS as well,
although others discharge at a high rate during REMS.
Many also show increased discharge in association with
movement during waking.  Inhibition of the posterior
hypothalamic neurons by local microinjection of the
GABAA agonist, muscimol, leads to diminished waking and
hypersomnia (94).  In early studies employing electrolytic
techniques, lesions of the posterior hypothalamus,
particularly of the lateral posterior hypothalamus, produced
dramatic decreases in waking along with akinesia and
aphagia (4, 95-98).  However, in more recent studies
employing neurotoxic lesions, destruction of neurons in the
posterior hypothalamus did not produce the long lasting
deficits in waking (99).  Neurons in this area thus represent
another component of a grossly redundant yet multifaceted
arousal system.  Hypothalamic neurons control autonomic
and neuroendocrine function and in the posterior region are
important for activation of the sympathetic nervous system
and also the hypothalamo-pituitary-adrenal axis during
arousal.

5.2.  The histaminergic tuberomammillary neurons
The histaminergic tuberomammillary neurons

utilize histamine (H) as a neurotransmitter and are located
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in the ventrolateral posterior hypothalamus lateral to the
mammillary nuclei (Fig. 1).  They receive multiple inputs from the
brainstem and forebrain systems and project in a diffuse manner
through the brain, including to the cerebral cortex (100).  As part of
the posterior hypothalamus, the effects of stimulation and lesion of
this region (above) could be in part due to effects upon the
histaminergic neurons therein.  However, it should be emphasized
that the cortically projecting neurons of the posterior hypothalamus
include large populations of cells that are not histaminergic and are
located dorsal to those cells.  Similarly, wake-active neurons
recorded in the posterior hypothalamus (above) include large
numbers of non-histaminergic neurons (93).  On the other hand,
histaminergic neurons are thought to be wake-active neurons that
like monoaminergic neurons cease their discharge during REMS
(92, 93).  The role of histamine in the maintenance of waking and
cortical activation has been revealed pharmacologically since anti-
histaminergic drugs produce somnolence (101, 102).  Most
recently, it has also been shown that rats lacking histamine due to
knock out of its synthetic enzyme show less arousal in response to
novel environments although they do not show decreased basal
amounts of waking (103).

5.3.  The orexinergic peri-fornical neurons
The orexinergic peri-fornical neurons contain the

peptide orexin (Orx), also called hypocretin) that they are
presumed to utilize as a neuromodulator and are scattered through
the posterior to mid hypothalamus surrounding the fornix and
within the lateral hypothalamic area (Fig. 1).  These
orexin/hypocretin producing neurons are believed to be important
for maintaining waking since they, the peptide or the receptor are
lacking in narcoleptic humans, dogs and knock out mice (104-
106).  Like other posterior hypothalamic neurons, they give rise to
diffuse projections that include the cerebral cortex (107).  They
also project to and excite other arousal systems, including the locus
coeruleus (108, 109), the nonspecific thalamo-cortical projection
system (110), the histaminergic neurons (111, 112) and the
cholinergic basal forebrain neurons (below, (113).  It is possible
that they correspond to wake-active and REMS-off cells recorded
in the peri-fornical region of the posterior hypothalamus (114) and
would thus exert their control only during waking.  Orexin, as
according to its name, may also promote eating in addition to
arousal.  Notably, however, it appears to have a role in energy
regulation, maintaining a relatively high rate of metabolism in
association with activity and arousal in normal animals (115).  This
role may be fulfilled by influences upon the sympathetic nervous
system and the hypothalamo-pituitary-adrenal axis, as well as
central arousal systems.

Neurons of the posterior hypothalamus thus include
multiple cell types of which many are probably glutamatergic,
some GABAergic, histaminergic, orexinergic and others awaiting
identification or study.  Different cell groups may play subtly
different roles in arousal, including stimulation of eating,
metabolism, sympathetic and adrenal activation, locomotion
and/or cortical activation associated with arousal.

6.  BASAL FOREBRAIN INTERLEAVED WAKE
AND SLEEP PROMOTING SYSTEMS

6.1.  The cholinergic basal forebrain neurons
The cholinergic basal forebrain neurons are

distributed from the medial septum (MS)-diagonal band

(DB) nuclei most rostrally to the magnocellular preoptic
nucleus (MCPO), substantia innominata (SI) and globus
pallidus (GP) caudally (Fig. 1).  Like reticular neurons,
they have long radiating dendrites that extend out through
the passing fibers of the medial forebrain bundle.  From
these, they receive input from all the brainstem and
hypothalamic arousal systems, including glutamatergic
reticular neurons, cholinergic ponto-mesencephalic
neurons, noradrenergic locus coeruleus neurons,
dopaminergic ventral mesencephalic neurons,
histaminergic tuberomammillary neurons and orexinergic
peri-fornical neurons (20, 100, 107, 116, 117).  They are
excited by glutamate (118), NA (119), DA (unpublished),
histamine (120) and orexin (113).  In contrast, they are
inhibited by serotonin, an action that may serve in
serotonin’s role of facilitating sleep (above, (121)).  They
are also hyperpolarized by ACh through muscarinic
receptors, which serve undoubtedly as autoreceptors, yet
are excited through nicotinic receptors, which could
possibly serve as specific heteroreceptors for inputs from
other cholinergic neurons (122).  The cholinergic neurons
project to the cerebral cortex in a widespread manner, yet
with a topographic organization (123-125).  MS-DB
neurons project densely to the hippocampus, whereas the
MCPO-SI-GP magnocellular basal neurons provide the
innervation to the neocortical mantle.  Similarly to the MS-
DB for hippocampal activity (126), chemical stimulation of
the basal forebrain suppresses delta activity and SWS, and
elicits cortical activation, characterized by increased fast,
gamma (30-60 Hz) and rhythmic slow, theta (4-10 Hz)
EEG activities (127).  Selective activation of cholinergic
neurons with neurotensin similarly suppresses delta activity
and SWS and elicits cortical activation with gamma and
theta, but it not only increases waking, it also increases
REMS (128).  It thus appears that as for the brainstem
cholinergic neurons, the basal forebrain cholinergic
neurons stimulate cortical activation but do not exclusively
or by themselves alone evoke behavioral arousal.  Like the
brainstem neurons, they can promote REMS, complete with
cortical activation and muscle atonia.  Many units recorded
in the basal forebrain have been found to discharge at their
highest rates during waking and REMS, although none
have yet been identified as cholinergic (129-131).  In the
cerebral cortex, release of ACh is high during both waking
and REMS relative to SWS, and in the hippocampus, it is
actually highest during REMS (132-134).  During waking,
very high amounts of ACh release occur during eating,
suggesting that also like the brainstem cholinergic neurons,
the basal forebrain neurons may be involved together with
dopaminergic neurons in positively rewarding activities
including food intake (42, 135).  Along with positive
reinforcement, the cholinergic basal forebrain neurons have
been implicated in mechanisms of synaptic plasticity,
learning and memory (136, 137), which are of course
linked to their role in cortical activation and attention (138).

6.2.  The non-cholinergic basal forebrain neurons
The non-cholinergic basal forebrain neurons are

co-distributed with the cholinergic cells through the same
nuclei (see above) and include glutamatergic as well as
GABAergic neurons (Fig. 1).  Most recently evidence has
been presented that the cortically projecting magnocellular
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basal neurons include glutamatergic, GABAergic and
cholinergic cells (139-141).   In addition, it has been found
that many cortically projecting neurons discharge
rhythmically in association with rhythmic theta-like EEG
activity and these comprise glutamatergic, GABAergic and
cholinergic neurons (142, 143).  All three cell groups thus
discharge in association with cortical activation and
moreover may stimulate rhythmic theta-like oscillations in
cortex during aroused waking and REMS.  By presumably
acting upon different target neurons, the three cell groups
thus collectively comprise the important basal forebrain
relay to the cerebral cortex from the brainstem reticular
formation and other arousal systems.  Moreover, basal
forebrain neurons also receive input from olfactory sensory
afferents (144).  They may thus be responsible for the
cortical activation that can be produced in the cerveau isolé
preparation by olfactory stimulation and the recovery of
spontaneous cortical activation that occurs in that
preparation with time (145).  Accordingly the basal
forebrain should be considered as a forebrain arousal
system that can function in advance and even in absence of
the brainstem activating system and the collateral sensory
inputs from somatosensory, auditory and visual modalities
therein received.

Particular GABAergic basal forebrain neurons
may promote SWS.  That basal forebrain neurons could
play a role in SWS was evident from early experiments
showing induction of SWS with stimulation of the basal
forebrain (146, 147) and loss of SWS with lesions of the
basal forebrain (148).  More recently, discrete stimulation
of closely spaced sites in basal forebrain was shown to
produce inhibition of cortical neurons from some sites and
excitation from others (149), and neurotoxic lesions were
reported to produce deficits of sleep and spindles in
addition to decreases in fast EEG activity (150, 151).
These paradoxical findings may reflect the interleaving of
different cell types within the basal forebrain.  Indeed,
many basal forebrain neurons discharge at their highest
rates during SWS and can be virtually silent during waking
and REMS (129, 131).  In anesthetized animals, a majority
of GABAergic cells discharge at higher rates in association
with irregular slow wave activity than with stimulation-
induced cortical activation (152).  Accordingly, it appears
that SWS-active neurons are co-distributed with wake- and
REMS-active neurons within the basal forebrain.  They
must be differentiated according to their projections,
discharge properties, neurotransmitters and receptors.
Whereas presumed wake-active cells, such as the
cholinergic neurons, are excited by NA, presumed SWS-
active cells, notably particular GABAergic neurons, appear
to be inhibited by NA (153, 154).  They accordingly share
properties with neurons in the adjacent preoptic area,
including the ventrolateral preoptic area (155, 156), where
putative sleep generating GABAergic neurons are also
inhibited by NA (157).  Such GABAergic neurons may
give rise to local projections, inhibiting the cholinergic
cells, but also to long projections including to the posterior
hypothalamus (158).

In addition to forming the important ventral
extra-thalamic relay from the brainstem activating systems

to the cerebral cortex, the basal forebrain thus also
compromises autochthonous neural systems for the
reciprocal regulation of waking/sleeping and associated
cortical activation/de-activation in the forebrain.

7.  CONCLUSIONS AND PERSPECTIVE

The brain contains multiple autochthonous arousal
systems that evoke awakening from sleep in response to
sensory stimulation, maintain waking during the active part of
the day even in absence of sensory stimulation and prolong or
heighten waking in response to particular stimuli or conditions.
These systems act upon the cerebral cortex to stimulate high
frequency gamma together with theta activity while
suppressing slow delta, and they act upon the spinal cord to
stimulate sensory-motor responsiveness and activity.  They
also enlist the peripheral sympathetic system and
hypothalamo-pituitary-adrenal axis to enforce, enhance or
prolong arousal and activity.  Situated within the brainstem,
thalamus, posterior hypothalamus and basal forebrain, the
arousal systems are comprised of neuronal groups that utilize
glutamate, ACh, NA, DA, 5-HT, or H (Fig. 1) and that form
interconnected networks, responsive and often excited by their
congener’s neurotransmitters.  Grossly redundant, no one
system is essential for the elicitation or maintenance of the
waking state.  However, each is distinctive in the particular
activation or waking condition it evokes.  Future challenge lies
in understanding the specific involvement and importance of
each system, such as the cholinergic in evoking cortical
activation during waking with elevated attention, motivation or
reward yet also in association with behavioral quiescence and
muscle atonia during REMS, the dopaminergic in inducing a
highly motivated and positively rewarding condition during
waking and also during REMS, the noradrenergic in evoking
cortical activation only during waking and often in association
with high arousal and stress, or the serotonergic in producing a
quiet waking state and apparently relaxed and satiated mood
that is actually conducive to the onset of sleep.  Neuropeptides,
such as the recently identified orexin (Fig. 1) and many others
that await discovery, may have the capacity to enlist multiple
arousal systems in particular constellations to enforce a waking
state.  Another challenge lies in understanding how interleaved
or adjacent, often GABAergic, SWS-active neurons become
active, perhaps through changes in the sensitivity of their
unique receptors or through the influence of sleep-inducing
neuropeptides, to periodically inhibit the arousal systems and
induce sleep.
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