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1. ABSTRACT

This study deals with the biological role of
transforming growth factor-beta (TGF-β) in the
pathogenesis of benign prostatic hyperplasia (BPH), which
is a common disorder in aging males.  The two known
etiological factors for BPH have been the presence of testis
and aging.  It is well established that androgen plays an
important role in the pathogenesis of BPH in aging men.
The action of androgen is mediated through actions of a
host of soluble growth factors, among which TGF-β is the
most versatile in its ability to regulate proliferation, growth
arrest, differentiation, and apoptosis of prostatic stromal
cells.  It is known that BPH development involves a steady
increase in the stromal compartment.  A subsequent
differentiation process of smooth muscle cells in the
prostate is responsible for the development bladder neck
obstruction secondary to BPH.  However, the manner in
which the testis and aging mediate the expansion in
prostatic stromal compartment and the subsequent smooth

muscle differentiation remains unclear.  It has become
increasingly apparent that TGF-β intimately regulates the
various events associated with the development of BPH.
This chapter will present evidence to support the above
claim (Figure 1).

2. INTRODUCTION

2.1. Incidence and etiology of BPH
The development of benign prostatic hyperplasia

(BPH) goes through an asymptomatic preclinical stage into
a clinical stage with symptoms and/or signs of voiding
dysfunction.  This is a gradual process-taking place over
years.  Results of autopsy studies have indicated that
microscopic changes of BPH start as early as 35 years of
age, reaching a prevalence of 50% in men of 60 years and
approaching 100% by age 80-85 (1-3). The two known
etiologic factors for the pathogenesis of BPH have been
aging and the presence of the functional testes (2, 4, 5). In
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Figure1. Effect of TGF-β on prostatic stromal cells. TGF-β is
able to promote cell proliferation, growth arrest, differentiation
and apoptosis in prostatic stromal cells. These seemingly
contradicting events can take place depending on dosage of
TGF-ß and culture conditions.

this review, we shall generate some new insights into the
mechanisms behind these two factors.

2.2. Different zones of the human prostate
The glandular regions of the human prostate are

the peripheral zone, the central zone, and the transition
zone (6).  The transition zone is the site of BPH
development. In the normal prostate, the transition zone is a
very small region surrounding the urethra.  As BPH
develops, the transition zone can grow and occupy the
majority of the prostate. BPH is characterized by a
histological variegated nodular growth (7). The
development of BPH nodules results in a highly
heterogeneous prostate (8).

2.3. Components of the prostate: cellular players
In BPH development, various cellular and non-

cellular components within the prostate play a direct role in
the controlling of its growth. Because of the close
proximity of one another, these components exhibit an
intricate relationship, leading to the transmission of signals
that ultimately regulate prostatic growth (9).  For the sake
of simplicity, these components can be divided into three
categories: epithelial, stromal, and non-cellular
components. Prostatic stromal cells are separated from
epithelial cells by a thin layer of specialized basement
membrane. Stromal cells also are separated from adjacent
stromal cells by extracellular matrix. The composition of
these components varies according to the physiological
status of the prostate. For a detailed description of these
components, please refer to earlier reviews (10-11).

3. BIOLOGY OF PROSTATE STROMAL CELLS

The human prostatic stroma is composed of
several specialized cell types. Smooth muscle cells and
fibroblasts predominate. Their relative proportions in
human prostate vary with age (and with the presence of
BPH). There are at least two smooth muscle cell
phenotypes exist in vivo: one expressing both actin and
desmin, and a second expressing only actin (12).  A third
cell type, with immunohistochemical characteristics of both
smooth muscle and fibroblast (myofibroblast), has been
reported in the prostate (13). Besides actin and myosin,
smoothlin has been used as a specific marker for smooth
muscle cells (14). Immunocytochemical evaluation of
marker proteins to identify stromal cell types in culture has
been reported in different studies (15-18) including our
studies (8, 19, 20).

3.1. The aging factor: A continuous evolution of
prostatic cellular composition

Unlike other organs in the body, the prostate
continues to grow with constant changes in morphology
and cellular composition. This unique property of the
prostate is characterized by a disrupted homeostatic
programming (22). We postulate that such a disrupted
homeostatic mechanism is mainly due to a program of cell-
to-cell interaction within the prostate (intrinsic factors) (9),
leading to an increase in the smooth muscle component (12,
20, 23). Yet, the progression of BPH is a predictable
program, which is perpetuated by normal physiological
forces originated from outside of the prostate (extrinsic
factors). One of the most prominent forces is the testis (24).

3.2. The testis factor: Role of androgen in prostatic
growth

The role of the testis in prostatic growth has been
well recognized (25). It is now clear that the testis is the
site of androgen production, which is responsible for the
growth and differentiation of the prostate. Although the
molecular structure and the biochemical action of androgen
have been well characterized (26), the cellular events of
androgen action in the prostate remain largely undefined.
The effect of androgen on the prostate is mediated through
a process known as cell-to-cell interaction (27, 28). Within
this process, TGF-β stands out as one of the most versatile
regulators in BPH development.

3.3. The testis factor: Metabolites of testosterone
Testosterone is able to convert to

dihydrotestosterone (DHT) through the action of 5a-
reductase. DHT is the ‘active’ androgen in the prostate (29,
30). Inhibitors to 5a-reductase have been used for the
treatment of BPH (31).  Testosterone is also able to convert
to estrogen through the action of aromatase.  In BPH, there
is a steady increase in estrogen, but not testosterone or
DHT, in prostatic stroma in aging men (32, 33).  The
prostate is known to contain estrogen receptors (34, 35).
Classical experiments have demonstrated an excessive
growth of the prostate with the treatment of a combination
of androgen and estrogen (36).  These studies confirm the
importance of estrogen in BPH development.  Yet, the
mechanism of estrogen action remains largely unclear.  It is
clear now that TGF-β expression can be induced by estrogen,
but not by DHT, in prostatic stromal cells (37).  Testosterone,
also, was able to induce TGF-β expression. But, the use
aromatase inhibitor was able to block the inductive action of
testosterone (38).  These findings indicate the importance of
aromatase in prostatic stromal biology.  Thus, the role of
testosterone is twofold: conversion into DHT mainly for
epithelial growth and estrogen for stromal growth and smooth
muscle development.

3.4. Role of stromal cells in BPH
BPH has been perceived as mainly a stromal

disease (39).  The prostatic stroma is made up of a mixture
of complex cell types amid a background of extracellular
matrix materials. Aside from small amounts of
undifferentiated mesenchymal cells (8), blood borne cells
(40), endothelial cells (41), and nerve cells (42), stromal
cells consist mainly of fibroblasts (or fibrocytes) and
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smooth muscle cells (19,20).  In BPH, there is a strong
evidence to indicate smooth muscle predominance (12, 20,
23).  The contractile tension in the prostate smooth muscle
in BPH contributes to bladder outlet obstruction and is
mediated by α-adrenoceptors (43, 44). The use of α-
blocker for the treatment of BPH is based on this rationale
(12). However, the mechanism of this smooth muscle
development in BPH, remains largely unknown.

3.5. Regulation of differentiation of prostatic smooth
muscle cells

The conversion of fibroblasts to smooth muscle
cells and vise versa is a process of differentiation and de-
differentiation. Under culture conditions, prostatic stromal
cells can be manipulated to assume smooth muscle or
fibroblast phenotype (45).  Basically, conditions that favor
cellular proliferation will lead to fibroblasts accumulation;
while conditions that favor growth arrest will lead to
smooth muscle phenotype.  Therefore, mitogenic factors,
such as basic fibroblast growth factor (bFGF) (46) and
platelet derived growth factor (PDGF) (47) will induce the
proliferation of stromal cells leading to a fibroblast
phenotype. On the other hand, factors inhibiting
proliferation such as TGF-β (18) or estrogen (17) will
promote smooth muscle differentiation. By studying
various in vitro conditions that regulate smooth muscle
differentiation or de-differentiation, it is possible for us to
deduce the in vivo requirements for smooth muscle
generation in BPH.

4. BIOLOGY OF TGF-β  IN THE PROSTATE

Mammalian cells contain TGF-ß1, -ß2, and -ß3
(48, 49). Prostate stromal cells express all three isoforms
(50, 51), with TGF-ß1 being the predominant one (52).
The newly synthesized TGF-ß is biologically inactive, as it
binds with the latency associated peptide and latent TGF-ß
binding protein in a complex form (53).  It is activated
through a sequence of events leading to the release of the
mature form from the complex (54).  TGF-ß is able to
mediate a wide range of cellular events (55, 56) and exerts
its biological effect through its receptors, designated as
type I, II and III of receptors (TßR-I, TßR-II, TßR-III) (57).
TßR-III is a proteoglycan (58) and has no direct role in
TGF-ß signal transduction (59). It may regulate
bioavailability of the ligand to target cells (59-61). TßR-I
and TßR-II are directly involved in TGF-ß signaling, for
these receptors are serine/threonine kinases (62). Both
TßR-I and TßR-II are required for TGF-ß signaling (63).
For detailed information on the mechanism of TGF-ß
signaling, please refer to recent reviews (64-66).

4.1. Aging factor: An increased TGF-β  production in
prostatic stromal cells

Prostatic smooth muscle cells express elevated
levels of TGF-β (67). This elevated TGF-β is responsible
for epithelial apoptosis, as transgenic mice with a prostate-
targeted expression of a dominant negative TβR-II showed
no signs of apoptosis in the prostate (68). The prostatic
stroma of aging rats showed an increase in expression of
TGF-β (22). TGF-β expression in human prostatic stromal
cells is also increased with an increase in age (69).  It is

likely that an increased expression of TGF-β is associated
with the unique smooth muscle predominance in the aging
prostate (20, 21).

4.2. Role of TGF-β  in prostatic stromal cells
TGF-β is a multi-functional growth factor (70). In

prostatic stromal cells, it is known to induce growth arrest and
to promote differentiation into smooth muscle cells (18, 47).
Interestingly, results of our recent studies have demonstrated
that TGF-β not only is able to induced growth arrest and
differentiation it is also able to induce proliferation and
apoptosis in human prostatic stromal cells (69, 71).  This multi-
functional effect of TGF-β on prostatic stromal cells is related
to specific dosage used in the culture experiments.  Therefore,
when we investigate the role of TGF-β in BPH development, it
is important that we take into consideration the relative amount
of TGF-β production in the prostate (Figure 2).

5. TGF-β  MEDIATES PROLIFERATION IN
PROSTATIC STROMAL CELLS

TGF-ß is known to induce proliferation in
mesenchymal cells but it is a profound inhibitor to
proliferation in epithelial cells (70, 72).  Since prostatic
stromal cells are of mesemchymal origin, it is not
surprising that TGF-β can stimulate their proliferation.
However, this rule is now subject to re-evaluation, as recent
reports have shown stimulation in epithelial cells (73) and
inhibition in prostatic stromal cells (69).  It become clear that
platelet-derived growth factor (PDGF) plays an important role
in TGF-β mediated cellular proliferation.  PDGF is a potent
mitogen to prostatic stromal cells (47). TGF-β1 is able to
induce PDGF-BB expression in a dose-related manner. Like
many mitogenic growth factors, PDGF activation leads to
downstream Myc activation and proliferation in target cells
(74, 75). However, it is interesting to note that this elevated
expression of PDGF is only mitogenic to prostatic stromal
cells, when low doses of TGF-β1 were used in the culture. At
high doses of TGF-β1, although the expression of PDGF was
further increased, proliferation in prostatic stromal cells was
inhibited. It is now clear that Myc expression is inhibited by
two separate TGF-β mediated events: Smad mediated
transactivation and relief of repression of Miz-1, resulting in
p15 expression. Therefore, c-Myc may be the pivotal event of
the interaction between PDGF and p15 in prostatic stromal
cells. We propose to test the hypothesis, which states that, at
low doses of TGF-β1, p15 was either not expressed or
expressed at a low level, allowing PDGF mediated Myc
activation and cell proliferation. At high doses of TGF-β1, a
direct inhibition of Myc activation coupled with expression of
high levels of p15 led to growth arrest in prostatic stromal cells
(Figure 3).

6. TGF-β  MEDIATES GROWTH ARREST IN
PROSTATIC STROMAL CELLS

It is clear that the proliferative effect of TGF-ß1
is mediated through the expression of PDGF (69). The
promoter of the PDGF gene contains the TGF-ß/Smad
response element (76).  Our research results indicated a
dose related increase of PDGF-BB expression by TGF-ß1
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Figure 2. Developmental events in human prostate during
aging. In the prostate of aging men, there is an accumulation of
stromal cells. Through the above events, some of the stromal
cells convert to smooth muscle cells, which are the
characteristic features of BPH.

Figure 3. Effect of TGF-β on stromal cells proliferation in
BPH. TGF-β can stimulate prostatic stromal cells to undergo
cell proliferation. This event is mainly mediated through the
production of PDGF in an autocrine manner, as the promoter
region of PDGF contains TGF-ß/Smad response element.

in cultures of prostatic stromal cells. The role of TGF-ß1 in
regulating growth arrest in the face of increasing levels of
PDGF has not been elucidated.  We also noted that the growth
arrest effect of TGF-ß was associated with an up-regulation of
a cdk inhibitor, p15. The promoter of the p15 gene also
contains TGF-ß/Smad response element. TGF-ß has induced
expression of p15 in other systems. Therefore it is not
surprising that p15 expression is induced by TGF-ß1 treatment
in these cells.   Our study in prostatic stromal cells indicated
that other cdk inhibitors, such as p16, p21, and p27 were either
unresponsive to TGF-ß or were minimally induced by TGF-ß.
Clearly, p15 was the rate-limiting factor in prostatic stromal
cells in response to TGF-ß. P15 is a specific inhibitor of the
early G1 cyclin D dependent cdks, cdk4 and cdk6 (77). High
levels of p15 can induce a redistribution of p27 from active
p27-cyclin D-cdk4/6 complexes to cyclin E-cdk2, inactivation
this late G1/S kinase (78). In the present study, we demonstrate
that such an association represents a cause-and-effect

relationship between TGF-ß1 induced expression of p15 and
growth arrest in prostatic stromal cells. Two approaches will
be explored: down-regulation of p15 and interaction of p15
with specific cdk’s.

Inhibition of cell proliferation is central to the TGF-
ß response in epithelial, endothelial, hematopoietic, neural, and
certain types of mesenchymal cells, and escape from this
response is a hallmark of many cancer cells. TGF-ß can induce
anti-proliferative gene responses at any point during the
division cycle. However, these responses are effective at
inhibiting cell cycle progression only during G1. Once a cell
becomes committed to executing DNA replication in late G1,
the division cycle will cutting DNA replication in late G1, the
division cycle will proceed undeterred by TGF-ß until the cell
enters G1 again following mitosis, at which point the cell cycle
will arrest. In most cases this arrest is reversible, but in some
cases, it is associated with cell apoptosis or cell death (65, 66).
Low doses TGF-ß can induce stomal cell proliferation in our
results of experiment.

Two classes of antiproliferative gene responses are
involved in TGF-ß growth arrest: gene responses that inhibit
cyclin- dependent kinases (cdks), and down regulation of c-
myc. The first is c-Myc down regulation, observed in most cell
types that are growth inhibited by TGF-ß. MYC was the first
oncogen found to be overexpressed as a result of a
chromosomal translocation. Since this seminal observation,
amplication of MYC family members (MYC, N-MYC, and L-
MYC) has been shown in many human tumors and is known
to deregulate cell growth by promoting continuous, mitogen-
independent, cell cycle progression (79-83). The second are
cdk-inhibitory responses, including the induction of p15 and
p21 and down regulation of cdc25A. Most cells that are growth
inhibited by TGF-ß have different combinations of cdk-
inhibitory responses. C-Myc antagonizes TGF-ß signaling by
acting as a repressor of cdk-inhibitory responses. Down
regulation of c-Myc is thus necessary for TGF-ß-induced cell
cycle arrest (65-66, 84). . The effect of growth arrest in
prostatic stromal cells is manifested at an intermediate
concentration of TGF-β (Figure 4).
.
7.EFFECT OF TGF-β  ON CELL DIFFERENTIATION

Smooth muscle differentiation in prostatic stromal
cells results in the expression of contractile elements, which
contain smooth muscle actins, myosins, and a host of other
markers.  TGF-ß is able to induced smooth muscle
differentiation in human prostatic stromal cells (18).  The
effect of TGF-β on extracellular matrix (ECM) expression is
well known by producing collagen type I, fibronectin and by
inhibiting proteases that promote degradation of ECM (85-88).
The promoter region of collagen and fibronectin contains
TGF-β response elements (89-93). In human prostatic stromal
cells, TGF-β is able to induce expression of collagen type I and
III (94). TGF-β is able to upregulate fibronectin expression
(95).

Differentiation is a continuously regulated
process and interactions between the cell and its
environment.  An important component of the
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Figure 4. Effect of TGF-β on stromal cell growth arrest in
BPH. TGF-β is able to induce growth arrest in prostate stromal
cells. This effect is mainly mediated through the production of
cdk inhibitors, in an intracrine manner, as the promoter region
of these cdk inhibitors contains TGF-ß/Smad response
element. Of these cdk inhibitors, P15 plays a significant role.

                    
Figure 5. Effect of TGF-β on stromal cell differentiation in
BPH. TGF-β can mediate smooth muscle differentiation in
prostatic stromal cells. This event is mainly due to the
accumulation of ECM as a result of TGF-ß action.

cellular environment is the ECM, which is secreted and
assembled locally into an organized network to which cells
adhere (96). ECM plays a critical role in regulating the
differentiated phenotype of cells (97, 98).  ECM receptors
(such as integrins) are a critical interface that conveys
signals that affect growth, differentiation, and
morphogenesis (99). The a7 integrin has been specifically
linked to differentiation in smooth muscle cells (100).
Members of β1 integrin family are known to mediate
fibroblast interactions with collagen fibers (101).  In
prostatic stromal cells, our knowledge on the effect of ECM
on differentiation of prostatic stromal cells remains limited.
TGF-ß is known to induce smooth muscle phenotype in
skin fibroblasts by an up-regulation of both collagen type I
and a2 and ß1 integrin (102). The interaction between
collagen and integrin results in expression of smooth
muscle a-actin requires further investigation (Figure 5).

8. EFFECT OF TGF-β  ON CELL APOPTOSIS

In addition to causing reversible cell cycle arrest
in some cell types, TGF-ß can induce programmed cell
death in others. In fact, apoptosis induced by TGF-ß family
members is an essential component of the proper

development of various tissues and organs, including the
rhombencephalic neural crest (103), and the mammary
gland ductal system. After lactation, a rise in TGF-ß3 levels
mediates the induction of programmed cell death of
epithelial cells that precedes mammary gland involution
(104). TGF-ß induced apoptosis and the selective
elimination of preneoplastic cells may also be involved in
the tumor suppression mediated by TGF-ß, as a body of
largely circumstantial evidence suggests. Just as loss of
TGF-ß mediated growth arrest might predispose a cell to
cancer, loss of TGF-ß mediated apoptosis may permit
selective accumulation of premalignant cells (65, 66).  High
doses TGF-ß can induce stromal cell apoptosis (71).  In
light of the knowledge that BPH is characterized by a
reduced apoptosis, it is likely that the concentration of the
active TGF-ß does not reach a high level, which causes
apoptosis in the prostate.

9. SUMMARY AND CONCLUSION - TGF-β
INDUCES CELL PROLIFERATION AT LOW
DOSES, GROWTH ARREST AND
DIFFERENTIATION AT INTERMEDIATE DOSES,
AND APOPTOSIS AT HIGH DOSES IN HUMAN
PROSTATIC STROMAL CELLS

TGF-β is a pleiotropic growth factor.  In our
studies, we observed that TGF-β1 induced proliferation,
growth arrest, and apoptosis in prostatic stromal cells,
depending on the concentration of TGF-β1 used in the
culture.  Primary cultures of prostatic stromal cells were
established from clinical surgical specimens. Treatment of
these cultures with low doses of TGF-β1 (0.001-0.01
ng/ml) resulted in an increase in cell proliferation. The
addition of neutralizing antibody against platelet-derived
growth factor-BB (PDGF-BB), but not anti-PDGF-AA,
abrogated this stimulatory effect of TGF-β1 on these cells.
TGF-β1 resulted in a dose-related increase in the
production of PDGF-BB in these cultures, as measured by
enzyme-linked immunosorbant assay (ELISA). Prostatic
stromal cells underwent growth arrest, when treated with
intermediate concentrations of TGF-β1 (0.1-1.0 ng/ml).
Inhibitors of cyclin dependent kinases (cdk’s) are known to
mediate growth arrest. Two cdk inhibitors, p15INK4b and
p21Cip1, were up-regulated in these cultures by TGF-β1 in a
dose-related manner as determined by reverse transcriptase-
polymerase chain reaction (RT-PCR) and by Western blot
analysis, with p15 showing a dramatic increase and p21
showing a lesser degree of increase.  Levels of other cdk
inhibitors, such as p16INK4a and p27Kip1, were constitutively
expressed in prostatic stromal cells and were not
significantly affected by TGF-β1 treatment.  At these
dosages, TGF-ß was also able to induce smooth muscle
differentiation in prostatic stromal cells (47).  At high doses
of TGF-ß1 (10 ng/ml or higher), it induced apoptosis in
prostatic stromal cells (71).  Finally, results of ELISA
analysis from conditioned media of cultures of prostatic
stromal cells derived from men with varying ages showed
an age-related increase in TGF-ß1 but not in TGF-ß2 (69).
These data support the concept that low levels of TGF-ß1
produced by prostatic stromal cells from young men favor
proliferation; while high levels of TGF-ß1 produced by
cells from old men favor growth arrest and differentiation.
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Figure 6. TGF-β signaling in prostate stroma. The multiple
effects of TGF-β on prostate stromal cells are mainly
dependent on specific dosage used in the culture.

Under normal in vivo conditions, TGF-β seldom mediates
apoptosis, except under special conditions (105,106).

Based on the above brief discussion, we are able
to derive the following conclusions: 1.The human prostate
accumulates smooth muscle cells, leading to the
development of symptoms secondary to benign prostatic
hyperplasia (BPH). Therefore, smooth muscle
differentiation is an important event in the prostate of aging
men. 2. There is also an increase in TGF-β expression in
the prostate of aging men. It remains unclear, if these two
events, that increased smooth muscle cells and increased
TGF-β production, are related. 3. TGF-β is known to
induce proliferation, growth arrest, smooth muscle
differentiation, apoptosis, and extracellular matrix (ECM)
expression in prostatic stromal cells.  4. ECM proteins may
play a critical role in regulating smooth muscle
differentiation in the prostate. Interestingly, the a7 integrin
receptor is specifically expressed in smooth muscle (107).
5. Estrogen in the prostate is mainly converted from
testosterone through the action of aromatase.  The
knowledge of an increased accumulation of estrogen in the
prostate of aging men coupled with the knowledge of the
ability of estrogen to induced TGF-β expression in prostatic
stromal cells has undermined the importance of the role of
estrogen and aromatase in BPH development. 6. The
diverse biological effects of TGF-β on prostatic stromal
cells have created a perpetuating force, which favor the
formation and accumulation of smooth muscle cells,
leading to BPH development (Figure 6).
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