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1. ABSTRACT

The protein tyrosine kinases (PTKs) are enzymes
catalyzing the transfer of the gamma-phosphate group of
ATP to the hydroxyl groups of specific tyrosine residues in
peptides. Although phosphotransfer reactions catalyzed by
various PTKs are similar with regard to their basic
mechanisms, their biological functions demonstrate a
considerable degree of specificity. PTKs are divided into
two groups according to the presence of transmembrane
and extracellular domains. Whereas most PTKs possess
these domains, which render them capable of recognizing
extracellular ligands, many PTKs lack these sequences and
are therefore referred to as non-receptor or non-
transmembrane PTKs. Thirty-two genes encoding for non-
receptor PTKs are present in the human genome. The
current review focuses on the composition, structure,
expression, functions and regulation of the mammalian
non-receptor PTK families.

2. INTRODUCTION

The protein tyrosine kinases (PTKs) are enzymes
catalyzing the transfer of the gamma-phosphate group of
ATP to the hydroxyl groups of specific tyrosine residues in
peptides. Although phosphotransfer reactions catalyzed by
various PTKs are similar with regard to the basic
mechanisms, the recognition of substrates by PTKs and,
therefore, subsets of proteins phosphorylated by them show
a considerable degree of specificity.

In agreement with the general prevalence of
serine/threonine phosphorylation over tyrosine
phosphorylation in the cells, the genes encoding for PTKs
are notably fewer than those encoding for serine/threonine
protein kinases , only about 1/6 of all protein kinase genes

of the human genome are PTKs (1-4). The PTK
superfamily is enormously diverse. First of all, PTKs are
clearly divided into two groups according to the presence
of transmembrane and extracellular domains, which enable
PTKs possessing them to recognize extracellular ligands, in
particular, various peptide growth factors. Specific ligands
and intracellular signaling pathways induced by them have
been identified for many, albeit not for all, membrane-
spanning PTKs (5). Whereas most PTKs are of receptor
nature, many PTKs lack the transmembrane and
extracellular sequences and are therefore referred to as non-
receptor or non-transmembrane PTKs. Thirty-two genes
encoding for non-receptor PTKs are present in the human
genome. The current review, focussing on mammalian non-
receptor PTKs, is not intended to replace a number of
excellent reviews on this subject (see above), but to give a
brief overview of these proteins for the current special issue
on protein tyrosine phosphorylation. The information on
receptor PTKs can be obtained in a number of recent
reviews (5-18).

PTKs have been found only in the multicellular
animal organisms. This peculiarity appears to make
biological sense, since PTKs are primarily involved in the
regulation of the cellular functions that are directly related
to the multicellular status of the organism, such as growth,
differentiation, and cell-cell and cell-extracellular matrix
interactions. However, the significance of the apparent lack
of PTKs in the multicellular plant organisms is not clear
(19).

Each PTK possesses a functional kinase domain
capable of catalyzing the transfer of phosphate from ATP
to tyrosine residues essentially independent of the presence
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Figure 1. Domain structure of non-receptor protein tyrosine kinase families. The overall length of kinases and the positions of
their domains (rulers at the top and at the bottom of the figure are graduated in amino acid residues) have been averaged for each
family, unless substantial differences exist between family members. Thus, Tec-family structure is based on the typical members
(Tec, Btk, Itk, and Bmx), while Txk lacking both PH and TH domains has been omitted from averaging. The DNA binding
domain in the Abl-family structure is shown, although it is not conserved in Arg. The presented structure of Ack family is that of
Ack1, because including Tnk1 in the averaging would not be meaningful, since Tnk1 is substantially shorter than Ack1 and lacks
the CRIB domain. The details of the domain structure and interactions are given in the text.

of other structural elements of PTKs. The kinase domains
are highly conserved among receptor and non-receptor
PTKs. Furthermore, PTK catalytic domains are similar to
those of serine/threonine and dual-specificity protein
kinases, although several subdomain motifs appear to be
unique for PTKs (20).

Based on the solved crystal structures of several
PTKs, the catalytic domain of PTKs is similar to that of
Ser/Thr protein kinases consisting of two lobes, N-
terminal, which interacts with the phosphate groups of
ATP, and C-terminal, which provides substrate-binding
sites for ATP and peptides. The C-terminal domain
includes the activation loop, a segment typically containing
Tyr, Ser or Thr residues that can be phosphorylated. In its
non-phosphorylated state, the activation loop tends to
hinder substrate binding. Phosphorylation of these residues
increases kinase activity (reviewed in (21-24)).

In addition to catalytic domains, the structure of
PTKs includes other well-characterized protein domains.
Typically, these domains mediate inter- and intramolecular
interactions of PTKs, thus playing an important role in their
functional regulation. Of these non-catalytic domains, SH2
and SH3 domains are most frequently present in non-
receptor PTKs. The SH2 domain is capable of specific

binding to phosphotyrosyl residues (25, 26), whereas SH3
binds to specific proline-rich motifs present in many
proteins (27, 28). These domains are not unique for PTKs,
but are present instead in numerous eukaryotic proteins.

The PTKs may be grouped into distinct families
based on their overall domain structure, divergence of
amino acid sequences of their kinase domains and the
exon/intron organization of their genes. As a result of this
analysis, the mammalian non-receptor PTKs are clustered
into 10 families (figure 1). In the current review, a brief
overview of structure, expression, role in signal
transduction, biological functions and regulation is given
for each family.

3. FAMILIES OF NON-RECEPTOR PTKs

3.1. Src
The Src family of PTKs with its eight members is

the largest one among non-receptor PTKs. Mouse orthologs
are known for all eight human Src-family members, as they
are for almost all other human PTKs. A substantial number
of rat and chicken orthologs of human Src-family PTKs
have been identified. However, it is possible that non-
mammalian species, such as the chicken, may have Src-
family PTKs that lack human or mammalian orthologs. For
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example, it appears that no mammalian ortholog exists for
the Yrk kinase of Src-family from chicken (1, 29).

All PTKs of Src-family have a common structure
consisting of the N-terminal sequence containing fatty acid-
modification sites followed by a region in which the
sequences of Src-family PTKs show the lowest degree of
intra-family homology or the so-called “unique domain.”
Next to the N-terminal region is located an SH3 domain
followed by an SH2 domain, which is followed, in turn, by
a tyrosine kinase domain. The C-terminal part of Src-
family PTKs contains the tyrosine residue that plays an
important role in the regulation of their activity (see
below).

Comparison of amino acid sequences of Src-family
PTKs allows us to separate them into two subfamilies. The
first subfamily includes Src, the prototypical member of the
family, Fyn, Yes and Fgr. (Here and throughout the entire text,
the prefix “c” is omitted for all cellular PTKs. If no prefix
denoting a viral or another deregulated PTK form is used, it is
presumed that a cellular form of PTK is mentioned.) The
second one includes Lck, Blk, Lyn and Hck. Interestingly, this
division corresponds to the tissue expression of these PTKs.
Kinases of the first subfamily are widely expressed in various
tissues, whereas expression of the second subfamily is
restricted to hematopoietic cells. Furthermore, expression of
each PTK of the second family is specific for certain cell types.
For instance, expression of Lck is restricted to T and NK cells,
whereas Blk is expressed in B cells only (reviewed in (30, 31)).

Although Src-family PTKs lack a transmembrane
domain, they are localized primarily to cellular membranes,
including plasma, perinuclear and endosomal membranes
(32-34). The membrane localization of Src-family PTKs is
due, to a substantial extent, to their N-terminal post-
translation modifications with fatty acid moieties,
myristoylation (35-37) and palmitoylation (38-40). The
former appears to be irreversible, whereas the latter is
reversible, making it possible to regulate the degree of
hydrophobicity of Src-family PTKs.

Localization of individual Src-family PTKs is
also dependent on their specific interactions with other
cellular proteins. For example, Lck binds to the cytosolic
tails of the CD4 and CD8 co-receptors in T lymphocytes
(41, 42) and is, therefore, localized in the proximity of the
T-cell receptor complex (TCR/CD3) (43-45), where it plays
an important role in TCR/CD3-induced signaling (44, 46,
47). Fyn is another Src-family PTK participating in
TCR/CD3-induced signaling (48-51). However, unlike Lck,
Fyn is associated directly with the cytoplasmic tails of
TCR/CD3 (52, 53). Other Src-family PTKs expressed in
the cells of the immune system have also been shown to
physically associate with multi-chain immune recognition
receptors (MIRRs), including the B-cell antigen receptor
complex (BCR) (54-57) and the receptors for the Fc
portions of IgG (58-64) and IgE (65-68).

The function of Src-family PTKs associated with
these and other surface receptors of immune cells appears
to be the triggering of signal transduction pathways that

emanate from the corresponding receptors (48, 49, 69-78).
In many cases, the first and the most critical target of Src-
family PTKs are the tyrosine residues within the immune
receptor tyrosine-based activation motifs (ITAMs) of the
MIRRs (79-82). Each of these motifs includes two Tyr-X-
X-Leu/Ile sequences separated by 7-9 amino acid residues.
Both tyrosines should become phosphorylated on a single
ITAM to form a docking site for the Syk-family PTKs,
which tightly bind to doubly phosphorylated ITAMs with
their double SH2 domains position in tandem to each other
(see below). In addition to phosphorylating ITAMs, Src-
family PTKs appear to phosphorylate a number of other
substrates, including other PTKs, thus playing an important
role in the regulation of the latter (see below).

It should be noted that in spite of certain
similarities between members of Src-family PTKs
regarding the molecular basis of their involvement in
receptor signaling and in spite of some redundancy and
overlapping of their functions, the roles of these PTKs in
signaling are highly specific. This conclusion is supported
by numerous biochemical and genetic studies quoted
above, as well as by gene-targeting experiments with Src-
family PTKs (see below).

An interesting characteristic of the localization of
Src-family PTKs is that they are preferentially localized to
cholesterol- and glycolipid-enriched membrane
microdomains frequently referred to as lipid rafts (83-86).
Localization of Src-family PTKs, as well as other PTKs
and their substrates, to the lipid rafts is likely to be
important for the activation of immune cells (87-96).

Signal transduction through MIRRs is not the
only function of Src-family PTKs. They also participate in
signaling through other receptors, including the cytokine
receptors (97-105) and the receptor PTKs (106-111).
Participation of Src-family PTKs in cytokine signaling may
involve functional interactions with Jak-family PTKs (112-
114).

Src-family PTKs are also involved in the
regulation of cytoskeletal rearrangements in various cell
types. This involvement is due to the ability of Src-family
PTKs to associate with various cytoskeletal proteins,
including focal adhesion kinase (Fak) (115-125). These
interactions appear to be critical for the regulation of
assembly/disassembly of focal adhesion complexes and for
the transmission of signals from the focal adhesions-linked
integrins to the system regulating actin cytoskeleton
assembly.

In the above-discussed phenomena, activation of
PTKs appeared to be the first step of signaling pathways.
Initiation of MIRR-mediated signaling by Src-family PTKs
may be considered the “classical” example of such a role.
However, Src-family PTKs may also function as
downstream elements of signal transduction pathways. For
instance, substantial evidence has been accumulated that
Src-family PTKs may act as effectors of trimeric G proteins
(126, 127). Furthermore, the naturally occurring form of
Fgr lacking a myristoylation site (128) and, under certain
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conditions, the full-length Src (129) have been found in the
nucleus. Although the functions of nucleus-localized Src-
family PTKs are still unclear, Src has been implicated in
regulation of cell cycle progression and mitosis (130-135).

Targeted disruptions of Src-family PTK genes
confirmed their biological importance and highlighted
specific functions of individual Src-family PTKs. The
biological consequence of the loss of Src turned out to be
osteopetrosis due to a defective osteoclast function (136,
137). Consistent with the involvement of Lck in T-cell
signaling, Lck-deficient mice demonstrated a profound
block in T-cell development along with the impaired
signaling and biological responses of the remaining few
mature T cells (138-140). The effect of Lck disruption on
T-cell development is apparently due to the essential role of
this kinase in transducing signals from the pre-TCR that are
required for the progression of thymocytes from the
double-negative to the double-positive stage (141, 142). In
contrast, targeted disruption of Fyn, which is also involved
in lymphocyte signaling, caused no effects in T-cell
development and only mild defects in T-cell signaling (48,
49). However, Fyn-negative mice show numerous and quite
severe defects in the architecture and functions of the
central nervous system (143-146), as well as the defect in
keratinocyte development (147). A deficiency in Lyn
resulted in a substantial reduction in the number of
peripheral B cells and the level of their BCR-mediated
responses, as well as in developing autoimmunity (148,
149). The latter can be explained by possible defects in
negative selection of autoreactive B-cell progenitors.

No overt phenotypic changes have been observed
in yes-, hck-, fgr- or blk-null mice (reviewed in (150)).
These findings suggest that a high degree of redundancy
exists between different members of the Src family. This
notion is supported by findings indicating that double
knock-out mutations can dramatically exacerbate
phenotypical defects caused by single knock-outs. For
example, hck/src-null mice exhibit substantially more
severe osteopetrosis than src-null mice (151). Likewise,
fyn/lck-null mice show a dramatic further reduction in
thymocyte development as compared to lck-null mice
(152). Furthermore, neutrophils of hck/fgr-null mice
demonstrate susceptibility to Listeria, which is not seen in
single knock-outs (153). Consistent with this finding,
neutrophils of these double mutants, but not those of the
corresponding single mutants, are impaired in adhesion and
spreading on extracellular matrix (154). Likewise,
monocytes of the hck/fgr/lyn triple null-mutant mice are
defective in adhesion and spreading (155). Finally, many of
the double mutations, such as src/fyn-null and src/yes-null,
are lethal (reviewed in (150)).

The kinase activity of Src-family PTKs is
regulated by their tyrosine phosphorylation. There are two
major tyrosine phosphorylation sites in Src-family PTKs,
the autophosphorylation site and the C-terminal negative
regulatory site, corresponding to tyrosines 419 and 530 of
human Src. Autophosphorylation of Src-family PTKs
appears to be an intermolecular process (156-158).

Furthermore, based on their consensus sequence, the
autophosphorylation sites of Src-family PTKs represent
potential substrates for other PTKs (159). Indeed,
phosphorylation of tyrosine 394 of Lck that corresponds to
Tyr-419 of human Src has been observed in inactive Lck in
cells lacking endogenous wild-type Lck (160), as well as in
the cells lacking any Src-family PTKs (161).
Phosphorylation of the tyrosine residue corresponding to
Tyr-419 of human Src, regardless of the specific mode by
which it is achieved, causes displacement of this tyrosine
from a hydrophobic pocket formed by both lobes of the
PTK catalytic domain and results in the correct positioning
of all key catalytic residues and in the formation of the
substrate binding surfaces, thus leading to the full
activation of the Src-family enzymes (162-167).

The second major tyrosine phosphorylation site
of Src-family PTKs, which is located in their C-terminal
domain, is phosphorylated by Csk-family PTKs (see
below). Phosphorylation of this tyrosine causes its
intramolecular interaction with an SH2 domain (168-171).
The binding between the SH2 domain and the C-terminal
phosphorylated tyrosine per se does not block or alter the
active site of the kinase domain. Instead, it induces the
binding of the SH3 domain to the linker region connecting
the SH2 domain and the kinase domain accompanied by the
binding of the linker region to the kinase domain. These
intramolecular interactions prevent binding of ATP to the
critical catalytic residues rendering Src-family PTKs
inactive. The residue corresponding to Tyr-419 of human
Src is located in the hydrophobic pocket and is protected
from phosphorylation in the inactive form of Src-family
PTKs (163-167, 172).

Consistent with these findings, disruption of the
interactions that negatively regulate Src-family PTKs
increases their enzymatic activity and cell-transformation
potential. Such disruption may be achieved by mutating the
C-terminal negative regulatory region (173-176), the
SH2/SH3 domains (177-180), or the residues responsible
for the interactions between the linker region and the kinase
domain (172). Physiological regulation of Src-family PTKs
is mediated by modulation of the interactions described
above achieved by (a) phosphorylation/dephosphorylation
of the C-terminal regulatory site, and (b) binding of the
SH2 and SH3 domains of Src-family PTKs to various
phosphotyrosine- or polyproline-containing proteins.

The C-terminal tyrosine is thought to be
phosphorylated primarily by Csk-family PTKs (181-188)
and dephosphorylated by several protein tyrosine
phosphatases (PTPs), including CD45 (189-195), PTP-
alpha and -lambda (196-198). Although it is clear that the
removal of a phosphate from the autophosphorylation site
should inhibit Src-family PTK activity, the nature of PTPs
involved in this process is less clear. PEP and SHP-1 PTPs
are possible candidate for this role (199-202).

Binding of the SH2 and SH3 domains of Src-
family PTKs to phosphotyrosine- or polyproline-containing
ligands may disrupt the intramolecular interactions of Src-
family PTKs that negatively regulate Src-family PTKs and,
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hence, activate these kinases. For example, phosphorylated
forms of PDGF receptor (203), Cas adaptor protein (204)
and Fak (124, 125) activate Src-family PTKs by binding to
their SH2 domains. Similarly, several proteins, including
the HIV protein Nef, activate Src-family PTKs by binding
to their SH3 domains (205-207). Furthermore, interactions
of Src-family PTKs with protein ligands may cause
translocation of the former to the sites of action. Such
interactions include above-mentioned binding of Src-family
PTKs to various cell surface receptors, proteins of the
cytoskeleton and adhesion complexes and nuclear proteins.

Other phosphorylation sites have also been
identified on Src-family PTKs. Several serine residues are
phosphorylated within the unique domain of Lck upon
TCR- or IL-2-dependent stimulation, as well as PMA
treatment. This phosphorylation, most likely mediated by
Erk kinases, does not seem to substantially affect Lck
kinase activity, although it has been proposed that it might
work as a negative feedback (208-213). In contrast, serine
phosphorylation of the unique domain of Src by PKA has
recently been shown to activate this PTK (214).

Furthermore, sites of tyrosine phosphorylation
have been identified within the SH2 domains of Lck and
Src (215-217) and within the SH3 domain of Src (218).
Phosphorylation of these sites may disrupt SH2- and SH3-
mediated interactions of Src-family PTKs with their protein
ligands.

Finally, the activity of Src-family PTKs has been
shown to be regulated by ubiquitylation-induced
degradation of their activated forms (219-222). In some
cases, this degradation has been shown to be dependent on
c-Cbl, an E3 ubiquitin ligase capable of interacting with
Src-family PTKs (221, 222).

3.2. Csk
The Csk family of PTKs has two members, Csk

and Matk. The latter is also known as Ctk, Ntk, Chk, Hyl
and Lsk. Csk is expressed ubiquitously, but predominantly
in thymus and spleen, while Matk is expressed primarily in
brain and hematopoietic cells (reviewed in (223)).

Amino acid sequences of Csk- and Src-family
PTKs are highly homologous. The domain structure of
Csk-family PTKs includes an SH3 domain, followed by an
SH2 domain and then by a tyrosine kinase domain, and
therefore, closely resembles that of Src-family PTKs.
Moreover, the crystal structure of Csk is very similar to
those of Src-family PTKs (224). However, there are several
important points of divergence between Src- and Csk-
family PTKs. First, Csk-family PTKs lack the N-terminal
unique domain carrying fatty-acid modification sites, which
anchors Src-family PTKs in the membrane. Likewise, the
C-terminal regulatory site is absent from Csk-family PTKs.
Furthermore, there is no tyrosine residue in the activation
loop of Csk. In agreement with this feature, Csk is
incapable of autophosphorylation (see (223)). Because of
the lack of these important tyrosine residues, regulation
mechanisms for Src- and Csk-families of PTKs are very
different (see below).

The main function of Csk-family PTKs appears
to be the negative regulation of Src-family PTKs mediated
by phosphorylation of their inhibitory tyrosine residue,
which has been shown in multiple experimental systems
(225-229). Consistent with this notion, the C-terminal
regulatory domain of full-length Src-family PTKs is the
most catalytically efficient substrate known to date (230),
although CD45 also appears to be phosphorylated by Csk
(231). Phosphorylation of CD45 by Csk activates CD45
and creates on it an Lck-binding site.

The targeted disruption of csk has confirmed that
Csk plays a crucial regulatory role, since csk-null embryos
die due, apparently, to a defect in the neural tube (185,
232). Cells derived from these embryos exhibit a dramatic
increase in the kinase activity of Src, Fyn and Lyn (185,
232). Furthermore, the generation of chimeric mice using
csk-null embryonic stem cells has shown that T- and B-cell
differentiation of csk-null progenitors is blocked at very
early stages, whereas the development of myelomonocytic
cells remains normal (233). It is important to note that
activation of either Lck or Fyn does not block lymphoid
differentiation, as it is seen in csk-null cells (141, 233).
This finding indicates that Csk, in addition to its
generalized functions related to the inhibition of Src-family
PTKs, may have specific functions in lymphoid cells that
are mediated by other targets of Csk.

In contrast, matk-null mice are viable, exhibiting no
significant abnormalities (234). Furthermore, kinase activity of
Src-family PTKs remains unchanged in bone marrow cells of
matk-null mice (234). This finding indicates a high degree of
redundancy between Csk and Matk and points to the difference
in their functions. These differences have also been observed
in other experimental systems. For instance, Csk, but not Matk,
is capable of inhibiting antigen-induced signaling in T cells
(235), whereas Matk, but not Csk, can bind to TrkA, a nerve
growth factor receptor PTK, and upregulate neurite outgrowth
of PC12 cells (236).

In contrast to the Src-family PTKs, the kinase
activity of Csk-family PTKs is not regulated by tyrosine
phosphorylation, consistent with the lack of the respective
phosphorylation sites. It appears, instead, that Csk is activated
as a result of phosphorylation of its Ser-364 by cAMP-
dependent protein kinase (PKA) (237). The cAMP-induced
activation of Csk may be a key mechanism for the immune cell
suppression caused by cAMP (238-244). Furthermore, the Csk
activation loop itself contains a few putative serine and
threonine phosphorylation sites, but there is no evidence of
their phosphorylation.

The lack of the C-terminal negative regulatory
tyrosine in Csk-family PTKs rules out the inhibitory
intramolecular interaction of the phosphorylated form of this
tyrosine with the SH2 domain. In contrast, it appears that the
intramolecular interaction between the catalytic domain and
the SH3 domain of Csk is important for efficient catalysis
(245).

Although intermolecular interactions regulating
the activity of Csk-family PTKs are less studied than those
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regulating Src-family PTKs, it has been shown that the
transmembrane protein PAG/Cbp, which is constitutively
phosphorylated on tyrosine, binds to the SH2 domain of
Csk in T cells. PAG/Cbp is localized to the lipid rafts and
thus anchors Csk to these membrane domains, where Csk
may phosphorylate and, hence, inhibit Src-family PTKs.
TCR stimulation induces transient dephosphorylation of
PAG/Cbp and dissociation of Csk. Gradually, Csk re-
associates with PAG/Cbp and returns to the lipid rafts, thus
abrogating the activity of Src-family PTKs (246, 247).

3.3. Syk
The Syk family has two members, Syk and Zap-

70. Syk is expressed ubiquitously, including all types of
hematopoietic cells, fibroblasts, epithelial and endothelial
cells, hepatocytes, and neurons, whereas Zap has been
found exclusively in T and NK cells (reviewed in (248-
250)).

The common structure of Syk and Zap includes
the two SH2 domains located in tandem in its N-terminal
half, which are followed by a catalytic domain. Syk-family
PTKs possess no fatty-acid modification sites, which are
characteristic for Src-family PTKs, and are, as a result,
predominantly cytosolic proteins. However, their
localization is dramatically affected by cell stimulation.
The tandem SH2 domains of Syk-family PTKs demonstrate
an extremely high degree of affinity to doubly
phosphorylated ITAMs, which dramatically exceeds that of
single SH2 domains, including the SH2 domains of Syk
and Zap, to single phosphotyrosine residues (251-253).
Therefore, phosphorylation of ITAMs by Src-family PTK,
which represents one of the initial signaling events for
multiple receptors (see above), generates an excellent
binding platform for Syk-family PTKs. As a result of this
binding, cytosolic molecules of Zap and Syk become
translocated to the cytoplasmic tails of MIRRs in the close
proximity of the membrane (254-258). This event is critical
in signal transduction involving Syk-family PTKs, since its
disruption inhibits further signaling (259-261).

Upon recruitment, Syk-family PTKs
phosphorylate multiple downstream targets (262-275). Two
major mechanisms appear to activate Syk-family PTKs
upon their recruitment to ITAM-containing receptors. First,
phosphorylation of both Syk and Zap by Src-family PTKs
can activate them (276-280). Several lines of evidence
indicate that this mechanism is more important for Zap than
for Syk, since Syk can be activated and function in a Src-
family PTK-independent manner (281-284). This
difference is likely to be due to the ability of Syk to
phosphorylate ITAMs under certain experimental
conditions (284), which is apparently lacked by Zap. The
substantially higher intrinsic enzymatic activity of Syk as
compared to Zap (285) may also contribute to its relative
independence of Src-family PTKs.

In contrast, the second mechanism of activation
of Syk-family PTKs is specific for Syk, which, unlike Zap,
can be directly activated by binding to a doubly
phosphorylated ITAM (284, 286-289). This binding causes
conformational changes in Syk similar to those seen in this

PTK in activated cells (288). This specific feature of Syk
may, at least in part, be caused by the higher
conformational flexibility and structural independence of
the SH2 domains of Syk as compared to those of Zap (290),
which is likely to result in a higher flexibility of Syk
binding to various phosphorylated motifs and a less
stringent dependence of this binding on the double
phosphorylation of ITAMs. The differential ability of Zap
and Syk to bind to doubly phosphorylated ITAMs is also
related to the structure of their linker region between the
tandem SH2 domains and the kinase domain, which is
frequently referred to as interdomain B. The prevalent
splice form of Syk contains a 23-amino acid insert in this
region, which is not found in Zap or a less abundant splice
form of Syk, SykB (291). The presence of this insert clearly
correlates with a higher ability to bind to phosphorylated
ITAMs and to transduce signals from ITAM-bearing
receptors (292), although mechanisms mediating the effects
of this insert remain unclear.

The described differences between Syk and Zap
are likely to be linked to their distinct biological functions.
First, Zap is regulated more stringently than Syk is.
Whereas binding of Zap to ITAMs and its activation are
strictly dependent on prior stimulation of Src-family PTKs
in response to receptor ligation, Syk appears to be able to
phosphorylate ITAMs and induce signal transduction in the
absence of help from Src-family PTK (see above).
Therefore, the functions of Syk show some similarities to
those of Src-family PTKs. Indeed, Syk, but not Zap, can
reconstitute T-cell signaling disrupted by the absence of
Lck (293). Likewise, Syk can mediate T-cell signaling in
the absence of TCR ligation, whereas Zap requires TCR
ligation to induce signaling (294).

Furthermore, Zap appears to be exclusively a
lymphoid kinase, whereas Syk is expressed ubiquitously
and the list of its functions outside the lymphoid and even
hematopoietic tissue is constantly expanding (250). An
interesting example of a non-hematopoietic function of Syk
is provided by its participation as a tumor suppressing
protein in the development of breast cancer (295).

The results of studies using targeted disruption of
zap and syk  genes are consistent with the findings described
above. Mice lacking Zap show a deficiency localized
specifically to the T-cell lineage, they have no mature T cells
(296, 297). NK cells, which also express Zap in wild-type
animals, are not affected by Zap deficiency (296). In contrast,
disruption of syk  induces multiple defects, including severe
hemorrhaging, that result in embryonic lethality (298, 299). In
addition to this, Syk deficiency impairs development of
various hematopoietic cells, including B cells (298-300). This
effect of Syk deficiency on B-cell development is consistent
with the critical role of Syk in BCR-induced signaling (75,
257, 259, 276, 301).

Although Syk can mediate TCR-induced signaling
in multiple experimental systems (see above), and its forced
overexpression can rescue T-cell development in Zap-negative
animals (302), it is not essential for T-cell development
(reviewed in (303)). The lack of effect of Syk on T-cell
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maturation is likely due to a dramatic decrease in its level early
in T-cell development (304).    

The kinase activity of Syk-family PTKs, like that
of Src-family PTKs, is regulated by their tyrosine
phosphorylation. However, unlike Src-family PTKs, Zap
and Syk have a large number of tyrosine phosphorylation
sites that affect the functions of these PTKs in various
ways.

The primary autophosphorylation sites of Zap
appear to be the three residues located in the interdomain
B, tyrosines 292, 315 and 319 (human sequences are used
for numbering residues in Zap and Syk) (305, 306),
corresponding to tyrosines 323, 348 and 352 of human Syk,
which are also autophosphorylated (307, 308).
Furthermore, these sites in Syk can be phosphorylated by
Lyn, a Src-family PTK (308). Phosphorylation of the
interdomain B sites is not essential for kinase activity of
either Zap or Syk (267, 309, 310), playing instead an
important regulatory role.

Cells expressing Y292F mutant Zap or the
analogous Y323F Syk demonstrate hyperactive signal
transduction and biological responses to TCR, BCR and
FcepsilonRI receptor ligation (308, 311-314). Therefore,
Tyr-292 of Zap/Tyr-323 of Syk is a major negative
regulatory site. The mechanism of this negative regulation,
is unlikely to be related to a decrease in the intrinsic
enzymatic activity of these PTKs (311) and appears to
involve binding of a negative regulator of PTKs, c-Cbl, to
this site (315-317). For Syk, this negative effect of c-Cbl
has been shown to be dependent on the E3 ubiquitin-
protein ligase activity of c-Cbl and mediated by
ubiquitylation of the activated form of Syk followed by its
proteosomal degradation (316, 327, 328). This mechanism
might also be involved in the c-Cbl-dependent inhibition of
Zap, although this possibility has not been shown directly.

In contrast, phosphorylation of Tyr-319 has a
positive effect on Zap-mediated signaling. First, it appears
to mediate interactions of Zap with Lck (306, 318, 319) and
PLC-gamma1 (319). Furthermore, this site is essential for
tyrosine phosphorylation of Zap-specific substrates and
multiple downstream signaling events mediated by Zap
(306, 318-320).

The role of Tyr-315 of Zap is not very clear. One
report argues that this residue might be involved in the
interactions of Zap with Vav and in tyrosine
phosphorylation of Zap-specific substrates (320), but this
has not been seen in the other studies (306, 321).

Consistent with the role of Tyr-319 and Tyr-315,
phosphorylation of tyrosines 352 and 348 in the linker
region of Syk is not required for the activity of this PTK,
but is essential for its binding to PLC-gamma1 its ability to
phosphorylate PLC-gamma1 in vivo (267).

Tyrosines 492 and 493 of Zap are major sites of
its phosphorylation by Lck (305). The Y493F mutation
does not affect basal activity of Zap, but abrogates its

ability to be activated by Lck (this activation is
approximately 10-fold for wild-type Zap) and to induce
antigen receptor-mediated signaling and biological
responses in lymphocytes (277, 278, 312). In contrast, the
Y492F mutation increases basal activity of Zap (277) and
its ability to induce antigen receptor-mediated signaling
and responses (312). Hence, Tyr-492 and -493 play in the
activation of Zap a negative and a positive regulatory role,
respectively.

In contrast to phosphorylation of tyrosines 492
and 493 of Zap by Lck, the corresponding tyrosines 525
and 526 of Syk are autophosphorylated (307, 308).
Although consequences of phosphorylation of Tyr-525 and
-526 of Syk are less studied than those for Tyr-492 and -
493 of Zap, it appears that their phosphorylation is unlikely
to significantly affect the intrinsic kinase activity of Syk
(267, 322, 323). Despite the lack of this effect, the
autophosphorylation sites of Syk are required for Syk-
mediated signal transduction and biological responses (259,
267, 322-324). The essential role of Tyr-525/Tyr-526
phosphorylation may be due to binding of proteins that
propagate Syk-mediated signaling, for example, Lck (324).

C-terminal tyrosines 629, 630 and 631 of Syk
have been shown to be autophosphorylated (307, 308).
Mutation of these tyrosines or of those corresponding to
them in Zap (Tyr-597 and –598) resulted in the gain-of-
function phenotypes of Syk and Zap, as demonstrated by
tyrosine phosphorylation of potential targets in vivo,
elevated intracellular calcium mobilization and promoter
activation (325). These results implicate the C-terminal
tyrosine residues of Syk and Zap as important negative
regulatory sites. Phosphorylation of these residues, like that
of the majority of other tyrosine residues of Syk and Zap,
does not affect the intrinsic enzymatic activity of these
PTKs, but reduces their ability to transmit signals.

With the exception of Tyr-292 of Zap/Tyr-323 of
Syk, the mechanisms mediating effects of negative
regulatory tyrosines of Zap and Syk remain unclear.
However, one may speculate that some of them play their
role by interacting intramolecularly with the SH2 domains
of the same molecule. Indeed, the deletion of both SH2
domains moderately increases enzymatic activity of Zap in
vitro and increases its tyrosine phosphorylation in vivo
(309). The deletion of both SH2 domains also abolishes a
lag phase of kinase activity detectable with the full-length
Zap (326). However, the addition of recombinant SH2
domains to the truncated Zap lacking SH2 domains restored
the lag phase. In contrast, this lag phase can be abolished
by the addition of a diphosphorylated ITAM peptide (326).

3.4. Tec
The Tec family of PTKs has five members, all of

which are present in human and mouse genomes. Tec-
family PTKs have similar domain structures consisting
typically of the N-terminal pleckstrin-homology domain
(PH) followed by a Tec-homology domain (TH), which is
sometimes subdivided into the cystein-rich, Zn2+-binding
Btk motif and a proline-rich motif. The PH and TH
domains are followed by SH3, SH2 and kinase domains.
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Two Tec-family kinases are exceptions from this typical
structure. First, TH and SH3 domains of Bmx are
significantly modified, so they are sometimes referred to as
TH-like and SH3-like domains (329, 330). Second, Txk
lacks both PH and TH (331-334), but has, instead, a unique
cystein string motif, which can be palmitoylated (335).

Whereas Bmx and Tec are expressed in multiple
tissues and cell types, both hematopoietic and non-
hematopoietic, other Tec-family kinases show primarily
hematopoietic distribution. Itk is expressed mainly in T and
NK cells. Btk is expressed in B lymphocytes and cells of
erythromyeloid lineage. Txk is expressed primarily in T
and mast cells (reviewed in (330, 336)).
Tec-family PTKs typically lack an acylation site and are,
therefore, localized in the cytosol in the absence of
stimulation (330, 336). However, they can re-localize to the
membrane following cell stimulation, because cell
stimulation typically causes activation of PI-3’ kinase,
producing phosphoinositides containing a phosphate in the
position 3 of their inositol ring, to which a PH domain
binds with very high affinity (337-341). Such membrane
localization is highly transient, since these phosphorylated
lipids are short-lived. Indeed, Btk becomes constitutively
membrane-localized when PTEN, a lipid phosphatase
dephosphorylating PI-3’ kinase products, is defective (342,
343).

Txk, which has an unusual structure, also shows
the unusual subcellular distribution. The cystein string-
containing palmitoylated form of Txk is membrane-
localized. The alternative initiation form of Txk, which
does not have the cystein string, is localized in the nucleus
(335). Recently, Btk has also been found in the nucleus.
Nuclear translocation of Btk is facilitated by the loss of PH
or SH3 domains (344). Similarly, Itk has been found to
localize to the nucleus, and this localization is upregulated
by TCR ligation (345). It is unclear whether other Tec-
family PTKs can translocate to the nucleus in a similar
manner. It is however apparent that PH, TH, SH3 and SH2
domains of Tec-family PTKs may regulate their functional
interactions with multiple proteins (reviewed in (330,
336)).

Tec-family PTKs participate in multiple signaling
pathways. They have been shown to become activated in
response to MIRR ligation (346-349) and to mediate
MIRR-induced signaling that involves adaptor proteins
BLNK and SLP-76, PLC-gamma, Ca2+ mobilization and
Ca2+-induced events (350-362). Itk and Tec are also
activated by the ligation of CD28, an important T-cell co-
receptor molecule (363, 364). This activation leads to
multiple downstream effects, which are specific for
individual PTKs. These effects include activation of PLC-
gamma, Ca2+ mobilization, and activation of IL-2 and IL-4
promoters (355, 364-367). Tec-family PTKs have also been
shown to become activated through various cytokine
receptors (368-371), G protein-coupled receptors (372,
373) and integrins (373, 374).

In addition to the triggering of Ca2+-mediated
signaling in response to MIRR ligation, which appears to

be studied in most detail, Tec-family PTKs mediate
signaling that leads to the activation of NF-kappaB (375-
377), the Akt kinase (378), Stat transcription factors (379-
382), Rho-family GTPases (372, 383) and integrins (384).
The important role of Tec-family PTKs in signaling is
supported by the phenotype of deletion and loss-of-function
mutants. It should be noted that the lack of functional Btk
causes a severe human disease, X-linked
agammaglobulinemia (XLA) (385, 386). Patients with
XLA essentially lack B cells and immunoglobulins. The
targeted disruption of Btk in mice is consistent with these
findings, leading to a decrease in the number of B cells and
the levels of immunoglobulins, although the phenotype of
btk-null mice is substantially milder than that of XLA
(387). Inactivation of the tec gene does not generate a
distinct phenotype, but the double btk/tec-null mutation
results in a more severe B-cell phenotype than the single
btk knock-out, which is still milder than the XLA
phenotype (388). Inactivation of the itk gene in mice results
in a mild T-cell phenotype characterized by a decrease in
the numbers of mature T cells and their lower
responsiveness to TCR-mediated stimulation (389). This
phenotype is exacerbated when txk is also inactivated
(390). The bmx knock-out mice do not demonstrate an
overt phenotype (391).

The functions of Tec-family PTKs are
regulated by several very distinct mechanisms, including
their tyrosine phosphorylation. It has been shown that
intramolecular interactions between an SH3 domain and
a proline-rich region are likely to yield an inactive
conformation in Itk (392). Furthermore, interactions
between these domains of Tec-family PTKs may lead to
dimerization of these kinases (393, 394), which may
also play a negative regulatory role. It is possible that
the two proline-rich motifs of the proline-rich regions
are differentially involved in intra- and inter-molecular
interactions with SH3 domains (395). Consistent with
these findings, a deletion of SH3 constitutively activates
Tec (396). It is thought that these inhibitory interactions
are disrupted, when the PH domain of Tec-family PTKs
binds to phosphoinositides, G-proteins, or other PH
ligands. Furthermore, the association of PH domains of
Tec-family PTKs to phosphoinositides or G-proteins
results in the membrane translocation of these kinases,
which appears to be another critical event in their
physiological activation. Indeed, PI-3’ kinase has been
shown to be a critical upstream regulator of Tec-family
PTKs in multiple systems (362 , 371, 397-400). In
agreement with these findings, the constitutive
production of PH-binding lipid products of PI-3’ kinase
in PTEN-deficient cells (343), as well as the
modification of Tec-family PTKs with a membrane-
interactive site (401, 402), activates Tec-family PTKs
and facilitates signaling mediated by them . In addition,
the adaptor protein Lat and Zap, a PTK that
phosphorylates Lat in T cells, have been shown to be
essential for the activation of Itk in T cells (273,  274).
Binding of the SH2 domain of Itk to tyrosine
phosphorylated Lat appears to mediate the effect of Lat
on Itk activation (274). Similarly, BLNK appears to
mediate activation of Btk by Syk (275).
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The membrane translocation of Tec-family PTKs
facilitates phosphorylation of the activation loop tyrosine
residue in these kinases , this tyrosine is homologous to Tyr-
419 of human Src (Tyr-551 and -517 in human Btk and Itk,
respectively), and its phosphorylation activates Tec-family
PTKs (349, 403-407). This activation results in
autophosphorylation of Tyr-223 (numbering for Btk) within
the SH3 domain, which disrupts the inhibitory interactions
between the SH3 domain and the TH domain proline-rich
region, thus further enhancing protein phosphorylation by
Tec-family PTKs (408).

3.5. Jak
The Jak (or Janus) family of PTKs has four

members, all of which are present in human and mouse
genomes. Jak-family PTKs differ markedly from other
PTKs by the presence of two kinase domains, which are
both located in the C-terminal half on the molecule. Only
the C-terminal-most domain is functional, the other one
thus being a pseudokinase domain (reviewed in (409, 410)).
The N-terminal region of Jak-family PTKs contains several
highly conserved sequence stretches, which were originally
termed JH domains (reviewed in (409)). It has been shown
recently that some of these sequences represent the FERM
(see Section 3.6) and SH2 domains of Jak-family PTKs.

Jak-family PTKs lack an acylation site and,
hence, are localized in the cytosol in the absence of
stimulation. However, these PTKs are bound to multiple
membrane receptors in the absence of stimulation and, in
many cases, additionally recruited to these receptors
following their ligation ((411-419), reviewed in (409,
410)). This binding is mediated by the N-terminal region of
Jak PTKs (420-425). The interactions of Jak-family PTKs
and membrane receptors play a crucial role in the
biological function of these PTKs, which mediate signaling
induced by most interleukins, all interferons, and multiple
other cytokines and colony-stimulating factors, as well as
by some growth factors and hormones. Tyk2, Jak1 and
Jak2 mediate signaling through a wide variety of receptors,
whereas the involvement of Jak3 is more specific, it is
involved in signaling induced by IL-2, IL-4, IL-7, IL-15
and G-CSF ((411-416, 426-428, 429 9486, 430-444),
reviewed in (409, 410)).

The specificity of the involvement of Jak-family
PTKs in receptor-mediated signaling is also reflected in
their expression pattern. Tyk2, Jak1 and Jak2 are expressed
ubiquitously, whereas Jak3 is expressed primarily, although
not exclusively, in hematopoietic cells (reviewed in (409,
410)).

The involvement of Jak-family PTKs in receptor-
mediated signaling is due to their binding to the
corresponding receptors and their further recruitment to
these receptors following ligation of the latter. The
recruitment of Jak-family PTKs to the corresponding
receptors appears to result in their tyrosine phosphorylation
and activation, which results, in turn, in specific tyrosine
phosphorylation of these receptors that generates docking
sites for Stat-family transcription factors and other SH2-
containing proteins ((411-416, 427, 429 9486, 430-442,

444), reviewed in (409, 410)). Stat-family proteins become
phosphorylated on tyrosine following their binding to the
receptors, form homo- or heterodimers mediated by
phosphotyrosine-SH2 interactions, relocate to the nucleus
and activate transcription controlled by the corresponding
DNA elements (reviewed in (445-447)). Although Jak-
family PTKs are, to a certain degree, capable of
phosphorylating Stat’s, it appears that Stat’s are tyrosine-
phosphorylated primarily by Src-family PTKs (105, 448),
whereas the major role of Jak-family PTKs appears to be
the generation of docking sites for Stat’s and, possibly, Src-
family PTKs on the corresponding receptors.

The crucial role of Jak-family PTKs in cell
signaling is supported by the phenotype of the Jak-negative
mice. The targeted disruption of Jak1 or Jak2 is lethal (449-
451). Jak3-deficient mice are viable, but immunodeficient,
exhibiting profound defects of lymphoid cell development
(452-454). These defects drive, in turn, hyperexpansion of
myeloid lineage (455). Furthermore, mutations in Jak3 that
disrupt normal Jak3-mediated signaling have been found in
several patients with autosomal severe combined
immunodeficiency (425, 456).

The functions of Jak-family PTKs are regulated
by several distinct mechanisms. Receptor-mediated
activation of a Jak-family PTK is induced by tyrosine
phosphorylation of its activation loop as a result of its
auto(trans)phosphorylation or phosphorylation by other
PTKs that may or may not belong to the Jak family. Two
adjacent tyrosine residues become phosphorylated in the
activated loop of several Jak-family PTKs. Phosphorylation
of these tyrosines, especially that of the more N-terminally
located one, appears to be required for a ligand-induced
increase in the activity of Jak-family PTKs (457-459).

The tyrosine phosphorylation-mediated activation
of Jak-family PTKs is negatively regulated by several
protein-tyrosine phosphatases, such as SHP-1 and -2, SH-
PTP1, SHPeC, and TC-PTP (460-466). Interactions of Jak-
family PTKs with these phosphatases may be mediated by
their direct binding independent of SH2 or
phosphotyrosines or by the recruitment of these
phosphatases to the corresponding receptors
phosphorylated on tyrosine by Jak-family PTKs. The latter
mechanism may represent a negative feedback loop that
rapidly dampens an increase in Jak-family PTK activity.

Furthermore, Jak-family PTKs appear to be
negatively regulated by proteosome-mediated degradation
in a manner similar to that of Src- and Syk-family PTKs
(467, 468). However, this regulatory mechanism is less
studied for Jak-family PTKs than for those of Src and Syk
families.

Another negative feedback loop that regulates
Jak-mediated signaling appears to be specific for these
signaling pathways. Jak-mediated activation of Stat’s
induces expression of multiple genes, including those
encoding for small SH2-containing proteins referred to as
COCS, CIS, SIS or JAB (reviewed in (409, 469, 470)).
Different proteins of this family negatively regulate Jak-
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mediated signaling by various mechanisms, including
binding to the tyrosine phosphorylated receptors that blocks
recruitment of signaling molecules to these receptors and
binding to the phosphorylated activation loop of Jak-family
PTKs that directly inhibit their catalytic activity.

3.6. Fak
The Fak family of PTKs has two members, both

of which are present in human and mouse genomes. Fak,
the prototypical family member, is expressed ubiquitously,
whereas the second PTK of this family, referred to as Pyk2,
Cak-beta, Cadtk, Raftk, or Fak2, is primarily expressed in
brain and, to a lower extent, in liver, lung, kidney and
hematopoietic cells (471-478).

The catalytic domain of Fak-family PTKs is
flanked with extensive N- and C-terminal sequences. The
N-terminal region of Fak-family PTKs contains the FERM
domain, which is also present in talin and other cytoskeletal
proteins and is capable of mediating interactions of these
proteins with transmembrane receptors. It is possible that
the FERM domain of Fak mediates the interactions of Fak
with integrins and/or receptor PTKs (479-482). The C-
terminal region of Fak-family PTKs also possesses a region
implicated to focal adhesion targeting of Fak (FAT domain)
(483-485). It is possible that the FAT-dependent targeting
of Fak to focal adhesions is mediated, at least partially, by
paxillin (483, 486, 487). Talin was also proposed as a
mediator of this targeting (488). Finally, the C-terminal
region of Fak-family PTKs contains two SH3-binding sites.
These sites mediate binding of Fak and Pyk2 to several
proteins, including Cas, which is likely to be important for
their functions (489-492). Interestingly, two alternatively
spliced isoforms of Pyk2 specific for either hematopoietic
cells or the brain have been described that differ by the
presence of an insert between the SH3-binding sites (493,
494).

Although both Fak and Pyk2 contain the FERM
and FAT domains and in spite of the fact that Fak and Pyk2
bind to several identical proteins, their subcellular
localization is different. Whereas Fak can localize to focal
adhesions, the localization of Pyk2 is diffuse. This is
unlikely to be a reflection of the intrinsic inability of the
corresponding Pyk2 domains to interact with focal
adhesions (488, 493, 495, 496), but might be caused by the
specific cytoplasmic interactions of Pyk2. Some results also
argue that the ability of Pyk2 to reorganize the cytoskeleton
is inhibited in vivo by Fak (497).

The differences in subcellular localization of Fak
and Pyk2 correspond to the differences in their functions.
Fak is activated following integrin stimulation through a
mechanism requiring the focal adhesion targeting of Fak
and apparently involving Rho as an upstream signaling
element (reviewed in (498, 499)). Activation of Fak
appears to trigger multiple signaling pathways, including
the MAP kinase cascade (reviewed in (498-500)). The
major biological function of Fak signaling is likely to be
the regulation of disassembly of focal adhesions (501-503).
It is possible that this effect of Fak is due to the Fak-
dependent inhibition of Rho GTPase (503). Furthermore, it

has been well documented that Fak plays a critical role in
cell migration (reviewed in (498, 499)). These functions are
naturally linked, since the focal adhesion turnover is
essential for cell migration. Other possible functions of Fak
include positive regulation of cell cycle (504) and survival
(505-507).

Unlike Fak, Pyk2 can be activated in a Ca2+-
dependent fashion by multiple stimuli that elevate the
intracellular level of free Ca2+, as well as by some stress
signals. Activation of Pyk2 results in triggering several
signaling pathways, including the MAP kinase cascade.
The ability of Pyk2 to respond to Ca2+ facilitates its
function as a link between heterotrimeric G protein-coupled
receptors and downstream signaling pathways, such as the
MAP kinase cascade (reviewed in (508, 509)) and the I-
kappaB/NF-kappaB system (510). Furthermore, in some
cases Pyk2 may act opposite to Fak, as it happens in the
regulation of cell cycle progression, which is promoted by
Fak, but inhibited by Pyk2 (511). Biological functions of
Pyk2 remain to be characterized further. Considering that
Pyk2 is most abundantly expressed in the brain, its recently
described roles in neuronal differentiation (512) and the
development of long-term potentiation in neurons (513)
appear to be important.

In spite of these differences, Pyk2 and Fak
phosphorylate a common set of proteins including tensin,
paxillin, and Cas (495), and their functions appear to be
redundant to some extent. Thus, tyrosine phosphorylation
of Pyk2 was enhanced by integrin stimulation in Fak-
deficient cells (514, 515). Furthermore, Pyk2 enhanced
adhesion-stimulated activation of Erk in Fak-deficient cells
(515). Finally, although wild-type Pyk2 did not restore
normal migration of Fak-deficient cells (496, 515), an
engineered form of Pyk2 capable of binding to focal
contacts could reconstitute it fully (496).

Fak-deficiency is embryonic-lethal in mice (501)
due to profound developmental abnormalities similar to
those caused by the lack of fibronectin (516). Cells
obtained from Fak-deficient mouse embryos demonstrated
a significant decrease in motility (501, 517). In contrast,
Pyk2-null mice are viable, although B-cell development in
these mice is defective (518)

The regulation of Fak functional activity is
primarily mediated by tyrosine phosphorylation. It appears
that the tyrosine residue of Fak phosphorylated upon
integrin stimulation is its major autophosphorylation site,
Tyr-397 (120, 125, 519, 520). This tyrosine is located
outside the kinase domain and is, in its phosphorylated
form, a docking site for the SH2 domains of several
proteins, including Src-family PTKs (125, 521-523). Upon
binding to Fak, Src-family PTKs phosphorylate tyrosines
576 and 577 inside the activation loop of the catalytic
domain of Fak, thus enhancing the kinase activity of Fak to
its maximal level (520). In addition, several other sites of
tyrosine phosphorylation have been identified (Tyr-407, -
861, -925) (520, 524, 525). These phosphotyrosines are
likely to act as docking sites for Fak-binding proteins.
Thus, phosphorylated Tyr-925 has been shown to bind to
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Grb2 (524, 525). Sites corresponding to four of the
identified sites are also phosphorylated in Pyk2, whereas
Tyr-407 and -861 sites appear to be unique for Fak (526).
Furthermore, Pyk2 appears to be phosphorylated on
tyrosines other than the four currently identified sites (527).
Finally, four serine phosphorylation sites have been
mapped to the C-terminal domain of Fak. Some of these
sites are hyperphosphorylated during mitosis, and this
hyperphosphorylation correlates with a decrease in Fak
activity (528).

The events that triggers activation of Pyk2 are
very different from those of Fak, Pyk2 is positively
regulated by Ca2+ and, therefore, activated by a variety of
stimuli that elevate the intracellular level of free Ca2+

(reviewed in (509)). It should be noted that in spite of the
ability of Pyk2 to respond to Ca2+, its activation requires
the intact actin cytoskeleton (reviewed in (509)). This
connection may be due to the ability of Rho to regulate
Pyk2 in an F-actin-dependent fashion (529).

Multiple protein tyrosine phosphatases, including
Shp-2 and PTP1B, may be involved in the negative
regulatation of Fak. Furthermore, PTEN, a phosphatase
better known for its lipid dephosphorylation activity, has
been implicated in the negative regulation of Fak (reviewed
in (499)). Protein tyrosine phosphatases are likely to be
involved in the regulation of Pyk2, as well (530, 531).
Negative regulation of both Fak and Pyk2 may also be
mediated by the FIP200 protein, which can bind to these
PTKs and inhibit their catalytic activity in vitro (532).

Finally, negative regulation of Fak and Pyk2 may
be mediated by an unusual mechanism based on the
autonomous expression of their C-terminal domains,
referred to as Frnk and Prnk (Fak- and Pyk2-related non-
kinases) (493, 533). Frnk is a translation product of the
specific mRNA that is transcribed from the alternate
promoter located inside the genes encoding for Fak (534).
The effects of Frnk and Prnk in several experimental
systems (493, 535-537) suggest that they may function as
natural inhibitors of the corresponding PTKs.

3.7. Abl
The Abl family of PTKs consists of two

members, Abl and Arg, both of which are present in human
and mouse genomes and are expressed ubiquitously with
the highest levels detected in the thymus, spleen and testes
for Abl and in the brain for Arg (538-545).

The structure of Abl, a prototypical member of
the Abl family, is similar to that of Src-family PTKs within
its N-terminal region, which includes one SH3, one SH2,
and one tyrosine kinase domain. Unlike Src-family PTKs,
Abl has no C-terminal negative regulatory site, but instead
possesses a large C-terminal region containing multiple
functional sites. Immediately following the kinase domain
is a proline-rich region followed by a DNA-binding
domain. The most C-terminal portion of Abl is an actin-
binding domain. The C-terminal region contains three
nuclear localization signals (NLS) and one nuclear export
signal (NES) (reviewed in (546-548)). Arg demonstrates a

high sequence similarity to Abl within the N-terminal
region encompassing SH3, SH2 and kinase domains (over
90%), but only moderate within the C-terminal region
(29% overall), with 56% in the last 60 amino acids (540).
Some critical elements of structure, such as the SH3-
binding sites and the actin-binding domain, are conserved
in Arg (549, 550). Furthermore, both Abl and Arg genes
contain two alternative 5’ exons, generating two variant
proteins referred to as 1a and 1b. The latter contains an N-
myristoylation site similar to that in Src-family PTKs,
which enables it to localize to the membrane (reviewed in
(548, 551)).

Localization of Abl is complex and is regulated
by multiple elements of its structure. The majority of cell
types demonstrate predominant localization of Abl to the
nucleus with a significant amount of it present also in the
cytoplasm, where much of Abl is bound to the membranes
and actin filaments. In hematopoietic cells and neurons Abl
is predominantly cytoplasmic. Arg appears to be
exclusively cytoplasmic ((544, 552-555), reviewed in (547,
548, 551)). Nuclear localization of Abl is controlled by its
NLS and NES sites (556, 557). Membrane localization of
Abl is dependent on a myristoylation site (558, 559),
whereas Abl association with the actin cytoskeleton is
mediated primarily by its actin-binding domain (560, 561).
The cytoplasmic localization of Arg is similar to that of
Abl. First, the splice isoform 1b of Arg possesses the N-
myristoylation site (555). Second, Abl and Arg have been
shown to co-localize with each other and with the actin
filaments (544). The subcellular localization of Abl appears
to be dynamic. Thus, Abl demonstrates transient re-
localization from the nucleus to focal adhesions upon re-
attachment of suspended fibroblasts (562).

The characteristic subcellular localization pattern
of Abl argues that it may be involved in the regulation of
cellular processes associated with the nucleus (reviewed in
(547)). Thus, Abl has been implicated in transcription
based on its ability to phosphorylate the C-terminal domain
of RNA polymerase II (563, 564) and to interact with
several proteins known to regulate transcription, such as
p53 (565). Furthermore, several studies have argued that
Abl participates in the signaling pathway, which is induced
by DNA damage and regulates DNA recombination and
repair (566-569). Furthermore, it has also been proposed
that Abl is involved in the cell cycle through its ability to
negatively regulate the G1/S transition (556, 565, 570-574).
Finally, Abl may be involved in the regulation of apoptosis.
The evidence has been presented to support both a pro-
apoptotic (573-575) and anti-apoptotic role (576) for Abl. It
is not clear whether Arg plays any role in the nucleus,
because it appears to localize to the cytoplasm. However, it
has been shown that Arg, like Abl, can phosphorylate the
C-terminal domain of RNA polymerase II (577).

In the cytoplasm, the majority of Abl is
associated with the actin cytoskeleton through its C-
terminal actin-binding domain (560, 561). Furthermore, re-
attachment of trypsinized fibroblasts causes transient
activation of Abl and its translocation to focal adhesions
(562), as well as its binding to paxillin, which is a substrate
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of Abl and a major component of focal adhesions (578).
These findings argue that Abl is involved in the
cytoskeleton regulation. This involvement may be mediated
by the adaptor protein Crk, whose protein-binding activity
is negatively regulated by Abl (579), it has been shown that
Abl disrupts interactions of Crk with paxillin and Cas and,
as a consequence, affects cell adhesion and migration (580,
581). Another possible target of Abl involved in the
regulation of cytoskeleton rearrangements and cellular
morphogenesis is delta-catenin, a potent substrate of Abl
(582). The effects of Abl on the cytoskeleton and
morphogenesis appear to be induced not only by integrins,
but also by various receptor PTKs (580, 583, 584). The last
of these studies indicated considerable similarities between
the interactions of Abl and Arg with Eph receptor PTKs.
Although little is known about the functions of Arg as
compared to Abl, these results, as well as those obtained
using cells lacking Abl and Arg (see below), suggest that
some functions of these PTKs overlap.

Finally, it should be noted that all deregulated
oncogenic forms of Abl, such as v-Abl and Bcr-Abl,
causing cell transformation in experimental and real
pathological situations, are cytoplasmic (reviewed in
(551)). These findings further support the importance of
cytoplasmic c-Abl for cell activation and argue that its
functions are unlikely to be restricted to the cytoskeletal
regulation.

Targeted disruptions of Abl-family PTK genes
confirmed their biological importance and outlined their
specific biological functions. The loss of Abl is lethal, and
many abl-null mice show thymic and splenic atrophy and
T- and B-cell lymphopenia (542). Furthermore, mice
homozygous for the mutant form of Abl lacking the C-
terminal region demonstrate a very similar phenotype,
including the increased perinatal mortality and abnormal
spleen and B-cell development (585). (This study provides
evidence not only for the importance of Abl, but also
argues that the C-terminal region is essential for the
biological functions of Abl.) In contrast, arg-null mice
developed normally, but exhibited multiple behavioral
abnormalities (544). Deficiency in both Arg and Abl
resulted in embryonic lethality, which was associated with
profound alterations of the actin cytoskeleton in arg/abl-
null cells (544).

The model of Abl-family regulation is based on
Abl, a prototypical family member, since little is known
about the regulation of Arg. A characteristic feature of Abl
regulation is that in vivo its wild-type form is not tyrosine-
phosphorylated and induces no tyrosine phosphorylation of
other proteins under non-stimulated conditions (558, 586,
587). This tight regulation appears to be mediated by the
SH3 domain of Abl, since mutations affecting this domain
resulted in an increase in Abl kinase activity in vivo and its
transformation potential (558, 586-588). It is not entirely
clear whether the Abl SH3 domain down-regulates the
activity of Abl because of intermolecular interactions with
SH3-binding inhibitor proteins acting in trans, or because
of intramolecular interactions of this domain with SH3-
binding sites of Abl. The lack of a difference in in vitro

kinase activities between wild-type c-Abl and deregulated
oncogenic forms of Abl reported in several studies (558,
587, 588) argued in favor of the intermolecular mechanism.
Several Abl-binding proteins, such as 3BP1, 3BP2, Aap1,
Abi-1, Abi-2, and Pag, have been implicated in the
regulation of Abl activity, but their roles in this
phenomenon remain to be elucidated ((589-594), reviewed
in (548)).

The recent findings indicating significant
differences in kinase activity in vitro between wild-type
Abl and its constitutively active forms (595, 596) argued
that the Abl SH3 domain can inhibit Abl kinase activity
through an intramolecular interaction. Further studies
argued that this interaction is likely to be mediated by the
proline-rich linker region of Abl located between its SH2
and kinase domains (597).

Tyrosine phosphorylation of Abl, like that of
other PTKs, appears to play an important role in its
enzymatic activation. Autophosphorylation of Abl on
tyrosine 412 in the activation loop significantly increases
its kinase activity (595). Some role in Abl activation, albeit
a weaker one than that of Tyr-412, is played by Tyr-245
located inside the linker region between the SH2 and kinase
domains (595). The autophosphorylation of Abl is
concentration-dependent (595) indicating its intermolecular
nature, when Abl molecules phosphorylate each other. The
phosphorylation of the positive-regulatory Tyr-412 can be
achieved not only by Abl itself, but also by heterologous
PTKs, such as Src (583).

3.8. Fes
The Fes family of PTKs has two members, Fes

(also referred to as Fps) and Fer, which are present in both
human and mouse genomes. The members of this family
are highly homologous and consist of an N-terminal FCH
domain followed by three coiled-coil regions, an SH2
domain in the central part of the protein, and a kinase
domain in the C-terminal region (reviewed in (598, 599)).
Fes is highly expressed in cells of the myeloid lineage, but
also in endothelial, epithelial and neuronal cells (600-604).
Fer is expressed ubiquitously (605).

Fes-family PTKs lack any membrane-attachment
sites and are localized primarily to the cytosolic fraction
(604, 606, 607). Furthermore, it has been shown that a
substantial fraction of Fes is localized to the trans-Golgi
vesicular network (604, 607). Binding of Fes to
cytoskeletal components, including Cas, has also been
shown (608), suggesting that Fes may be associated with
the cytoskeletal structures. The FCH domain of Fes-family
PTKs is capable of binding to tubulin (reviewed in (599)),
thus further arguing in favor of the possible cytoskletal
localization of Fes-family PTKs. Nuclear localization of
Fes and Fer was also reported (609, 610), but this
observation could be an artifact related to their perinuclear
localization to the trans-Golgi network.

Multiple retroviral oncogenes contain Fes and Fer
sequences, and activated forms of Fes and Fer can mediate
cellular transformation (reviewed in (598, 599)). These
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findings argued that Fes-family PTKs may play an
important role in cell physiology. Indeed, physical
interactions of Fes with multiple cytokine receptors and its
ligand-induced activation through these receptors,
including those for IL-3, IL-4 and GM-CSF, has been
shown (611-616). Although these findings would be
consistent with an important role of Fes in hematopoietic
cell development, mice targeted with either a kinase-
inactivating mutation or a null mutation in fes developed
normally, demonstrating no significant defects (617-619),
thus arguing against the essential role of Fes in
hematopoiesis. However, the targeted mutation of fes,
resulting in production of the truncated Fes lacking both
SH2 and kinase domains, results in hyperproliferation of
early myeloid cell and causes embryonic lethality
correlating with multiple developmental defects, the most
striking being cardiovascular abnormalities, which is
consistent with the endothelial expression of Fes (620).
Furthermore, regardless of whether or not the role of Fes in
hematopoiesis and overall development is essential, it
appears to be involved in the regulation of inflammatory
response (619).

Ligation of PDGF receptor causes tyrosine
phosphorylation of Fer and its association with PDGF
receptor in fibroblasts followed by Fer-dependent tyrosine
phosphorylation of cortactin, which is known to inhibit the
actin crosslinking activity of this protein (621-623).
Furthermore, the involvement of Fer in the regulation of
adherens junctions and focal adhesions during neurite
outgrowth (624, 625) and fibroblast adhesion (626) has
been demonstrated. These biological functions of Fer
appear to be mediated by its effect on the N-
cadherin/catenin/Cas system. In spite of the apparent
involvement of Fer in growth-factor signaling and cell
adhesion and migration, mice expressing a targeted kinase-
inactivating mutation in fer developed normally (621, 627).
However, the studies with mutant mice indicate that Fer,
like Fes, may be involved in the regulation of inflammatory
response (627).

Recent results obtained using mice carrying
targeted inactivating mutations in both fes and fer further
supported that these PTKs may play an important role in
the regulation of inflammation by upregulating expression
of IL-10, an immunosuppressive cytokine, while not being
essential for viability (599). These double-mutant mice also
demonstrated defects in migration of mast cells, supporting
the results obtained with fer-mutant mice (628).

Like most other PTKs, Fes-family PTKs have a
conserved tyrosine in the activation loop (Tyr-713 or –715
in Fes and Fer, respectively), which serves as their
autophosphorylation site (599, 629-633). The lack of
autophosphorylation at Tyr-713 inhibits Fes dramatically
(630). Another autophosphorylation site has been mapped
in the kinase domain of Fes (Tyr-811) (632). It is likely that
the N-terminal region of Fer possesses an additional
tyrosine phosphorylation site (634). Tyrosine
phosphorylation of Fes-family PTKs is likely to be
mediated not only by their autophosphorylation, which is
intermolecular (632), but by other PTKs as well. Thus, it

has been shown that the level of tyrosine phosphorylation
of inactivated Fer is increased in response to PDGF
receptor ligation (621).

The role of tyrosine phosphorylation sites, other
than Tyr-713/715, in the regulation of Fes-family PTKs is
unclear. At least, the negative regulation of kinase activity
of these PTKs by tyrosine phosphorylation, similar to that
observed in Src-family PTKs, appears unlikely. In contrast,
the Fes SH2 domain appears to be essential for kinase
activity of Fes in vitro and in vivo (630, 635). Therefore,
interactions of the SH2 domains of Fes-family PTKs with
their kinase domains may stabilize the active kinase
structure.

Autophosphorylation of Fes occurs in trans (632)
and, therefore, should be affected by oligomerization.
Indeed, both Fes and Fer are capable of forming oligomers
through the interactions of their coiled-coil domains (621,
622, 636, 637). The effect of these interactions on Fes and
Fer may be different, since mutations in their coiled-coil
domains activated Fes (637), but did not affect
autophosphorylation of Fer (621). However, the importance
of these interactions is supported by the finding that the
truncated form of Fes possessing only the FCH and coiled-
coil (in contrast to its kinase-inactive form - see above),
causes embryonic lethality in mice (620). It is possible that
this fragment of Fes disrupts oligomerization of
endogenous Fer, thus functioning as a dominant-inhibitory
protein. It is clear, however, that the effects of coiled-coil
domains may not be restricted to the oligomerization of
Fes-family PTK and may play other roles, such as
mediating interactions of these PTKs with other coiled-coil
proteins.

3.9. Frk
The Frk family of PTKs has three members, Frk,

Brk, and Srm. Frk and Brk have been cloned independently
from human, mouse and rat cells by several laboratories, and
therefore multiple names for these PTKs are used, Frk is also
known as Rak, Bsk, Iyk, and Gtk (638-642), whereas Brk is
also known as PTK6 and Sik (643-645). Srm was cloned and
studied only in mice (646), but its ortholog is present in the
human genome, as well. Frk-family PTKs are highly
homologous to Src-family PTKs, even more so than are Csk-
family PTKs (1). The domain structure of Frk-family is very
similar to that of Src-family PTKs, consisting of a highly
divergent N-terminal sequence followed by an SH3 domain, an
SH2 domain, and a tyrosine kinase domain.

Unlike Src-family PTKs, most Frk-family PTKs
lack the N-myristoylation site. The only exception from this
rule is rodent Frk, which retains the glycine residue in position
2 and, as a consequence, is myristoylated and localized to the
membrane (642). Due to the lack of an N-myristoylation site,
Frk-family PTKs (with the exception of rodent Frk) are not
targeted to the membrane. In contrast, Frk is localized to the
nucleus (639). Recently, nuclear localization has also been
reported for Brk (647).

The divergence between the Src and Frk families
of PTKs is not restricted to the lack of the N-myristoylation
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site. The structural analysis of brk gene demonstrated that
its exon-intron structure is different from that of other
genes encoding for non-receptor PTKs, including Src-
family PTKs (648, 649).

Expression of Frk has been detected in the
epithelium of small intestine, in liver, kidney, lung, skeletal
muscle and, to a very low extent, in mammary epithelium
during the estrus cycle and early pregnancy, but never in
brain, heart, testis or hematopoietic cells (638-642).
Epithelial expression of Frk is dramatically upregulated in
tumors, such as hepatocellular, breast and colon carcinomas
(638, 641). It has also been found in B and T lymphomas in
spite of its absence from normal hematopoietic cells (638).
Brk has been found in skin, liver, and the intestinal tract,
but not in spleen, kidney, liver, testis, lung, muscle or brain
(644, 645, 650, 651). Brk is highly expressed in breast
carcinomas, but not in normal breast tissue (644, 651, 652).
It is also expressed in some melanomas (643). Therefore,
Frk and Brk are expressed specifically in the epithelial
cells, primarily those of the intestinal tract, and their
expression is dramatically upregulated in epithelial tumors.
In contrast, Srm is expressed ubiquitously, although most
abundantly, in lung, liver, spleen, kidney and testis (646).

It has been shown that Frk binds to Rb, a cell
cycle regulator protein (653). Furthermore, a mutant of Frk
lacking putative negative regulatory tyrosine residues
inhibits proliferation of fibroblasts and epithelial cells (654,
655). Frk has also been shown to promote neurite
outgrowth in PC12 cells through the Crk/C3G/Rap1
pathway (656). These findings hinted that Frk might be
involved in the regulation of cell differentiation. However,
Frk-deficient mice demonstrated no morphological
abnormalities in epithelial tissues, no related metabolic or
developmental changes, and no increase in the incidence of
spontaneous tumors (657). The only phenotypic change
detected in these mice was a slight decrease in the level of
circulating thyroid T3 hormone.

Brk has been shown to phosphorylate Sam68,
negatively regulating its RNA-binding activity (647). Brk
has also been shown to induce transformation of fibroblasts
and to sensitize mammary epithelial cells to EGF (658).
The latter is likely mediated by the functional interactions
of Brk with ErbB3, which enhance EGF signaling via PI-3’
kinase/Akt pathway (659).

Functions of Srm are even less clear than those of
other Frk-family PTKs. Srm-deficient mice appear to be
normal, they demonstrate normal fertility and the lack of
abnormalities in the tissues expressing Srm at a high level
(646). Overall, the functions of Frk-family PTKs remain to
be understood.

An analysis of mouse Brk using mutagenesis,
mass-spectrometry and enzyme kinetics indicated that Brk
is capable of autophosphorylation, which significantly
upregulates its kinase activity (660). This study mapped the
autophosphorylation site of Brk to Tyr-342, a conserved
tyrosine residue inside the activation loop. Based on this

study, one may speculate that this autophosphorylation is a
general mechanism of activation for Frk-family PTKs.

Frk and Brk, although not Srm, possess tyrosine
residues near their C termini, which might mediate negative
regulation of these PTKs in a Src-like fashion. Several
studies argue in favor of this hypothesis. First, mouse Frk
with both putative negative-regulatory tyrosines mutated to
phenylalanines (Y497F/Y504F) inhibits cell proliferation
and activates hormone production by pancreatic cells,
whereas wild-type Frk shows no effect in these
experimental systems (654, 655). Furthermore, the
corresponding Y447F mutant of mouse Brk demonstrated
the increased kinase activity when overexpressed in
epithelial cells (647, 660). The activity of Y447F Brk
toward a peptide substrate exceeded that of
autophosphorylated wild-type Brk and was independent of
autophosphorylation (660). These findings argue that the
negative regulation of Brk by tyrosine phosphorylation of
its C-terminal tyrosine residue is similar to that of Src-
family PTKs. It remains to be determined how this tyrosine
becomes phosphorylated in Brk, since it is phosphorylated
neither by Brk itself nor by Csk, playing this role for Src-
family PTKs (660). However, the role of the C-terminal
tyrosines in the regulation of Frk-family PTKs clearly
requires further analysis, since the Y447F mutation of Brk
has also been shown to decrease the transformation
potential of this PTK in fibroblasts (658).

3.10. Ack
Ack family of PTKs consists of two members,

Ack and Tnk1 (661, 662), both of which are present in
human and mouse genomes. Two forms of Ack, Ack1 and
Ack2, have been described (661, 663). A catalytic kinase
domain is positioned C-terminally in Ack PTKs and is
closely followed by an SH3 domain. In Ack, the SH3
domain is immediately followed by the CRIB domain, a
sequence capable of specific GTP-dependent binding to
Cdc42, but not other Rho-family GTPase (661, 663).
Homology of Tnk1 with Ack ends immediately after the
SH3 domain, so Tnk1 does not possess a CRIB domain
(662). Finally, Ack has an arrestin-like clathrin-binding
region, which immediately follows the CRIB domain (664).

Ack isoforms are expressed highly in the brain
and skeletal muscle and, to a low extent, in lung, liver, and
pancreas (663). Tnk1 is highly expressed in early,
immature progenitor hematopoietic cells, especially in fetal
blood, and less in other hematopoietic cells, intestine,
colon, testis, ovary, fetal tissues, but not in lung, liver,
kidney or brain (662, 665).

The ability of Ack to bind to active Cdc42, a
small GTPase involved in the cytoskeletal rearrangements,
implicates Ack in the cytoskeleton-mediated events.
Indeed, cell adhesion has been shown to modulate the
activity of Ack. In most cases, attachment activates Ack
(663, 666, 667), but the activation in response to removal
of ECM has also been reported (668). The adhesion-
induced stimulation of Ack is caused by beta-1 integrins,
but is not specific for fibronectin (666, 667). It is likely that
this type of Ack stimulation is mediated by activated Cdc42
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(663). Furthermore, Ack is activated by stress, growth and
nerve impulse signals (663, 669-671). The activation of
Ack through EGF receptor depends on the binding of Ack
to Grb2 and Shc, adaptor proteins known to be involved in
the growth receptor-mediated signaling (669, 672). The
activation of Ack through acetylcholine receptors depends
on the Rho-family GTPases (probably Cdc42) and Fyn
(671).

Signaling through Ack appears to regulate
various cytoskeleton-mediated events (667, 672-674).
These effects are likely to be mediated by the Ack-
dependent phosphorylation of Dbl, a guanine nucleotide
exchange factor (GEF) specific for Rho-family GTPases,
which causes activation of Dbl and, consequently, Rho-
family GTPases (675).

The effect of Ack on the cytoskeleton and its
responsiveness to the nerve impulse argue that this PTK
may be involved in the axon guidance. This hypothesis is
supported by the recent results indicating that Drosophila
Ack phosphorylates the DSH3PX1 adaptor protein inside
its SH3 domain, thus turning off binding of DSH3PX1 to
WASP and inducing the binding of DSH3PX1 to the SH2
domain of Dock (Drosophila Nck), an adaptor protein
known to be important for axon guidance (676).
However, the cytoskeleton is not the sole target of Ack,
since this PTK has been shown to activate Ras in vivo
(670), whereas its dominant-inhibitory form has been
shown to block Ras-dependent cell transformation (673).
The effect of Ack on Ras appears to be mediated by Ack-
dependent tyrosine phosphorylation and activation of Ras-
GRF1, a protein regulating the activity of Ras (670).
Therefore, the mechanisms of the effects of Ack on the
cytoskleton and cell growth are, at least to some extent,
similar.

Finally, Ack appears to bind to clathrin through
an arrestin-like clathrin-binding site (664, 677). When Ack
is overexpresed, it increases the amount of clathrin in the
fraction of clathrin-coated vesicles, induces re-distribution
of clathrin and inhibits endocytosis (664, 677). However,
when Ack was expressed at more physiological levels, no
co-localization of Ack with clathrin or clathrin re-
distribution was observed, making the significance of
Ack/clathrin interactions unclear (664).

Very little is known about the biological
functions of Tnk1, which does not posses a CRIB domain.
Tnk1 appears to be constitutively active, is enriched in the
membrane (although is also present in the cytosol), and is
associated with PLC-gamma via its proline-rich region and
PLC-gamma SH3 (665).

Little is known about the regulation of Ack-
family PTKs. Since they are capable of
autophosphorylation (663, 665, 675), their activity may be
regulated by autophosphorylation, as it has been shown for
other PTKs. Furthermore, Fyn appears to activate Ack in
response to acetylcholine receptor stimulation (671), thus
indicating that Ack may be regulated by heterologous
tyrosine phosphorylation.

It has been shown that Ack is activated in vivo by
activated Cdc42 (663). Although it is possible that this
activation is caused by direct binding of Ack to activated
Cdc42 (661, 663), which has been shown to induce
substantial changes in the conformation of both Cdc42 and
Ack (678, 679), the functional significance of the CRIB-
mediated interactions between Ack and Cdc42 remains
unclear. For example, Drosophila Ack appears to be
essential for the developmental events that are controlled
by Drosophila Cdc42, although this PTK possesses no
CRIB domain and is incapable of binding to Drosophila
Cdc42 (680).

Finally, regulation of Ack-family PTKs by SH3-
containing and/or SH3-interacting proteins similar to that
discussed for Src- and Abl-family PTKs is also possible,
because both Ack and Tnk1 possess SH3 domains and
proline-rich motifs. Indeed, Ack and Tnk1 have been
shown to interact with SH3 domains of multiple proteins,
including Nck, Grb2 and Src (Ack) (664, 669, 672) and
PLC-gamma (Tnk1) (665). However, the role of these
interactions in the regulation of Ack-family PTK activity
remains to be established.

4. CONCLUDING REMARKS

In recent years, several vertebrate and
invertebrate genomes, including the human genome, have
been fully sequenced, providing us with the final (or nearly
final) version of the list of existing PTKs (1, 4). In light of
these discoveries, it appears that the era when identification
of novel PTKs by cloning was a major direction of research
in this area, is finally over. However, the genomic
information, although important, is insufficient for
determining biological functions and regulatory
mechanisms of the known PTKs, and therefore, the
research in this area is unlikely to subside any time soon.

An important finding made by the sequencing of
human and mouse genomes is that the number of non-
receptor PTKs in mammals is rather small. Thirty-plus non-
receptor PTKs mediate all biological functions that are
dependent on this class of protein kinases. Moreover, only
a fraction of these PTKs are typically expressed in an
individual cell or a specific tissue. However, the number of
molecular events in the cells and the resulting biological
responses that are dependent on non-receptor PTKs is vast.
These phenomena are very diverse, highly specific and
finely regulated. How can this complexity be mediated by a
very limited number of non-receptor PTKs involved? It is
likely that the answer to this question lies not in the
differential specificity of non-receptor PTKs, albeit
considerable, but primarily in the multitude of the
interactions of non-receptor PTKs with multiple non-kinase
proteins that can modify the effects of these PTKs and
regulate their functions in the cell.
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