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1. ABSTRACT

Patients with chronic renal failure develop a
cardiomyopathy characterized by marked diastolic
dysfunction and left ventricular hypertrophy. Interestingly,
they also have substantial increases in the circulating
concentrations of digitalis like substances. Digitalis like
substances produce reactive oxygen species as part of the
signal cascade induced by binding to the sodium pump and
patients, and this signal cascade appears to induce
hypertrophy of cardiac myocytes grown in culture. Also,
patients with chronic renal failure develop an oxidant stress
state without a known mechanism. From these data, we
propose that it is these digitalis like substances which cause
cardiomyopathy of renal failure as well as the systemic
oxidant stress state.

2. INTRODUCTION

The existence of circulating inhibitors of the
Na/K-ATPase or digitalis like substances (DLS) which
accumulate in chronic renal failure was proposed more than
4 decades ago. This topic is extensively reviewed
elsewhere in this symposium. Support for this concept

includes the observation that the plasma or serum of
patients with chronic renal failure inhibit in vitro assays of
the Na/K-ATPase, that some digitalis assays are positive in
patients with chronic renal failure not treated with digitalis,
and finally the demonstration that patients which chronic
renal failure have elevated levels of cardiac steroids
structurally related to digitalis with immunological assays
and, quite recently, with more definitive analytic
techniques.

Although the mechanism for the elevation of
these DLS in chronic renal failure may include a
combination of decreased renal elimination and increased
production, it is very clear that one would anticipate the
development of such elevations if they were, as had been
postulated, natriuretic hormones which increased sodium
excretion under conditions where sodium loading occurred
and/or renal elimination of sodium was impaired by loss of
renal function. To this end, increases in the circulating
concentrations of bufodianalydes have been consistently
noted with both salt loading and renal insufficiency. In
contrast, the changes in circulating concentrations of
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Figure 1. Schematic illustrating how OLC and MBG
interact and cause end-organ effects.

ouabain have been rather inconsistent, and it has been
speculated that ouabain functions more as a neurohormone.
This has also been extensively reviewed elsewhere in this
symposium.

Currently, the clinical treatment of patients with
chronic renal failure is complicated by the almost universal
development of a “uremic cardiomyopathy” which is
characterized by diastolic dysfunction and progressive left
ventricular hypertrophy. In this review we will examine the
possibility that signaling through the Na/K-ATPase by
these circulating DLS may contribute to the development of
this uremic cardiomyopathy.

3. DLS IN CHRONIC RENAL FAILURE

In the late 70s and early 80s, it became clear that
patients with chronic renal failure often had “false positive”
digoxin levels (i.e., digoxin was detected when the patient
wasn’t taking this medication) with some antibodies (1, 2).
In addition to playing a role in sodium balance, Bricker and
others proposed that effects of DLS on other tissues
explained aspects of the uremic syndrome which
complicates chronic renal failure. The term “trade off
hypothesis” was coined to explain this phenomenon (3).

The evidence for a circulating inhibitor of Na/K-
ATPase in chronic renal failure is extensive. Many, if not
most, of the studies in this area have used red blood cell
Na/K-ATPase activity as a model to examine pump activity
in uremic subjects. With very few exceptions, decreases in
red blood cell sodium pump activity have been consistently
found. The findings of reduced pump activity have also
been observed in white blood cells, adipocytes, transporting
epithelia, and muscle cells. In large part, most of the
inhibition of the sodium pump can be attributed to a
dialyzable (e.g., relatively small molecular weight
substance) substance whose "concentration" in uremic
plasma also tracks with extracellular fluid volume (4-9).

Our understanding of this issue has evolved
considerably. It now appears that ouabain, the prototypical
digitalis glycoside (or something structurally quite similar),
is essentially a neurohormone, and that MBG (or something

structurally quite similar) is the circulating DLS which has
a substantial effect on the alpha-1 isoform of the Na/K-
ATPase (especially in rodents), MBG concentrations in the
plasma increase in a variety of experimental and clinical
settings associated with volume expansion and
hypertension (10-13). Recently, it has been demonstrated
that synthesis of this substance occurs in mammalian
adrenal cells (14).  Interestingly, modulation of the
response of Na/K-ATPase to MBG appears to result from
PKC inhibition (15). This concept is illustrated in Figure 1.

Of the circulating DLS that have been identified
and characterized, ouabain has perhaps been the best.
Ouabain is a cardiac steroid derived from plant tissue, and
it is ouabain that is probably the DLS of first choice for
study in laboratory preparations. As discussed above, a
compound that is immunologically quite similar to plant
derived ouabain can be detected in a number of mammalian
tissues. Recent studies have isolated such an OLC from the
hypothalamus of cattle, and identified this ouabain
molecule to be an optical isomer of ouabain derived from
plants. Artifacts determined during the isolation procedure
require that further work remains for unequivocal
determination of the chemical structure of OLC (16). In
contrast, MBG and bufalin have also been detected in body
fluids with Ab based assays, but the chemical identification
of these substances have been a bit less rigorous. Studies
from the laboratory of Dr. Bagrov have identified that his
Ab assay recognizes a chemical with the retention time on
an HPLC column and same mass determined with mass
spectroscopy as amphibian derived MBG (17). Recent
studies from the laboratory of Takahashi have
unequivocally demonstrated MBG and telocinobugin, a
closely related compound in human serum using mass-
spectroscopy and NMR spectroscopy. These workers also
found that the concentrations of these compounds were
markedly increased in patients with chronic renal failure
(18).

Na/K-ATPase as an energy transducing ion pump has
been studied extensively since its discovery in 1957.
Although early findings suggested that the enzyme also
played a role in regulation of gene expression and cell
growth (19-23), only in recent years have the mechanisms
by which this plasma membrane enzyme communicates
with the nucleus and other intracellular organelles been
investigated (24-38).  This research, performed mostly with
neonatal rat cardiac myocytes, shows that in addition to
pumping ions, the Na/K-ATPase interacts with neighboring
membrane proteins and organized cytosolic cascades of
signaling complexes to send messages to various
intracellular organelles. The signaling pathways elicited by
the interaction of ouabain with the enzyme are independent
of changes in intracellular ion concentrations and
contractility include activation of Src and Ras,
transactivation of the EGFR, and increased production of
ROS (24, 26, 27, 29, 33, 39).  This topic is extensively
reviewed elsewhere in this review, so we will not focus on
it in this manuscript. Suffice it to say that the knowledge
that ROS generation is critical to the genomic effects of
signaling through the Na/K-ATPase suggests the
possibilities that this ROS contributes in some meaningful
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Figure 2. Schematic demonstrating the potential
relationship between oxidant stress and inflammation in
patients with renal failure and elevated circulating levels of
DLS.

way to the oxidant stress state associated with renal failure
and that interference with ROS might be an effective
strategy for preventing the cardiac disease seen with renal
failure (vida infra).

That said, it is very clear that the development of a
hypertrophic phenotype in neonatal cardiac myocytes, cell
growth in both neonatal and adult cardiac myocytes, as well
as some changes in ion concentrations stimulated by DLS
can be blocked by a variety of anti-oxidant chemicals
including a poorly characterized, but extremely potent,
aqueous extract of green tea. We have tested the
importance of such oxidant signaling in the pathogenesis of
uremic cardiomyopathy and found green tea extract to
markedly attenuate the development in an animal model of
this condition (40).

4. OXIDANT STRESS IN CHRONIC RENAL
FAILURE

Our group and others first proposed that oxidant
stress contributed to the progression of chronic renal failure
in the mid 1980s. The concept which we proposed was that
oxygen consumption by the chronic renal failure kidney
could not be explained by the amount of tubular sodium
transport performed in the setting of a reduced glomerular
filtration rate.  This observation was followed by the
somewhat surprising observation that rather than oxidant
stress being limited to the diseased kidney, there appeared
to be systemic oxidant stress in patients with chronic renal
failure. Although the treatment modality used to treat the
renal failure was initially suspected as the source of the
oxidant stress, more recent studies clearly indicate that
oxidant stress appears to complicate the chronic renal
failure itself. Patients with chronic renal failure consistently
demonstrate elevations in circulating levels of oxidized
proteins and byproducts of lipid peroxidation. This oxidant
stress has been implicated in the pathogenesis of uremic
cardiovascular disease on several levels (41).

There has been a tremendous amount of
speculation regarding why there is oxidant stress in chronic

renal failure. As mentioned above, the modality itself has
been implicated. Specifically, interactions between the
hemodialysis membrane and circulating proteins and/or
white blood cells has been postulated to produce oxidant
stress. However, the similar degrees of protein and lipid
oxidation products observed in patients with chronic renal
failure not yet treated with hemodialysis (or other
modalities) and the lack of increase of oxidant stress in
those treated for some time with dialysis strongly suggest it
is the chronic renal failure which causes the oxidant stress
(42). At the time that this symposium is being reported, the
mechanism for this systemic oxidant stress is not known.
However, a tight link with inflammation suggests that
circulating white blood cells, perhaps themselves activated
by uremic toxins, contribute to this oxidation stress (43,
44). This schematic is shown in Figure 2.

5. CLINICAL UREMIC CARDIOMYOPATHY

The current treatment of patients with chronic
renal failure is complicated by the tremendous
cardiovascular mortality associated with it. Recent studies
demonstrate that mortality rates in ESRD patients remain
extremely high in the United States. More than 50% of this
mortality can be attributed to cardiac causes (45, 46).
Conversely, it is not as if the high mortality seen with HD
and peritoneal dialysis (PD) patients is simply due to
complications of the therapies. Recent data strongly suggest
that pre-ESRD patients have similar cardiac mortality rates
as patients with ESRD (46-49).

A number of studies utilizing echocardiography
have demonstrated that both left ventricular hypertrophy
(LVH) and diastolic dysfunction (as assessed by left
ventricular, atrial and pulmonary venous doppler flow
studies) are extremely common in end stage renal disease
(ESRD) patients treated with HD (50), as well as patients
incident to ESRD (51-53). In Figure 3, we show data from
our center which indicate that most patients incident to HD
treatment have demonstrable diastolic dysfunction and
LVH, whereas systolic dysfunction is relatively rare. In
general, most studies have demonstrated that there is a very
strong association between diastolic dysfunction and LVH
which are both common in this population, whereas
systolic dysfunction is much less often demonstrable (54).
Parfrey and colleagues have demonstrated that the
development of LVH in HD patients predicts a high
mortality rate (54). Others point out a correlation between
the degree of LVH as assessed by left ventricular mass
index (LVMI) and the occurrence of ventricular
arrhythmias in hemodialysis patients (55-57). In short,
ESRD patients treated with HD have a high prevalence of
diastolic dysfunction and LVH, and the clinical
implications of these cardiac abnormalities, especially in
this population, are grave.

6. PATHOGENESIS OF UREMIC
CARDIOMYOPATHY

Several pathogenetic factors known, or believed
to contribute to, cardiomyopathy are present in patients
with chronic renal failure to varying degrees. Specifically,
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Figure 3. Prevalence of diastolic dysfunction (determined
by the E/A wave ratios), systolic dysfunction (determined
by fractional shortening) and LVH (determined by
calculation of LVMI) in 23 incident ESRD patients studied
with echocardiography at the Medical College of Ohio
Hospitals.

Figure 4. Correlation between LVMI determined with
echocardiography and systolic blood pressure in 71 patients
followed at the Medical College of Ohio Hospitals.

anemia, hypertension and parathyroid hormone have been
implicated as potential pathogenetic factors.

Anemia commonly complicates chronic renal
failure, and is essentially the rule in ESRD patients treated
with intermittent HD.  Probably the best data to support a
pathophysiological role for anemia in the LVH of ESRD
patients is the observation that treatment with recombinant
erythropoietin may actually cause regression in LVH to
some degree. In some studies, a 10-20% reduction in LVMI
has been observed with sustained increases in hematocrit
(58-60). In contrast, the type of hypertrophy observed in
ESRD patients is usually of the concentric type (50); this is
not the hypertrophy pattern that one would expect if anemia
were the dominant factor (see below). Also, multiple
regression analyses have generally found only a relatively
small correlation between hemoglobin (or hematocrit) and
LVH (61-63) . Probably because of worsened BP control,
Minagawa and colleagues found that erythropoietin therapy
actually worsened LVH (64).

Hypertension is the physiological factor in ESRD
patients which has been best linked to LVH. A number of
publications demonstrate significant correlations between
the magnitude of LVH on echocardiogram and either the
predialysis blood pressure, 24 hour ambulatory blood
pressure, or number of antihypertensive medications (54,
65-67). Certainly hypertension is a treatable factor which
must be addressed aggressively in patients with ESRD.
However, we stress that while hypertension certainly
contributes to the LVH seen in ESRD, blood pressure alone
cannot explain the frequency and severity of LVH in ESRD
patients (62, 68-71). This is illustrated by the extremely
poor correlation between the LVMI and predialysis systolic
blood pressure that we observe in our HD population
(Figure 4).

Hyperparathyroidism causes abnormalities in
cardiac energy metabolism, function and growth in
experimental models  (72, 73). On a molecular basis, it is
possible (although not studied to date) that PTH stimulated
Na/K-ATPase endocytosis (74) might actually amplify
DLS signaling through the Na/K-ATPase.
Hyperparathyroidism has also been associated with LVH in
several clinical studies of patients with renal failure. Sato
and colleagues found considerable regression of LVH in 24
patients with ESRD following parathyroidectomy (75).
Covic, et al, also reported improvements in LVH after
parathyroidectomy (76). However, it is clear that
significant hyperparathyroidism is not a necessary
condition for the development of LVH in ESRD patients
(77, 78).

In addition to the aforementioned pathogenic
factors, the renin angiotensin system (79-81), as well as
lipid abnormalities (82), have been suggested to play a role
in the pathogenesis of LVH in ESRD patients treated with
HD. In addition, smaller studies have identified other
factors ranging from aluminum intoxication to activation of
the sympathetic nervous system (83, 84).

In experimental chronic renal failure induced by
partial nephrectomy, we have observed that left ventricular
hypertrophy develops quite early and that impaired
myocyte relaxation accompanies the cardiac enlargement
(85). In fact, the partial nephrectomy model of
experimental renal failure induces a cardiomyopathy quite
similar to that seen in clinical renal failure replete with
diastolic dysfunction. In fact, the impaired myocyte
relaxation appears to be associated with a marked
downregulation of SERCA2a mRNA, protein and activity
(85). SERCA2a is the dominant isoform of the
sarcoplasmic reticulum calcium ATPase and is responsible
for the rapid reduction in cytosolic calcium following
systole (86, 87). We have found excellent correlations
between the reduction in SERCA2a expression and SERCA
enzymatic activity, as well as calcium renormalization
following electrical stimulation. We have also found
marked abnormalities in cardiac myocyte calcium
concentrations during both systole and diastole. It is
unclear at present whether the abnormalities in SERCA2a
expression explain all of the changes in calcium cycling or
active relaxation (85). Interestingly, we have observed that
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Figure 5. Schematic illustrating the role of the Na/K-ATPase as a signal transducer based on work detailed in (8, 24, 25, 27-34,
39, 85, 88-92).

cardiotonic steroids (e.g., ouabain, MBG) acutely impair
cardiac relaxation in normal rat cardiac myocytes. We have
even seen this acute effect from the serum isolated from
patients with chronic renal failure (8).

In the partial nephrectomy model of experimental
uremic cardiomyopathy, we have found that administration
of a decaffeinated green tea extract markedly attenuates the
development of the cardiac hypertrophy. This same green
tea extract also attenuates the cellular hypertrophy induced
by ouabain or marinobufagenin in an isolated cardiac
myocyte preparation in concert with the blockade of
increased ROS produced by these agents in this system
(40).

7. SPECULATIVE ROLE FOR DLS IN UREMIC
CARDIOMYOPATHY

We propose that DLS signaling through the
plasmalemmal Na/K-ATPase is the proximate cause of
uremic cardiomyopathy and the oxidant stress state seen in
chronic renal failure. A schematic of this potential pathway
is shown in Figure 5. The evidence supporting this
hypothesis can be summarized as follows; DLS

concentrations increase in renal failure, DLS stimulation
results in ROS production, ROS production may participate
in a positive feedback system potentiating the effects of
circulating DLS and blockade of DLS through antioxidants
ameliorates both the effects of DLS at a cellular level, as
well as the development of uremic cardiomyopathy in an
experimental model.
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