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1. ABSTRACT

Tissue factor (TF) plays a role in thrombogenesis.
TF initiates blood coagulation resulting in the generation of
protease coagulant mediators (FVIIa, FXa, and FIIa) and
fibrin production. TF hypercoagulablility directly
contributes to thrombus formation resulting from the major
events of fibrin deposition and FIIa-induced platelet
activation/aggregation. In addition, blood coagulation
indirectly promotes thrombogenicity via the coagulation-
inflammation cycle in which TF plays a diverging and
converging role. As the consequence of coagulation-
dependent inflammation in which protease-activated
receptor (PAR) mediates the coagulant signaling to elicit
cytokines, selectins, and growth factors, such inflammation
facilitates thrombosis by platelet aggregation and leukocyte
recruitment. As TF hypercoagulability concerned, anti-
thrombotic strategies involve the prevention by
anticoagulation and PAR antagonism. Anticoagulants block
the direct and indirect thrombotic contributions, while PAR
antagonists arrest coagulation-dependent inflammation.
With respect to both thrombosis and inflammation being
cardiovascular risk factors, such strategies offer diverse
benefits to cardioprotection

2. INTRODUCTION

Tissue factor (TF) initiates the extrinsic blood
coagulation that is recognized as an integral player in the
revised theory of coagulation (1). TF, an integral membrane
glycoprotein (Mr. Wt. 43 kDa), is a known receptor
(CD142) for clotting Factor VII (FVII) and its active form
(FVIIa) serine protease (2). The extrinsic blood coagulation
proceeds as an extracellular signaling cascade on
phospholipids (PL)-containing membrane/surface in the
presence of Ca+2 (3). As the consequence of TF exposure to
FVII or FVIIa, an array of the activation of clotting factor
zymogens (FX and prothrombin) results in the downstream
generation of FXa and thrombin (FIIa) to propagate clotting
signaling for fibrin production. In addition, TF plays
diverse functions in such as inflammation (4), angiogenesis
(5,6), tumor metastasis (6), embryonic development (7),
cell adhesion/migration (8), the mediation of FVIIa
signaling of anti-apoptosis (9), vascular endothelial growth
factor (VEGF) expression (10), and many others (4).

TF upregulation is defined as its enhanced
availability for exposure to FVII/FVIIa (11), which is
responsible for hypercoagulability. TF expression is
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susceptible to upregulation by shear stress (12), or diverse
inflammatory events and cell activation in response to
bacterial endotoxin, Chlamydia pneumoniae, cytokines,
hypoxia, oxidized LDL, lipoprotein (a), homocysteine,
phorbol esters, and many others (11). The activation of
intracellular signaling kinases (e. g., protein kinase C,
mitogen-activated protein kinase, protein tyrosine kinase)
and transcription factors (e. g., nuclear factor-kappa B,
activator protein-1, early growth response-1) mediates TF
expression (11). For instance, TF hypercoagulability often
results from sepsis (13) and vascular injury (14). Elevated
plasma circulating TF (15) in such as myocardial infraction
(MI) or apoptotic conditions (16) is also responsible for
hypercoagulability. In some cases of intracellular Ca+2

activation, TF function is drastically upregulated without
the increased protein synthesis (17).

Hypercoagulable state, an increasing tendency of
thrombosis (18), is widely associated with various
conditions such as diabetes, cancer and its therapy, oral
contraceptives, cardiopulmonary bypass, and many others,
all of which show elevated TF expression/activity (3). This
review focuses on the contribution of TF
hypercoagulability to thrombosis, a risk factor for
cardiovascular events.

3. ROLE OF TF-INITIATED BLOOD
COAGULATION IN THROMBOSIS

Thrombosis is generally characterized by its
major events of fibrin deposition and platelet aggregation.
Increasing evidence demonstrates TF-initiated blood
coagulation playing a role in thrombogenesis (19). There is
elevated TF level in deep vein thrombosis (DVT) (20);
interestingly enough, macrovascular thrombosis is driven
by TF derived primarily from the blood vessel wall but not
leukocytes (21). FXa mediates TF/FVIIa-dependent arterial
(22) or platelet- (23, 24) thrombus formation (24). In fact,
TF (25), FVIIa (26) or FIIa (27) is able to induce platelet
activation/aggregation consistent with the observation that
recombinant FVIIa (rFVIIa) is of thrombogenicity (28).
Treatment with anti-TF Ab attenuates thrombus formation
(29, 30) and leukocyte activation/proliferation (31),
indicating the participation of TF in thrombogenesis.
Several lines of evidence suggest the antithrombotic
potential of TF pathway inhibitor (TFPI). Local TFPI
overexpression in vascular smooth muscle cell attenuates
FeCl3-induced thrombosis (32), while heterozygous TFPI
deficiency show promoted thrombosis (33). Antibody
against TFPI detected in antiphospholipid syndrome is
correlated to increased thrombotic tendency and FIIa
formation (34). Moreover, anticoagulation readily
diminishes thrombosis (see the later section on Strategies
for Antithrombosis; Table 1), which is in agreement with
the involvement of blood coagulation in thrombosis.

Taken together, these observations are supportive
to a notion that TF-initiated blood coagulation contributes
to thrombogenesis. Such contribution to “fibrin” as well as
“cellular” thrombosis results from the direct consequence
of blood coagulation and/or a coupling with coagulation-
dependent inflammation (Figure 1).

Other involvement of blood coagulation in
thrombogenesis includes, for instance, that Von Willebrand
factor facilitates platelet aggregation via interaction with
activated glycoproteins (GP)IIb-IIIa and GPIb. Its binding
to FVIII contributes to von Willebrand factor stability and
function in the generation of fibrin, which is beyond the
scope of this overview.

4. DIRECT CONTRIBUTION TO
THROMBOGENESIS

Thrombosis characterized by thrombus formation
results from fibrin overproduction (35).  As the
consequence of enhanced blood coagulation, elevated FIIa
generation per se presents thrombotic risk (36), largely
involving anti-fibrinolytic action and platelet aggregation.
4.1. “Fibrin” thrombosis

Fibrin overproduction under the condition of TF
hypercoagulability leads to “fibrin” thrombosis not to
mention its participation in enhanced thrombus formation
by stabilizing platelet plug. Upon initial binding to TF,
FVII zymogen undergoes proteolytic activation. The
clotting signal is propagated; the resulting FVIIa/TF binary
complex (the extrinsic Xase) catalyzes the activation of FX
zymogen to FXa. Prothrombin is consequently converted to
FIIa by the active prothromboinase complex consisting of
FXa and FVa. Thereafter, soluble fibrinogen is cleaved at
the N-terminal of alpha and beta chain by FIIa to release
fibrinopeptide A and B, respectively. The exposed
polymerizing sites are responsible for fibrin gel formation
that is further stabilized and crosslinked by FXIIIa (1, 3).
Thus, enhanced extrinsic blood coagulation results in fibrin
overproduction.
4.2. Anti-fibrinolytic relevance

FIIa activates plasma carboxypeptidases recognized
as thrombin-activatable fibrinolytic inhibitor (TAFI) that
attenuates fibrinolysis (37) in favor of fibrin
deposition/accumulation. Clinical studies showed that plasma
TAFI level is correlated positively to venous/deep vein
thrombosis (38), disseminated intravascular coagulation (39),
the acute phase of ischemic stroke (40), and cardiovascular
risks (41). TAFI inhibits various forms of plasminogen
activator (PA)-mediated fibrinolysis (42). The inhibition is
partially reversed by the addition of plasminogen, implying
that TAFI modifies plasminogen more than PA binding to
fibrin (43). TAFI cleaves fibrin C-terminal lysine residues that
act as the binding sites for both plasminogen and PA, thereby
diminishing plasminogen activation for plasmin formation
(44). The released lysine forms Lys-plasminogen to
undergo feedback inhibition on plasmin (44). Nesheim and
his associates (45) have recently proposed a novel
mechanism that TAFI reduces the ability of fibrin
degradation products to protect plasmin from antiplasmin.
Accordingly, the released lysine residues by TAFI action
also suppress such protection (46), sustaining delayed
fibrinolysis. In addition, the ability of FIIa to induce
plasminogen activator inhibitor-1 (PAI-1) expression via a
PKC-dependent mechanism (47) could further favor
antifibrinolytic process and fibrin accumulation.
Furthermore, FIIa activates FXIII, and FXIIIa facilitates the
stabilization and crosslinking of fibrin clots.
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Table 1. Anti-thrombotic effects of anticoagulants         
Agent Model Inhibitory Effect Application Reference
TF downregulation
anti-TF Ab rabbits thrombus formation DVT; arterial/venous 29, 30
TF antisense rats leukocyte adhesion ischemic reperfusion injury 114
TF/FVIIa or FVIIa inhibition
FFR-rFVIIa A-A shunt rats occlusion time thrombosis 115
FFR-rFVIIa PCI patient blood fibrin depoisition thrombosis 116
DEGR-rFVIIa in vitro whole blood thrombus formation arterial/venous 117
FVIIai in vitro whole blood platelet thrombus deposition thrombosis 118
sTF guinea pigs; rabbits thrombus formation arterial thrombosis 119
PN7051 in vitro whole blood fibrin/platelet deposition & adhesion 120
PHA-798 primates thrombus formation DVT 121
FXa inhibition
LMWH
     Fondaparinux             ------------------- clinical trials  ------------------------ DVT; VTE 122
     Enoxaparin          ------------------- clinical trials  ------------------------ DVT; VTE; arterial/venous 123
     Bemiparin             ------------------- clinical trials  ------------------------ DVT; VTE 124
     Tinzaparin             ------------------- clinical trials  ------------------------ DVT; pulmonary embolism 125
     Fraxiparin             ------------------- clinical trials  ------------------------ venous thrombosis 126
     Reviparin            ---------------COLUMBUS; CORTES---------------- DVT; pulmonary embolism 127
     Dalteparin             ------------------- clinical trials  ------------------------ DVT; VTE 128
     SamOrg123781A  pigs ex vivo platelet adhesion & thrombus arterial thrombosis 129
Direct inhibitor
     ATS; TAP angioplasty rabbits restenosis thrombosis 130
     TAP In vitro thrombus formation arterial thrombosis 131
     DX9065a rabbits; canines platelet aggregation venous thrombosis 132,133
     AAPPA baboons platelet & fibrin deposition venous thrombosis 134
     ZK-807834 vascular injury rabbits thrombus formation venous thrombosis 135
     ZK-807834    electrically injury canines thrombus formation venous thrombosis 136
     SF 303; SF 549 A-V shunt rabbits thrombus formation thrombosis 137
     TM-75466 mice thrombus formation thromboembolism 138
     FXV 673 canines thrombus formation; occlusion arterial thrombosis 139
     DPC 423 electrically injury rabbits ex vivo platelet aggregation arterial thrombosis 140
     Isoxazo-line/le A-V shunt ex vivo platelet aggregation thrombosis 141
     PRP 120844 rabbits; rats thrombus formation arterial/venous thrombosis 142
FIIa inhibition
Heparins         ------------------- clinical trials  ------------------------- DVT; VTE 143
Direct inhibitor
     hirudins         ------------------- clinical trials  ------------------------- DVT;VTE; arterial

thrombosis
144

     ximelagatran         ------------------- clinical trials  ------------------------- DVT; VTE 145
     argatroban         ------------------- clinical trials  ------------------------- DVT; VTE 146
     Org 42675 rats/rabbits occlusion arterial thrombosis 147
Natural Anticoagulants
TFPI
     rTFPI in vitro whole blood fibrin deposition vascular thrombosis 148
     TFPI 1-161 in vitro whole blood fibrin deposition venous thrombosis 149
APC
     LY203638 canines thrombus formation arterial thrombosis 155
     CTC-111 mice thrombus formation venous thrombosis 156
     FLIN-Q3 A-V shunt guinea pigs thrombus formation thrombosis 157
     hAPC rats arterial occlusion arterial thrombosis 158
     rhAPC baboons thrombus formation arterial thrombosis 159
     bAPC rats; rabbits thrombus formation microarterial thrombosis 160, 161
     rbAPC in vitro; in vivo thrombus/platelet deposition restenosis 162
AT III ischemia/ reperfusion leukocyte recruitment,  neutrophil rolling & adhesion 163
Miscellaneous
warfarin          ------------------- clinical trials  -------------------------- DVT; VTE 164

A-V, arterio-venous; i. v., intravenous; PCI, percutaneous coronary intervention; sTF, soluble TF mutant; rTFPI, recombinant TFPI; TAP, tick
anticoagulant protein; ATS, antistasin, APC, activated protein C; hAPC, human APC, rhAPC, recombinant human APC; bAPC, bovine APC;
rbAPC, rabbit APC; AT III, antithrombin III; AAPPA, amidinoaryl propanoic acid.

4.3. Platelet aggregation
It has long been established that FIIa activates

platelets mainly through protease-activated receptor (PAR)
and GP. PAR-1 is a primary receptor for FIIa by which

platelets are activated to aggregate (48). Platelet
aggregation constitutes thrombus formation involving
cross-linking of adjacent platelets mediated by the
interaction of activated GP IIb/IIIa with distinct amino acid
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Figure 1. ‘Coagulation-inflammation-thrombosis circuit’: TF hypercoagulability leads to thrombosis and inflammation in relation
to cardiovascular events. TF hypercoagulability directly (arrow) contributes to thrombosis by enhanced fibrin deposition and
FIIa-induced platelet aggregation. Indirectly, the coagulation-inflammation cycle coupled with inflammation-dependent event
(two-way arrow) participates in thrombogenesis. TF hypercoagulability drives a ‘coagulation-inflammation-thrombosis circuit’
in which inflammation (cytokines, adhesion molecules, and growth factors) and/or thrombosis (thrombus formation, platelet
activation, and fibrin deposition) lead to cardiovascular complications. Anticoagulants inhibit (- - -) the direct thrombotic
contribution, while anticoagulation and PAR antagonism interrupting (- - -) the coagulation-inflammation cycle (Figure 2) are
antithrombotic.

sequences, LGGAKQAGDV and/or RGD, at each end of
dimeric fibrinogen molecules (49). An alternative pathway
describes that FIIa-induced platelet activation results from
polymerizing fibrin, which involves the recognition sites in
the cross-linking of polymerizing fibrin and surface
integrins via GP Ib. In fact, GP Ib acts as a FIIa-binding
site and promotes platelet activation by low FIIa
concentrations (50). In addition, PAR-4-mediated FIIa
action promotes leukocyte rolling and adhesion (51).

5. INDIRECT CONTRIBUTION MEDIATED BY
COAGULATION-DEPENDENT INFLAMMATION

Serine proteases (FVIIa, FXa, FIIa) are not only
coagulant but also proinflammatory mediators undergoing
coagulation-dependent inflammation, which in turn leads to
inflammation-dependent thrombotic consequence (4). Upon
TF hypercoagulability, inflammatory consequence is
enormous. Such 'endogenous' inflammation triggers
thrombosis mainly by platelet aggregation and leukocyte
recruitment. Hence, a ‘circuit’ (11) links among
coagulation, inflammation and thrombosis, which is driven
by TF hypercoagulability (Figure 1).

5.1. Coagulation-inflammation cycle
Hypercoagulability and inflammatory states

derive each other, which is mediated by TF diverging and
converging roles respectively for an inflammatory cause
and consequence in a coagulation-inflammation cycle
(Figure 2).  Several lines of evidence have revealed in vivo
coagulation-dependent inflammation. Anti-TF Ab
prevents septic shock (52) and depresses macrophage
proinflammatory functions in the expression of adhesion
molecule CD18 (53), suggesting the proinflammatory role

of TF. Administration with recombinant FVIIa enhances
interleukin (IL)-6 and -8 productions in healthy human
subjects (54). FXa/PL infusion increases the expression of
IL-6 and C-reactive protein (CRP) in baboons (55). FIIa
with fibrin(ogen) dependency induces the production of IL-
6 and monocyte chemoattactant protein (MCP)-1 (56). IL-6
and CRP are proposed to be soluble benchmarks for the
clinical diagnoses of inflammation.

Conversely, in vivo inflammation-dependent
coagulation is evidenced by the intramuscular injection of
IL-6 that results in FIIa generation in baboons (57). P-
selectin leads to TF accumulation in the developing
thrombi (58); its blockade by a recombinant soluble ligand-
Ig (rPSGL-Ig) depresses TF mRNA expression (59). These
observations are further in agreement with the positive
correlation of TF procoagulant state with the high levels of
soluble P-selectin in blood (60). Wakefield and his
associates (61) have demonstrated that selectin-deficient
mice are defective in fibrin production due to the lack of
activation of the extrinsic pathway. In addition, CD40L
(62) stronger than tumor necrosis factor-alpha (TNF) or IL-
1 beta drastically induces TF activity proceeding with
coagulation.

5.1.1. TF diverging role
 TF initiates blood coagulation that in turn

confers inflammatory state. The coagulant mediators
(FVIIa, FXa, and FIIa) and fibrin production are
responsible for triggering “endogenous” inflammation.
Thus, TF plays a diverging role leading to coagulation-
dependent inflammation. The inflammation involves
eliciting TNF, IL-1, 6 & 8, MCP-1, intracellular adhesion
molecule (ICAM), vascular cell adhesion molecule
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Figure 2. Unidirectional coagulation-inflammation cycle:
TF hypercoagulability refueling the cycle results in
enormous inflammation. TF expression couples coagulation
to inflammation for sustaining the coagulation-
inflammation cycle. TF diverging role (bold) undergoing
coagulation-dependent inflammation (underline). As the
consequence of TF hypercoagulability, elevated
proinflammatory coagulant mediators (FVIIa, FXa, FIIa)
and fibrin overproduction lead to upsurged elicitation of
cytokines (e.g., TNF, ILs, etc.), adhesion molecules (e.g.,
MCP-1, ICAM/VCAM, selectins, etc.) and growth factors
(e.g., VEGF, PDGF, etc.). On the other hand, TF
converging role (dot line) presents its susceptibility to
upregulation by such diverse inflammation (italics) for
exhibiting hypercoagulation. Thus, TF converging and
diverging role deriving each other manifest as
hypercoagulable accompanying with inflammatory states.
Namely, TF hypercoagulability continuously refuels the
cycle in which coagulation and inflammation promote each
other, despite how the cycle receives its initial momentum.

(VCAM), selectins, VEGF, platelet derived growth factor
(PDGF), platelet activating factor, basic fibroblast growth
factor, granule macrophage colony stimulating factor, etc.
(11).

The signals of the coagulant mediators are largely
transmitted by PAR, 7-transmembrane G-protein coupled
receptors (63). The active protease including FVIIa, FXa,
or FIIa undergoes a proteolytic cleavage of the extracellular
domain of PAR, resulting in a new N terminus that in turn
acts as a tethered ligand. Following the interaction with
heterotrimeric G-proteins, the subsequent signaling kinases
and/or intracellular Ca+2 signaling are activated. PAR-1 or -
2-mediated FVIIa signaling activates Ca+2 and MAPK,
and PAR-2-mediated signal promotes SMC migration. In
TF-expressing cells, FVIIa is able to elicit VEGF
expression (64). FXa signal is transduced by PAR-1, -2, or
-3 to elicit IL-6 (6) & 8 (65), MCP-1 (66), VEGF (65), and
PDGF (66) expression. FIIa activates different cell types
(3); it's PAR-1 or -3-mediated signaling induces IL-6 (56,
65), IL-8 (65), MCP-1 (56, 65), ICAM (67), P-selectin
(68), VEGF (69), and PDGF (70) expression. PAR-4-
mediated FIIa action enhances leukocyte rolling and
adhesion (51). In addition, fibrin and its fragments are also
proinflammatory in eliciting IL-1 beta (71), IL-6 (72), IL-8

(72) and MCP-1 (73) through unknown non-PAR
transduction.

The long-range effect extends to many cell types
where PAR expressed ubiquitously facilitates smooth
muscle cell proliferation (74) and activation of vascular
endothelial cells (VEC) (75), platelets (76), or leukocytes
(77), many of which are involved in thrombotic events.

5.1.2. TF converging role
On the other hand, TF is susceptible to

upregulation; it converges various inflammatory signals
including “exogenous” and “endogenous” ones. Such
resulting TF upregulation exhibits hypercoagulable state.
Thus, TF plays a converging role proceeding
inflammation-dependent coagulation. It is noted that
FVIIa (78), FXa (78, 79) and FIIa (80) promote TF
expression, implying the existence of a feedback loop for
completing the coagulation-inflammation cycle. The ability
of PAR-2 agonists (e. g., trypsin (81), SLIGKV (81), and
proteinase-3 (82)) to induce TF mRNA is in agreement
with the upregulation by the proinflammatory coagulant
mediators. In fact, TNF (83), ILs (84), MCP-1 (85), ICAM-
1 (86), P-selectin (87), VEGF (88), PDGF (89) or many
others (11) is able to substantially induce TF expression,
which not only strengthens TF converging role but also
supports such feedback upregulation on TF expression by
the coagulant mediators (78-80). Moreover, the
observations that anticoagulants (e.g., TFPI (90), FVIIai
(91), DX9065a (79), ZK 807834 (92), low molecular
weight heparins (LMWH) (93), heparin (94), hirudin (95),
hirulog (96), antithrombin III (AT III) (97)) diminish TF
expression are consistent with the occurrence of such an
operative cycle.

In summary, TF drives the extracellular and
intracellular signaling for coagulation and inflammation,
respectively (Figure 2). The diverging and converging roles
warrant TF hypercoaguability constantly refueling the
cycle, resulting in enormous inflammation.

5.2. Inflammation triggering thrombosis
Inflammation-triggered thrombosis represents an example
of the neighboring effect of the cycle on globally
inflammatory impact. The clinical association of
inflammation with thrombosis has been demonstrated (98).
Several lines of evidence reveal in vivo inflammation-
dependent thrombogenesis. IL-8 enhances fibrosis in rats
(99). Antibodies to cytokines and adhesion molecules
attenuate venous thrombosis (100). An earlier study has
shown that P-selectin causes leukocyte accumulation to
facilitate fibrin deposition (101) complementing thrombotic
episodes. An antibody to P-selectin (LYP20) blocks
leukocyte adhesion to EC and platelets (102) and modifies
thrombosis (103). P-selectin inhibition decreases vein wall
fibrosis (104). The observations that PAR antagonism is
able to attenuate platelet activation/aggregation (see the
later section on Strategies for Antithrombosis; Table 2) are
in line with such indirect thrombotic contribution involving
the coagulation-inflammation cycle as the consequence of
TF hypercoagulability (Figure 1). At the cellular level, the
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Table 2. Anti-thrombotic effect of PAR antagonism
Agent Model/ Induction Delivery Inhibitory Effect Reference
peptide mimetics
RWJ 58259 IN VITRO/FIIa human platelet aggregation 167
RWJ 58259 Monkey/vascular injury i.v. catheter vascular occlusion 168
RWJ 58259 Monkey/vascular injury i.v. catheter ex vivo platelet aggregation 168
RWJ 58259 Monkey/vascular injury i.v. catheter thrombus platelet deposition 168
RWJ 58259 rat/balloon angioplasty perivascular in vivo arterial stenosis 169
RWJ 58259 rat/balloon angioplasty perivascular neointimal thickness; restenosis 169
RWJ 58259 guinea pig A-V shunt intrashunt thrombus formation 169
RWJ 58259 guinea pig A-V shunt i.v. ±   thrombus formation 169
peptide antagonists
SFLLR
derivatives

IN VITRO/FIIa human platelet aggregation 165, 166

non-peptide antagonists
FR 171113 IN VITRO/FIIa guinea pig platelet aggregation 170
FR 171113 guinea pig/FIIa subcutaneous ex vivo platelet aggregation 170
FR 171113 guinea pig/FeCl3 subcutaneous arterial thrombosis 170
FR 171113 guinea pig/ADP/collagen subcutaneous ± in vitro/ ex vivo platelet

aggregation
170

SCH 79797 IN VITRO/FIIa human platelet aggregation 68
SCH 79797 IN VITRO/PAR-4/ADP/collagen ±   human platelet aggregation 68
SCH 203099 IN VITRO/ FIIa platelet surface P-selectin

expression
68

YD-3 IN VITRO/GYPGKF human platelet aggregation 171
YD-3 IN VITRO/GYPGKF mouse platelet aggregation 171
YD-3 IN VITRO/fMLP/cathepsin G human platelet aggregation 171
YD-3 IN VITRO/FIIa mouse platelet aggregation 171
YD-3 IN VITRO/FIIa ±   human platelet aggregation 171
other
PAR-1 antibody ex vivo monkey/FIIa i.v. bolus ex vivo platelet aggregation 173
PAR-1 antibody rat/angioplasty i.v. SMC accumulation; neointimal

thickness
172

i. v., intravenous;  FIIa, thrombin; GYPGKF, a PAR-4 agonist; ±, no effect.

‘endogenous’ inflammation triggers platelet
activation/adhesion and leukocyte recruitment in
contribution to thrombus formation. VEGF potentiates
FIIa-induced platelet aggregation (105). P/E/L-selectins,
ICAM, and VCAM are responsible for leukocyte adhesion/
rolling/recruitment interacting with platelets and VEC to
enhance thrombus formation (106). In contrast, in vitro
exposure of whole blood to ‘exogenous’ TNF, IL-1, -6 and
-8 fails to activate human platelets (107).

In addition, the general perception of
inflammation-dependent thrombosis is supported by the
observations that anti-inflammatory agents are of anti-
thrombotic benefit. Non-steroid anti-inflammatory drugs
readily block ‘cellular’ thrombosis. Cox-1 inhibitor such as
low dose of aspirin suppresses platelet aggregation (108).
Aspirin inhibits surface expression of GP IIb/IIIa, P-
selectin, CD63, and CD107a receptor on human platelets
(109). Similarly, Cox-2 inhibition downregulates
VEC/leukocyte activation (110), while 5-lipoxygenase
inhibition depresses leukocyte adhesion (111).

Conversely, thrombosis-dependent inflammation
is also taking place by the ability of fibrin and its fragments to
elicit IL-1beta, IL-6, IL-8 and MCP-1 expression (71-73).

Further, platelet activation/aggregation participates in
complement activation resulting in inflammatory responses. P-
selectin as a C3b-binding protein sufficiently leads to C3a
generation and C5b-C9 formation, which supports a novel
mechanism of the local inflammation in vascular injury
site.

6. STRATEGIES FOR ANTI-THROMBOSIS

Anti-thrombosis aims at the reduction of fibrin
deposition and platelet aggregation. TF hypercoagulability
confers thrombosis through the ‘coagulation-inflammation-
thrombosis circuit’ involving the coagulation-inflammation
cycle (Figure 1). Any interruption of such events is of
prevention from thrombogenesis.

Anticoagulants target blood coagulation, shutting
down the direct thrombotic contribution. As the result of
anticoagulation, diminished formation of the
proinflammatory coagulant signals (FVIIa, FXa, FIIa, and
fibrin) reduces the indirect thrombotic inputs via
inflammation-dependent thrombosis (Figure 1). In fact,
anticoagulants readily suppress the elicitation of IL-1, 6 &
8, CRP, selectins, MCP-1, ICAM/VCAM, VEGF, PDGF,
etc. (4).
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In addition, PAR becomes a target for
antiinflammation (4). PAR serves as a signal switcher
bridging the extracellular signaling (blood coagulation) to
the intracellular signaling (pro-inflammation) in the
coagulation-inflammation cycle (Figure 2). Blocking the
transmission of the proinflammatory coagulant signals,
PAR antagonist holds the promises for anti-thrombotic
applications. The role of PAR-1 in thrombogenesis is
evident. PAR-1 deficiency (112) and knockout (113) show
reduced thrombotic risk. PAR-1 is a primary receptor for
FIIa by which platelets are activated to result in
aggregation, manifesting platelet-dependent thrombosis.

6.1. Anticoagulation approach
Table 1 lists some typical antithrombotic

examples resulting from anticoagulation by which blood
clotting is blocked in different stages from the up- to down-
stream events along the signaling cascade (3). Essentially,
the initiation of the extrinsic pathway is inhibited by TF
downregulation. The inhibition of TF/FVIIa binary
complex and direct inhibition of FVIIa activity suppress FX
activation and its downstream consequences. FXa
inhibition by either AT III-dependent LMWH or direct FXa
inhibitors blocks prothrombin activation (i.e., FIIa
generation). FIIa inhibition is achieved by AT III-
dependent heparins or direct FIIa inhibitors. Natural
anticoagulants TFPI, activated protein C (APC), and AT III
serve as a surveillance system to modulate blood
coagulation. TFPI forms ternary complex with TF/FXa to
inhibit FVIIa function. APC coupled with protein S
inactivates FVa and FVIIIa to downregulate
prothrombinase and the intrinsic tenase, respectively. ATIII
mediates the diverse inhibitory actions of heparins and
LMWHs.

The antithrombotic effects of LMWHs (anti-
FXa), heparin (anti-FIIa) and direct FIIa inhibitors have
been reviewed elsewhere based on clinical trials; the
attentions of this section are paid to those experimental
agents with antithrombotic potentials.

6.1.1. TF downregulation
Anti-TF antibody blocks TF function. An i.v.

delivered antibody (AP-1) against rabbit TF  inhibits
intravascular thrombosis (29) and thrombus propagation
without affecting bleeding time in rabbits (30). The
antisense oligonucleotide blocking TF expression prevents
leukocyte adhesion following renal ischemic reperfusion
injury (114). One could also expect that inhibition of TF
synthesis interrupts the cycle to prevent thrombosis.
However, little is known about the antithrombotic
relevance of targeting TF synthesis. The inconclusive issue
is attributed to the fact that various inhibition of the
intracellular signaling readily shows anti-inflammation
apart from the downregulation of TF synthesis (4).

6.1.2. TF/FVIIa inhibition
Inactivated rFVIIa competes the native FVIIa

affinity for TF, thereby inhibiting TF/FVIIa activity. i.v.
Bolus of FFR-rFVIIa reduces thrombus and fibrin
deposition in A-A shunt rat model (115). FFR-rFVIIa
inhibits ex vivo fibrin deposition in patients undertaking

percutaneous coronary intervention (PCI) (116). DEGR-
rFVIIa prevents thrombus formation in whole blood (117).
Similarly, an active-site blocked FVIIai attenuates
fibrin/platelet deposition (118). By altering TF/FVIIa
binding and inhibiting its activity, soluble TF mutant
reduces arterial thrombosis in guinea pigs (119). A cyclic
dodecapeptide (PN7051) derived from the second EGF-like
domain of FVII interferes with TF/FVII/FX complex to
attenuate fibrin deposition, platelet-fibrin adhesion and
platelet-thrombus formation (120). PHA-798 diminishes
thrombus formation in primates (121). It remains to be
determined concerning the antithombotic application of
nematode anticoagulant protein c2, a novel inhibitor for
TF/FVIIa complex (3).

6.1.3. Anti-FXa
LMWHs including Fondaparinux (122),

Enoxaparin (123), Bemiparin (124), Tinzaparin (125),
Fraxiparin (126), Reviparin (127), and Dalteparin (128)
exhibit clinical benefits for arterial and venous thrombosis.
All LMWHs are able to markedly inhibit platelet
aggregation in whole blood. Fondaparinux, a
pentasaccharide, is widely reported to prevent venous
thromboembolism (VTE) and treat DVT. SamOrg
123781A has recently been evaluated for its antithrombotic
application with reduced platelet adhesion and thrombus
formation in pigs (129).

Direct FXa inhibitors block the active sites.
Recombinant antistasin (rATS) or tick anticoagulant
peptide (rTAP) reduces restenosis in balloon angioplasty
rabbits (130), and rTAP reduces TF/FVIIa-dependent
thrombus formation in vitro (131). Non-peptide small
molecules directly inhibit FXa activity. DX-9065a
depresses platelet aggregation (132) and leukocyte
adhesion to EC (133). Orally active amidinoaryl propanoic
acid (AAPPA) reduces platelet deposition and fibrin
accumulation in venous-type thrombus in baboons (134).
ZK-807834 inhibits venous thrombosis in vascular injury
rabbits (135) and electrolytic injury canines (136).  SF 303
and 549 inhibit A-V shunt-induced thrombus formation in
rabbits (137). Orally active YM-75466 inhibits thrombosis
in mice (138). FXV673 inhibits thrombus formation in
canines (139). Orally active pyrazole DPC423 attenuates
electrically induced carotid artery thrombosis in rabbits
(140). Isoxazolines and isoxazoles prevent A-V shunt-
thrombosis (141), while RPR120844 reduces venous
thrombosis in rabbits (142).

6.1.4. Anti-FIIa
The Hirsh group and many other investigators

have shown a broad spectrum of the antithrombotic action
of heparins in adults, pregnant women, and pediatric
population (143). Direct FIIa inhibitors: hirudin derivatives
(e.g. lepirudin, desirudin) and hirudin analogues (e.g.
bivalirudin) are bivalent direct thrombin inhibitors binding
to two distinct sites on thrombin: active (catalytic) and
fibrinogen-binding site (exosite 1); these inhibitors (144)
exhibit antagonism to DVT, VTE, arterial thrombosis in
clinical studies. Ximelagatran (145), an active site inhibitor,
shows various antithrombotic actions; so does argatroban
attenuate DVT and VTE (146). Org 42675 is a direct anti-
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FIIa agent with anti-FXa activity, seemingly being superior
to argatroban and fondaparinux in animal models of
thrombosis (147).

6.1.5. Natural anticoagulants
Consistent with the role of TFPI (32-34),

treatment with rTFPI exhibits antithrombotic effect in a
human ex vivo thrombotic model (148), and a truncated
TFPI 1-161 reduces thrombus formation (149).

The role of APC in thrombosis has been
demonstrated by the increased risk in APC resistance (150),
deficiency (151) and low plasma level (152). In addition to
its function in anticoagulation, APC exerts profibrinolytic
effects by inactivation of PAI-1 (153) and TAFI (154), all
of which synergistically diminishing the direct thrombotic
inputs from blood coagulation cascade (Section 4).
Moreover, effective APC anti-inflammatory actions (4)
could also block the indirect contribution via inflammation-
dependent thrombotic consequence. APC antithrombotic
potential remains in the experimental stage of animal
studies. A recombinant human APC (LY203638) inhibits
arterial thrombosis in a canine model (155). A human APC
product (CTC-111) reduces venous thrombosis in mice
(156). FLIN-Q3 diminishes A-V shunt-induced thrombosis
in guinea pigs (157). hAPC attenuates rat mesenteric
occlusion (158), and rhAPC inhibits arterial thrombosis in
baboons (159). Infusion of bovine APC suppresses
thrombus formation in rats (160) and rabbit microarterial
thrombosis (161).  A rabbit APC-loaded stent reduces
thrombus and platelet deposition in vitro and in vivo (162).

Little is known about the antithrombotic
application of AT III despite some anti-inflammatory
interests (4). A bolus infusion with ATIII attenuates FIIa-
induced leukocyte rolling/adhesion/ recruitment in
ischemia/reperfusion (163).

6.1.6. Other
Although warfarin generally blocking vitamin K-

dependent zymogen activations in the coagulation cascade
exhibits antithrombotic applications (164), its therapeutical
use is limited by the drawback of fatal bleeding episodes.

6.2. PAR blockade
Table 2 lists the availability of PAR antagonists

classified into three categories. Peptide mimetics such as
RWJ® compounds are developed on the bases of PAR-1
agonist (SFLLRN) substituted with chemical modified non-
proteogenic amino acids. Peptide antagonists include the
chemical modified SFLLR substituted with p-fluoro (165)
or p-guanido (166) -phenylalanine. Non-peptide PAR-1
antagonists such as FR® and SCH® compounds have been
tested for their antithombotic potentials. Little is known
about the antithrombotic relevance of PAR-2 antagonists.
Thus far, there is no availability of PAR-3 antagonist.

6.2.1. Peptide mimetics
RWJ-58259 significantly reduces thrombus

platelet deposition in vitro (167), monkeys (168), and rats
(169) regardless of the induction by FIIa, balloon
angioplasty or vascular injury.

6.2.2. Non-peptide antagonist
Subcutaneous FR 171113 preferentially

diminishes FIIa-induced platelet aggregation without
prolongation of bleeding time in guinea pigs (170). SCH
79797 and its N-methyl analog (SCH 203099) inhibit
binding of a high-affinity FIIa receptor-activating peptide,
diminishing in vitro platelet aggregation induced by FIIa
(67, 68). YD-3, a PAR-4 antagonist, preferentially blocks
GYPGKF (a PAR-4 agonist), fMLP, or cathepsin-mediated
in vitro platelet aggregation (171), while it remains neutral
on FIIa and PAR-1-induced action.

6.2.3. peptide antagonist
SFLLR derivatives inhibit human platelet

aggregation in vitro (165, 166); their in vivo antithrombotic
applications remain to be further elucidated.

6.2.4. Other
PAR-1 blocking antibody shows antithrombotic

effects in rats (172) and monkeys (173), while PAR-1
antisense has no effect on platelet aggregation.

6.3. Other approaches interrupting the cycle
The general inflammatory blockade by antibody

to CD14, LPS binding protein, Toll-like receptors, IL-6,
MCP-1, or TNF could also be applicable to arresting TF
upregulation and its consequence of inflammation-
dependent thrombosis. Further work warrants determining
the feasibility and antithrombotic applications.

7. REMARKS

TF hypercoagulability drives a ‘coagulation-
inflammation-thrombosis circuit’ involving the
coagulation-inflammation cycle in contribution to
cardiovascular complications (Figure 1). TF
hypercoagulability extends two arms conferring thrombosis
and inflammation. Inflammation per se presents
cardiovascular risks (174) not to mention its close link to
thrombosis, a precursor to vascular dysfunction (175).

Anticoagulants and PAR antagonists respectively
diminish the formation and the signal transmission of the
coagulant mediators to interrupt the coagulation-
inflammation cycle (Figure 2) and the ‘coagulation-
inflammation-thrombosis circuit’ (Figure 1). Accordingly,
anticoagulation and PAR blockade are of relevance to
cardioprotection. Anticoagulants exhibit the management
on cardiovascular disorders (176). rFVIIai benefits to acute
coronary syndromes (ACS) (177). Enoxaparin is effective
for treating unstable angina (175)/ MI (178)/ PCI (179)/
ischemic heart disease (180) and ACS in the SYNERGY
randomized trial (181). Biralirudin is beneficial to not only
PCI in the REPLACE trial (182), but also ACS (183), post
MI and non-PCI unstable angina (184). In addition,
anticoagulants draw attentions to arresting atrial fibrillation
and preventing secondary stroke (e.g., enoxaparin (185)
and ximelagatran (186) in relieving atrial fibrillation,
biralirudin in acute ischemic stroke intervention (187), and
ximelagatran in stroke prevention (186, 188)). However,
anticoagulation often accompanies bleeding episode
resulting from FIIa inhibition and warfarin, both of which
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overkill blood coagulation and damage haemostatic
balance. In general, anti-FXa is superior to anti-FIIa in
view of less bleeding event. The development of TF/FVIIa
inhibition is urged to meet such challenge.

PAR-1 (189) and -2 (190) recently become
interesting targets in cardiovascular therapy. PAR blockade
diminishes coagulation-dependent inflammation without
affecting blood coagulation. Nor is bleeding reported.
Further clinical trials are needed to determine if their anti-
thombotic efficacies are advantageous over those of
anticoagulants. It also remains challenging to evaluate the
combined therapy of anticoagulants and PAR antagonists
offering further cardioprotection.
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