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1. ABSTRACT

Protein C is a plasma protease that when
activated plays a central role in modulating the function of
the vascular endothelium and its interface with the innate
immune system. A recombinant form of human activated
protein C (APC), drotrecogin alfa (activated), has shown
efficacy in a number of preclinical models of thrombosis
and ischemia and reduces mortality in patients that have a
high risk of dying from severe sepsis. Studies have begun
to elucidate the mechanism for the multifunctional role of
APC in modulating not only coagulation, but also
inflammation and apoptotic processes. From gene
profiling to pharmacology studies, drotrecogin alfa
(activated) appears to directly modulate endothelial
dysfunction by blocking cytokine signaling, functional
cell adhesion expression, vascular permeability and
preventing the induction of apoptosis. Moreover, APC, via
endothelial protein C receptor/protease activated receptor-
1 mediated mechanisms, also appears to directly modulate
leukocyte migration and adhesion. The ability of APC to
suppress pro-inflammatory pathways and enhance cellular
survival suggests that APC has a role in the adaptive
response at the vessel wall, in which it protects the wall
from vascular insult and prolongs endothelial, cellular,
and organ survival. The emerging data further suggest that
APC effectively modulates the complex changes that
occur during multi-system activation and dysfunction in
sepsis.

2. INTRODUCTION

Sepsis is an uncontrolled systemic response to
inflammation caused by excessive stimulation of the
innate immune system by bacteria, fungi, virus or
parasites. Sepsis has several grades of severity; the most
ill patients develop sepsis associated with acute organ
dysfunction (severe sepsis) or hypotension (septic shock)
(1-2). Despite advances in treatment and supportive care,
the mortality rate is 30-50% and the incidence is rising
due to multiple factors including increased numbers of
immuno-compromised patients, use of life-sustaining
technology and resistance to anti-microbial agents (3-10).
Approximately 750,000 people in the United States
develop sepsis each year (11). More than half of these
patients are older than 65 and the incidence of sepsis is
likely to increase during the next two decades as the “baby
boom” generation continues to age (12). Numerous
attempts have been made to develop therapeutic agents;
however, clinical studies targeting several of the
inflammatory cytokines that are upregulated in sepsis have
been unsuccessful (4, 13-17). Nonetheless, over the last
several years, a new understanding of the pathophysiology
of sepsis has emerged, which focuses on the tight
interplay and coupling of inflammation, microvascular
coagulation and endothelial cell dysfunction. In line with
this changing view, the use of the recombinant form of the
natural anti-thrombotic factor, activated protein C (APC)
was examined as a treatment for septic patients. The
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Figure 1. Schematic representation of human protein C. Numbers refer to the amino acid position relative to the mature
processed amino terminus. Amino acids 156-157 are removed during processing and the activation peptide (158-169) is
removed by thrombin-mediated cleavage, which converts protein C zymogen to its active form (APC).

administration of recombinant human APC (rhAPC)
resulted in a reduction of mortality among treated versus
placebo patients in the PROWESS trial (18). In this
review, we will overview the biology of human activated
protein C and its mechanistic role in the pathogenesis of
severe sepsis. In particular, we will focus on its unique
modulatory activities that make it an attractive agent for
treating severely septic patients that are at a high risk of
death and for treating other disorders of
endothelial/leukocyte dysfunction.

3. BIOLOGY OF HUMAN PROTEIN C

3.1. Synthesis of protein C
The cDNA for human protein C (hPC) encodes a

protein of 461 amino acids (figure 1) (19). The first 42
amino acids consist of a signal peptide (residues -42 to -

25), and a pro-peptide (residues -24 to -1) that contains a
recognition site for a vitamin K-dependent carboxylase
(20). The signal peptide, pro-peptide and an internal
dipeptide at Lys156-Arg157 are removed by proteolysis.
Approximately 90-95% of the zymogen circulates as a
heterodimer consisting of a light chain (residues 1-155),
disulfide linked to the heavy chain serine protease domain
(residues 158-419). The remaining 5-10% of the secreted
mature hPC contains Lys156-Arg157 and circulates as a
single chain. Both human plasma derived and recombinant
protein C are complex proteins due to several post-
translational modifications. In the light chain, the first 9
glutamic acid residues are gamma-carboxylated by the
vitamin K-dependent carboxylase and Asp 71 is modified
to beta-hydroxyaspartate (21). There are also four Asn-
linked glycosylation sites in hPC (Asn 97, Asn 248, Asn
313, Asn 329) (22-23).  The complete gamma-
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Figure 2. Activation and functions of protein C/APC. Activation of protein C occurs via the thrombin:thrombomodulin complex
and the resultant APC inhibits thrombin generation by inactivating fVa and fVIIIa. The cytoprotective functions of APC require
interaction with the endothelial protein C receptor (EPCR), protease activated receptor-1 (PAR-1) and Edg-1, which results in
activation of multiple signaling cascades.

carboxylation of the light-chain, beta-hydroxylation of
Asp 71 and correct pro-peptide processing are all required
for full functional anticoagulant activity (22, 24-29).

3.2. Activation of protein C
Protein C is part of an integrated pathway that

includes thrombin, thrombomodulin, endothelial cell
protein C receptor (EPCR) and Protein S (30). Protein C is
activated by thrombin-mediated cleavage and the rate of
this reaction is increased by 1000-fold when thrombin
binds to the cell surface receptor thrombomodulin (31-32).
The activation rate of protein C is further increased by
approximately 10-fold when EPCR binds protein C and
presents it to the thrombin:thrombomodulin complex (33).
Platelet factor 4  may also increase APC generation (34).
The binding affinity of protein C for EPCR and
phospholipid is dependent on the structure of its Gla
domain; mutations in this domain reduce the affinity of
these interactions (35).

3.3. Function of protein C
APC plays a central role in vascular function by

maintaining vascular patency and modulating the function
of the vascular endothelium. Many review articles have
been written about the APC anticoagulation pathway and
its role in hemostasis and thrombosis (36-43). Recently, a

new understanding of the role of APC as an anti-
inflammatory and cytoprotective agent in vascular and
non-vascular tissues has emerged (44-48). In this section
we will overview APC's anticoagulant/antithrombotic
mechanism, but the focus will be on more recent data
describing its role as a modulator of endothelial and
leukocyte function with properties opposing those of
thrombin and pro-inflammatory cytokines (figure 2).

3.3.1. Antithrombotic Mechanism
APC is an important physiologic regulator of

coagulation because it maintains hemostasis by
controlling the conversion of prothrombin to thrombin. As
thrombin is generated, it binds thrombomodulin to form
an enzyme complex that modifies the specificity of
thrombin for macromolecular substrates and inhibitors
(49-50). This interaction reduces the coagulant function of
thrombin because it interferes with thrombin’s ability to
cleave fibrinogen and factor Va, but increases the rate that
protein C is cleaved to its active form (36). APC, along
with its cofactor protein S, functions to block further
thrombin generation by inactivating the activated forms of
factors V and VIII, thus inhibiting the prothrombinase and
Factor Xase enzyme complexes, respectively (figure 2).
The formation of APC is also tightly controlled by
thrombin generation; the activation of protein C ceases
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Figure 3. Anti-thrombotic efficacy of APC. A.
Antithrombotic activity in a guinea pig arterio-venous
shunt model. Adapted from Kurz et al., (263). B. Activity
of APC in a primate model of thrombosis. Adapted from
Emerick et al., (264). APC decreases thrombus
weight/size in a dose dependent fashion.

when thrombin is inhibited. Thrombus formation is
determined by the balance between thrombin’s pro-
coagulant activities (fibrin generation, platelet activation)
and anticoagulant activity (APC generation). Factors that
suppress the generation of APC or result in a deficiency of
protein C have a significant consequence of shifting this
balance towards thrombosis. Most cases of protein C
deficiency result from mutations in the protein C gene and
these mutations can either result in decreased synthesis of
normal protein (type I) or synthesis of dysfunctional
protein (type II) (51). Individuals who are homozygous or
compound heterozygous for mutations that result in
protein C deficiency generally suffer from life threatening
subcutaneous thrombosis in the first few hours after birth
(52-53). Individuals that are heterozygous for mutations
that result in protein C deficiency suffer from recurrent
thrombotic episodes, but these episodes are generally not
life threatening. Treatment with heparin and antiplatelet
drugs are ineffective and the only successful treatment
option is protein C replacement with plasma concentrates
containing human protein C or rhAPC (39, 54-65).
Numerous studies performed on several animal species
including rodents and non-human primates have
demonstrated that plasma-derived and recombinant APC
are effective antithrombotics for venous and arterial
thrombosis (figure 3) (37-39, 66-75). Furthermore, APC
prevents thrombin-induced thromboembolism in mice and
reduces intravascular fibrin accumulation in vivo via
inhibiting further amplification of the coagulation cascade
(76).

Factor V Leiden is a single nucleotide
polymorphism (G1691A) that results in the replacement
of Arg506 for Gln, at one of the APC cleavage sites (77).
Consequently, this mutant protein is inactivated
approximately ten times slower than wild-type factor Va.
Septic patients that are heterozygous for factor V Leiden
appear to derive similar treatment benefits from APC as
non-Leiden carriers, suggesting that APC may have
additional beneficial biological activities in addition to its
antithrombotic activity (78-79). These additional activities
will be discussed in the next two sections.

3.3.2. Profibrinolytic mechanism
Thrombin converts soluble fibrinogen into a

fibrin clot, which is subsequently removed by the
fibrinolytic system (80-81). The key components of this
system include plasminogen/plasmin, tissue plasminogen
activator (t-PA), and plasminogen activator inhibitor
(PAI-1). t-PA converts fibrin-bound plasminogen to
plasmin, which then digests the fibrin clot resulting in the
formation of soluble degradation products. PAI-1 inhibits
t-PA and it has been demonstrated that elevated levels of
PAI-1 increase the risk for thrombosis, cancer metastasis,
vascular complications of diabetes and the development of
septic shock (82-82). Thus, PAI-1 plays a critical role in
regulating the balance between coagulation and
fibrinolysis.

APC appears to play an important role in
fibrinolysis because it can inhibit PAI-1 activity (85-87).
This is evident in the canine coronary occlusion model
and in rabbits infused with endotoxin (88). In the coronary
occlusion model Jackson et al., demonstrated reperfusion
of occluded vessels following APC administration (89-
91). APC may also reduce circulating levels of PAI-1,
accelerate t-PA-dependent clot lysis and prevent the
activation of thrombin-activatable fibrinolysis inhibitor
(TAFI) (92-95), although the physiological importance of
this later observation is unclear.

3.3.3. Anti-inflammatory and cytoprotective
mechanism

The inflammatory pathway attempts to restore
normal hemostasis following injury resulting from a variety
of mechanisms including infection. Invading micro-
organisms can produce toxins such as lipopolysaccharide
(LPS) that stimulate endothelial cells, platelets and cells
comprising the immune system to release a variety of
cytokines such as tumor necrosis factor-alpha (TNF-alpha),
interleukin-1 (IL-1), IL-2, IL-6, IL-8 and macrophage
migration inhibitory factor (MIF). These cytokines recruit
neutrophils and monocytes to the site of inflammation and
they augment the expression of various adhesion molecules
such as intracellular adhesion molecule (ICAM), vascular
adhesion molecule (VCAM) and E-selectin, which are
required for leukocyte activation and extravasation (96-98).
Thrombin is a pro-inflammatory agent because it can also
stimulate cells to release cytokines (99-102). APC
indirectly modulates the inflammatory pathway because it
can inhibit thrombin generation.

Besides these indirect effects on inflammation,
recent studies have suggested that APC may directly
modulate the inflammatory reaction via receptor-mediated
effects (reviewed in) (37-38, 41-43, 103). Joyce et al.,
used broad transcriptional profiling to demonstrate that
APC can modulate cell signaling and alter gene
expression in two major inflammatory pathways (46-47).
Furthermore, APC reduces leukocyte activation by
directly suppressing cell surface adhesion molecules such
as E-selectin, ICAM, VCAM and CX3C-fractalkine47

(figure 4). The transcriptional profiling experiment also
suggests that APC may promote cell survival via anti-
apoptosis pathways and these observations have been
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Figure 4. Suppression of vascular cell adhesion molecules by APC. A. Endothelial cells were treated with TNF-alpha to induce
expression of adhesion molecules, which are required for the binding of mononuclear cells (Panel A1). APC decreases the
expression of adhesion molecules and reduces the attachment of mononuclear cells (Panel A2). Panel A3 shows the quantity of
mononuclear cells bound to quiescent endothelial cells. B. The levels of E-selectin and ICAM on TNF-alpha treated human
endothelial cells were assessed by flow cytometry and APC decreases these adhesion molecules in a dose dependent fashion.

confirmed by cell based assays and animal studies (104-
105).

Several studies have established that APC signals
through the protease activated receptors (PARs), PAR-1,
PAR-2 and PAR-3, but most signaling responses in
endothelial cells seem to be mediated by PAR-1 (45-48,
105-106). The PAR receptors are members of the seven
transmembrane domain G protein-coupled receptor
(GPCR) family, but activation of the PAR receptors is
unique compared to other members of the GPCR family.
APC or other proteases can cleave at specific sites within
the extracellular amino terminus of the PAR receptor,
resulting in the exposure of a new amino terminus, which
then acts as its own tethered ligand (107). For optimal PAR
receptor cleavage, the protease should be juxtaposed to the
receptor. This is easily accomplished by thrombin because
it can bind to a hirudin like domain on PAR-1 that is
located distal to the cleavage site; thus, thrombin can
activate PAR-1 on numerous cell types including platelets,
endothelium, epithelium, fibroblasts, myocytes, neurons
and astrocytes (107-114). Unlike thrombin, APC does not
contain a hirudin-binding site and APC must bind to EPCR
for it to be juxtaposed to PAR-1 (figure 2). EPCR

expression is limited to the endothelial/leukocyte interface
of the innate immune system, with expression on
endothelial cells, monocytes, natural killer cell, neutrophils
and eosinophils, thus the capability of APC to cleave PAR-
1 is more limited than that of thrombin (115-117).
Nonetheless, APC mediates the suppression of
staurosporine-induced apoptosis in many cells that express
both PAR-1 and EPCR, including human monocytes,
neurons and cultured U937 cells (figure 5) (46). However,
APC cannot prevent apoptosis in neutrophils and
eosinophils suggesting that different leukocyte populations
either require a larger dose of APC to induce or activate
proteins of the anti-apoptotic pathway or that PAR-1
signaling may be different in these cell types (117).
Nonetheless, APC may still signal through the PAR-1
receptor in neutrophils and eosinophils since it reduces the
response of these cells to certain chemotaxis agents (117).
APC also reduces the response of human mononuclear
phagocytes to phorbol ester, LPS and interferon-gamma
and it can uncouple LPS interactions with monocyte CD14,
which provides protection against LPS mediated
microcirculatory dysfunction (103, 118-122). It should be
noted that these results were observed in cell based systems
and have not been demonstrated in human studies (123-
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Figure 5. APC inhibits apoptosis. Effect of APC on monocytes treated with staurosporine (SS), which is a potent inducer of
apoptosis. The quantity of cells undergoing apoptosis was determined by measuring active caspase-3 by flow cytometry. Results
are normalized to the control (no pretreatment with APC). APC suppressed staurosporine-induced apoptosis in a dose dependent
fashion, and this effect is mediated by EPCR. Adapted from Joyce et al., (265).

125). Additional studies have demonstrated that supra-
therapeutic concentrations of APC can directly inhibit the
generation and release of cytokines and chemokines and
this may be related to its ability to inhibit the translocation
of nuclear factor kappa B  (126-129). APC has been shown
to decrease expression of adhesion molecules in vivo, and
induce the expression of monocyte chemoattractant protein
, which is associated with short-term survival benefits in
systemic inflammation because it suppresses IL-12 and
TNF-alpha induction (130-132). APC can inhibit the
release of macrophage inflammatory protein-1-alpha from
THP-1 cells and human monocytes and it can modulate
macrophage MIF (127, 133).

APC can induce the formation of microparticles
containing EPCR from HUVECs and monocytes and
these microparticles may potentially migrate to
inflammatory sites and reduce the
inflammation/coagulation response (134). Other agents
including TNF-alpha also induce the release of
microparticles, but these particles do not contain EPCR;
therefore, they cannot support activation of protein C and
provide the protective responses of the protein C pathway.

The ability of APC to inhibit thrombin
generation would reduce the pro-inflammatory response
of thrombin. However, the anti-inflammatory effects of
APC are not totally dependent on its coagulation effects
because the direct inhibition of thrombin by other
anticoagulants does not produce the same beneficial
effects as APC. Several animal studies with other
antithrombotics/anticoagulants effectively inhibited
disseminated intravascular coagulopathy (DIC), but did
not reduce mortality (41, 135-136). Tissue factor pathway

inhibitor and antithrombin were evaluated in large phase
III sepsis trials (137-141). Both of these proteins corrected
the coagulation defect, but did not adequately suppress the
inflammatory response. Furthermore, since these proteins
attenuated thrombin generation, they directly interfered
with the protective effects of the protein C pathway.
Antibodies targeting the inflammatory proteins TNF-alpha
and IL-1 receptor have also been investigated as a
possible treatment for sepsis; however, administration of
these proteins did not benefit patients with severe sepsis
(142-146). Because thrombin formation and inflammatory
stimulation are required for early response to infection,
the complete suppression of these factors has proven to be
problematic for therapy.

3.4. Differential signaling of APC and thrombin
Although APC and thrombin signal through

PAR-1, they often induce different physiological
responses. A large-scale gene expression profile
experiment using cytokine stimulated endothelial cells
demonstrated that some proteins were differentially
regulated by APC compared to thrombin; APC
downregulated and thrombin upregulated several
proapoptotic genes (147).

The opposing cellular effects of thrombin and
APC may be explained by dose response and rate of PAR-1
activation. In support of this, Ishii et al., have demonstrated
that the rate of PAR hydrolysis determines the magnitude
of the resulting cellular signal (148). A low concentration
of thrombin (50 pM) protects neurons from apoptosis
whereas high concentrations (more than500 pM) cause
apoptosis (149). The same kinase and Rho-dependent
pathways are activated by both concentrations of thrombin,
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Figure 6. Relative effect of thrombin and APC on PAR-1
signaling in human endothelial cells determined by calcium
flux using Fluorometric Imaging Plate Reader (FLIPR).
Gerlitz and Grinnell, unpublished.

Figure 7. Schematic of the pathogenesis of sepsis leading
to endothelial dysfunction, organ failure and death. See text
for details.

but low concentrations of thrombin induce transient
elevations of intracellular calcium in hippocampal neurons
whereas high concentrations of thrombin induce large and
sustained elevations of calcium (149-150). Furthermore, a
more rapid and robust change in RhoA is observed in the
apoptotic pathway compared to the anti-apoptotic pathway
(150). Also, thrombin at low concentrations (below 40 pM)
protects endothelial barrier function while thrombin at
concentrations above 100 pM disrupts endothelial barrier
function (151-152). As mentioned previously, APC must be
bound to EPCR to activate the PAR-1 receptor. The
dependence of a co-receptor for PAR-1 activation may
decrease the rate or the quantity of PAR-1 that becomes
activated, resulting in different cellular responses compared
to those observed with thrombin stimulation. In fact, APC
cleaves the PAR-1 receptor 104-fold slower than thrombin
in vitro; however, this difference may not be as large in
vivo because thrombin is rapidly inactivated (2 seconds)
compared to APC (15 minutes) (153). Like thrombin, the
physiological response of APC is dependent on dose. At
normal physiological levels or therapeutic levels, APC has
no effect on endothelial cell permeability in in vitro studies,

but APC increases permeability at supra-therapeutic
concentrations (154). Although the differential effects of
APC and thrombin may be explained by kinetics, recent
data suggests that the initial signaling response measured
by calcium flux is distinct between these two mediators
(figure 6).

Alternatively, the different signaling pathways
induced by APC and thrombin may result from APC
activating another receptor. Two recent studies have
demonstrated that APC can transactivate the sphingosine 1-
phosphate receptor-1 (Edg-1), resulting in decreased
endothelial permeability via endothelial cell cytoskeletal
rearrangements (figure 2) (151-152). Further studies should
be performed to determine if additional proteins are
regulated by the transactivation of Edg-1 and if APC can
activate additional cell surface receptors.

4. PATHOPHYSIOLOGY OF SEPSIS

The inflammation and coagulation pathways co-
evolved and are intimately linked and there is a
remarkable degree of integration in the regulation of these
pathways, where thrombosis can activate the innate
immune system and inflammation can activate the
coagulation pathway. When an individual develops an
infection, the immune system is rapidly activated so the
infection remains localized. A number of cytokines are
released to help control and clear the infection and these
cytokines affect a number of pathways/processes such as
coagulation, oxidation, nitric oxide production, adhesion
and apoptosis. In sepsis, the inflammatory reaction is
exacerbated because endotoxins or cytokines induce the
expression of tissue factor on vascular monocytes and
endothelial cells. Tissue factor activates the intrinsic
coagulation cascade and causes thrombin generation,
which in turn activates the endothelium, platelets and
vascular smooth muscle (155). These responses damage
the vascular endothelium resulting in leukocyte-
endothelial cell adhesion and further tissue factor-
dependent activation of coagulation (156-158). Damaged
endothelial cells undergo apoptosis and this further
contributes to amplifying the coagulation cascade because
the disrupted endothelium provides a pro-coagulant
surface (159-163). Thrombomodulin and EPCR
expression is downregulated, which decreases the anti-
coagulant and anti-inflammatory effects of the protein C
pathway. Activation of the inflammation and coagulation
pathways continue to cycle with little control, leading to
enhanced microvascular coagulation and endothelial cell
dysfunction. Ultimately, microvascular function is
compromised resulting in DIC and microvascular
thrombosis, decreased tissue perfusion and hypoxemia
and organ dysfunction/failure (164-170). Figure 7 depicts
a simplified schematic of the series of events that result
from the initial injury through to the release of
inflammatory and cytotoxic mediators. Eventually, the
infection is cleared or the vascular endothelium is
disrupted, which could result in end-organ dysfunction
and death. It is rare for the initial infection to be the cause
of mortality; rather mortality is the result of the body’s
response to the infection.
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5. APC PHARMACOLOGY AND THERAPEUTIC
RATIONALE

In this section we will overview the preclinical
pharmacology of APC and the rationale for its clinical
use. We will also highlight the approved use of
drotrecogin alfa (activated), (Xigris®) for the treatment of
adult patients with severe sepsis that are at a high risk of
death.

5.1. Role Of protein C pathway in sepsis
The vascular endothelium secretes numerous

proteins that maintain homeostatic balance in the vessel
(91, 171). During infection or inflammation, this balance is
altered as the endothelium becomes activated, resulting in
the expression of pro-inflammatory cytokines, chemokines
and cell surface adhesion molecules that are required for
leukocyte adhesion and migration (reviewed in (44, 172-
174)). This adaptive response plays a critical role in host
defense, protecting the endothelium from toxins, shear
stress, oxidative stress, hypoxia and various cytokines.
However, this balance is lost during severe inflammatory
insults, as occurs in sepsis. Endothelial activation becomes
unregulated, leading to increased pro-inflammatory
activity, procoagulant activity and cell death. The protein C
pathway helps maintain normal homeostasis and limits
inflammatory responses and endothelial cell apoptosis.
During an inflammatory response, many of the natural
anticoagulants including protein C are consumed due to
increased activation of the coagulation pathway.
Furthermore, activation of protein C is decreased because
expression of thrombomodulin and EPCR is downregulated
by inflammatory cytokines (175). Compounds secreted by
leukocytes oxidize Met388 on thrombomodulin, thereby
further reducing its activity (176). Also, neutrophil elastase
and a metalloproteinase solubilizes thrombomodulin and
EPCR, respectively (92, 177-178). Soluble
thrombomodulin can still activate protein C, but it is less
active than its cellular form since it is no longer juxtaposed
to EPCR and it lacks the high affinity thrombin-binding site
(179-180). Soluble EPCR inhibits the anticoagulant
function of APC by blocking phospholipid interactions
(181).

 In addition to these pro-coagulant changes,
anti-fibrinolytic changes also occur in response to
endothelial damage (182-184). Following an
inflammatory insult, the fibrinolytic process is inhibited
by a mechanism that appears to be independent of the
coagulation changes but involves increased levels of the
fibrinolysis inhibitors PAI-1 and TAFI (166, 182, 184-
186). The decreased activity of the protein C pathway and
suppression of the fibrinolysis pathway impairs normal
hemostasis.

A number of studies have demonstrated that
reduced protein C levels are correlated with mortality in
both sepsis and septic shock (187-197). Decreased protein
C levels often develop before the onset of the clinical
parameters that are used to define severe sepsis or septic
shock and therefore could be considered a prognostic
indicator (198-202). Protein C deficiency during

polymicrobial sepsis in a cecal ligation and puncture
model has been shown to exacerbate the inflammatory and
hypotensive response in mice (203). These results may be
attributed to increased plasma cytokine levels and renal
and organ damage in the protein C deficient mice
compared to their wild-type littermates. Reduced levels of
protein C have also been associated with multi-organ
dysfunction in bone marrow transplant patients and may
be the cause of multi-organ failure in septic patients (204-
205). End-organ dysfunction may be caused by
microthrombi formation and proteins/pharmaceuticals that
can block thrombus formation may reduce organ damage
(182, 206).

Given the essential roles of the protein C
pathway in coagulation, fibrinolysis and inflammation,
several proteins in this pathway have been evaluated as a
treatment for severe sepsis. Plasma-derived protein C has
been used as an adjunct to the conventional therapy used
in coagulopathy and purpura fulminans in meningococcal
sepsis and gram-positive sepsis (39, 121, 136, 207-214.
Due to the interest generated from these early case studies,
a phase 2 placebo-controlled trial was initiated to assess
the activation process of protein C and to determine its
dosing regimen in children with purpura fulminans and
meningococcal septic shock (215, 216). The outcome of
this trial demonstrated that protein C concentrate led to a
dose dependent, transient increase of plasma APC
resulting in improved hemostasis. No significant
improvement in survival was observed in this small phase
2 study.

While the above reports have suggested that
protein C can be useful, the endothelium of septic patients
often expresses decreased quantities of EPCR and
thrombomodulin and this reduces the quantity of protein C
that can become activated. Work in model systems
demonstrated that generation of APC reduced the
pathogenesis of sepsis. Preliminary studies demonstrated
that APC could inhibit DIC, decrease markers of
inflammation, decrease the coagulation response, reduce
the drop in blood pressure and reduce mortality in
baboons that were administered lethal doses of E. coli
(135, 217). Furthermore, the coagulation and
inflammatory responses to E. coli were heightened if
protein C activation was prevented.

Hypotension is the hallmark feature of septic
shock. APC prevents the rapid occurrence of hypotension
in rats and healthy human subjects that are administered
an intravenous dose of endotoxin (125, 218). The precise
mechanism by which hypotension is alleviated is
unknown, but intravenous administration of APC prevents
the increase in plasma nitric oxide byproducts and iNOS
mRNA expression in lung (218). LPS-induced
hypotension is inhibited when APC is administered 30
minutes post-LPS administration; however, these LPS-
induced effects were not prevented by active site blocked
APC (DIP-APC), suggesting that the reversal of
hypotension requires the protease activity of APC (218).
Decreasing endothelium permeability may also normalize
blood pressure.
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Figure 8. Effect of drotrecogin alfa (activated) on 28-day
all cause mortality in severe sepsis. Adapted from Bernard
et al (18).

Overall the mechanism of action of APC and its
physiological role in sepsis made it an attractive agent for
therapy. Because APC has a direct anti-thrombotic
activity, it may prevent microvascular thrombosis,
vascular congestion and resulting organ failure. The anti-
inflammatory/cytoprotective activity may reduce the
signaling of cytokines and further reduce activation of the
coagulation/inflammation cycle. Moreover APC can also
suppress the expression of ICAM, VCAM, and E-selectin
and this may be important because of the critical role of
cell adhesion in theearly inflammatory response and
sepsis (219-221).

5.2. Clinical development of drotrecogin alfa
(Activated) for severe sepsis

Sepsis is a complex disorder that involves a
number of proteins in the coagulation and inflammation
pathways. Many of these proteins have been the targets
for therapeutic intervention, but the majority of these
proteins demonstrated little or no success in clinical trials
(4, 13-17). However, early phase studies using
recombinant human activated protein C (drotrecogin alfa
[activated]) suggested a potential trend of a treatment
benefit (223-224). This prompted the initiation of the
Recombinant Human Activated Protein C Worldwide
Evaluation in Severe Sepsis (PROWESS) trial, a phase III,
international placebo-controlled, blinded, randomized, 28-
day-all-cause mortality study, which showed reduced
mortality among drotrecogin alfa (activated) treated
patients (figure 8) (18). Details of the clinical
development of drotrecogin alfa (activated), which led to
its approval by global regulatory agencies has recently
been reviewed (222, 225). The challenges of expressing
fully processed and active recombinant human APC was
also recently reviewed in detail (222). Drotrecogin alpha
(activated) is currently available for the treatment of
severe sepsis in over 50 countries. Details of the labeled
indication for commercial drotrecogin alfa (activated)
(XigrisTM ) and for the cloning, production and
formulation can be found at the following web sites:
http://www.emea.eu.int/humandocs/Humans/EPAR/xigris
/xigris.htm

http://www.fda.gov/cder/biologics/products/droteli112101
.htm

5.3. Pharmacodynamics of drotrecogin alfa (activated)
Pharmacodynamic analyses of 15 biomarkers of

hemostasis, inflammation and endothelial injury were
performed on the data collected from patients enrolled in
the PROWESS trial (123). Administration of drotrecogin
alfa (activated) resulted in decreased levels of thrombin
generation markers and an increased prothrombin time
(PT) and activated partial thromboplastin time (APTT);
however, the increased PT and APTT were limited to the
infusion period. Since drotrecogin alfa (activated) has a
relatively short circulatory half-life, blood levels of
drotrecogin alfa (activated) are often below the level of
detection within 2 hours following discontinuation of the
infusion (226).

Several studies have suggested that APC may
play a role in PAI-1 regulation; however, the
profibrinolytic effect of drotrecogin alpha (activated) was
not significant in the PROWESS patients as there was
only a statistical trend in lower PAI-1 levels (18). A
reduction in pro-inflammatory markers following
drotrecogin alfa (activated) administration was less well
demonstrated in patients from the PROWESS trial
compared to in vitro studies and early in vivo non-clinical
studies. A dose-dependent and statistically significant
reduction in IL-6 levels was observed in the Phase II
study; however, in the Phase III study, the reduction in IL-
6 levels was statistically significant on the first day and
after the fourth day following drotrecogin alfa (activated)
administration depending on the type of statistical analysis
(227). Several other cytokines including TNF-alpha, IL-
beta, IL-8 and IL-10 were analyzed, but there were no
statistical differences between patients in the drotrecogin
alfa (activated) group and placebo group (123).
Subsequent studies have been performed to determine if
drotrecogin alfa (activated) can alter the cytokine profile.
Healthy volunteers received drotrecogin alfa (activated) or
placebo, followed by a single low dose of endotoxin two
hours later (124, 228). Analyses demonstrated that
drotrecogin alfa (activated) did not directly affect the
cytokine profile suggesting that drotrecogin alfa
(activated) has minimal to no effect on the early response
cytokines that characterize the acute response to infection.
Moreover, studies demonstrating a direct impact of
drotrecogin alfa (activated) on endothelial/leukocyte
function are limited. Although many studies have
demonstrated that drotrecogin alfa (activated) exerts
beneficial effects for severe sepsis patients, the exact
mechanism by which this drug functions is uncertain but
most likely involves the antithrombotic, profibrinolytic,
anti-inflammatory and cytoprotective properties of APC.

6. ADDITIONAL PHARMACOLOGY OF APC

As indicated above, APC (both plasma-derived
and recombinant) has been shown to be effective in a wide
variety of venous and arterial thrombosis models and in
models of sepsis. In addition to these animal studies, recent
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preclinical data have shown the effect of APC in models of
inflammatory/ischemic insult, stroke and lung injury.

6.1. Ischemic injury
Prospective epidemiologic studies demonstrated

that increased plasma protein C levels might be a
protective factor for ischemic stroke and low APC levels
were often observed in patients that suffered from an
ischemic stroke following an infection (229-230). The
potential role of APC in stroke has recently been studied
in murine models of focal cerebral ischemia (105, 231).
APC provided remarkable anti-inflammatory and
neuroprotective effects in vivo and increased survival at
24 hours. Furthermore, APC reduced neutrophil
extravasation and decreased ICAMexpression on cerebral
blood vessels, which resulted in a reduction in the
transmigration of circulating leukocytes across the blood-
brain barrier. APC also reduces fibrin deposition,
microvascular obstructions, tissue levels of CD11b and
decreases the number of apoptotic cells by reducing the
pro-apoptotic protein Bax and hypoxia-induced increases
in p53 mRNA and by increasing the anti-apoptotic protein
Bcl-2 (231-232). Both PAR-1 and PAR-3 are required for
the neuronal protective effects of APC (106). Currently,
the only approved therapy for acute ischemic stroke is t-
PA, but improved therapies are necessary since t-PA must
be administered shortly following a stroke to be
efficacious. Furthermore, t-PA may cause damage to
neurons and about one third of arteries re-occlude
following treatment. Of interest, APC has been shown to
protect neurons from t-PA induced damage by inhibiting
the activation of caspase 8 (233).

APC reduces intestinal ischemia/reperfusion
injury in rats (234). Administration of APC reduces IL-6
plasma levels and decreases thrombin generation and
fibrin degradation deposits following superior mesenteric
artery occlusion. APC can also reduce
ischemia/reperfusion-induced renal injury in rats (235).
Renal levels of inflammatory cytokines including IL-8
and TNF-alpha were decreased following APC
administration. Because leukocytopenia also reduced
these cytokines, the effect of APC was attributed to the
inhibition of leukocyte activation rather than inhibiting
coagulation. Decreased leukocyte activation may also be
the mechanism by which APC attenuates endotoxin-
induced pulmonary vascular injury in a rat model (236).
These in vivo results are consistent with in vitro data,
which demonstrate that APC, in conjunction with EPCR,
suppresses the expression of cell adhesion molecules on
endothelial cell surfaces (46-47). APC can also reduce
spinal cord injury induced by trauma or ischemia (237-
238). APC has been shown to induce vascularization,
which may be beneficial in ischemic conditions. It
induced the formation of new blood vessels in an in vivo
rat cornea model and the increase in endothelial cell
proliferation may result from activation of the mitogen-
activated protein kinase pathway (239).

6.2. Lung injury
Low protein C levels are associated with worse

clinical outcomes in patients with acute lung injury and

acute respiratory distress syndrome (240). APC also
inhibits the inflammatory responses in asthma and reduces
lung injury induced by acid aspiration and smoke
inhalation (241-242). In addition, APC has been shown to
inhibit endotoxin-induced pulmonary vascular injury in
rats by inhibiting neutrophil activation via inhibition of
TNF-alpha production (243). In humans, APC reduced
endobronchial, endotoxin-induced pulmonary
inflammation via inhibition of neutrophil chemotaxis
(244). APC appears to protect the lung from damage by
inhibiting the expression of cytokines reducing the
quantity of leukocytes and neutrophils that accumulate in
airspaces and decreasing PAI-1 activity (241, 244-246).

6.3. Other disorders
By reducing proinflammatory cytokine release,

APC preserves the function of islet cells following
transplantation in diabetic mice (247). The APC treated
mice exhibited better glucose control, higher glucose
disposal rates and higher arginine-stimulated acute insulin
release. The beneficial effects of APC observed in these
mice suggest that APC may enhance the therapeutic
efficacy of pancreatic islet cell transplantation in diabetic
patients.

APC reduces stress-induced gastric mucosal
injury via attenuation of activated-neutrophil-induced
endothelial cell injury (248). In an animal model of
endotoxemia, APC has been shown to improve capillary
perfusion and provide protection from LPS-mediated
microcirculatory dysfunction (122). APC has shown
efficacy in some patients with cancer and placental
abruption and it demonstrated favorable results in a phase
III DIC study (249-252). In addition, APC has also been
used in the treatment of veno-occlusive disease of the
liver after bone marrow transplantation and as an
adjunctive therapy to thrombolytics in patients with acute
myocardial infarction (70, 253-256). Low levels of APC
are often observed in patients that do not survive severe
necrotizing pancreatitis and decreased thrombomodulin
and EPCR expression has been observed in diabetic rats
and in atherosclerotic lesions and vasculitities in humans
(257-259).

7. FUTURE STUDIES

As indicated above, the protein C pathway
appears to play an important regulatory role in many
disorders characterized by endothelial dysfunction and
activation. While recombinant drotrecogin alpha (activated)
is currently used to treat severely septic patients that are at
a high risk of death, the preclincial studies outlined above
suggest that further clinical work may explore the utility of
this protein for the treatment of ischemic tissue damage in
disorders such as stroke, cardiogenic shock, transplantation,
acute lung injury and acute renal failure. Drotrecogin alfa
(activated) decreases the mortality rate in severe sepsis, but
not all patients respond to therapy. Basic studies are
progressing to determine protein markers that can be used
to predict which patients will have a poor outcome and to
optimize the drotrecogin alfa (activated)  treatment.
Analyses of plasma samples collected from 78 septic
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patients demonstrated that antithrombin and protein C were
the most reliable markers that were associated with organ
dysfunction and data from a rat model of sepsis suggested
that in addition to low protein C, increased levels of
macrophage inflammatory protein-2 and the cytokine KC
precede poor outcome (260-261). Moreover, a retrospective
evaluation of the placebo arm from the PROWESS clinical
trial indicated that severe protein C deficiency was
associated with early death resulting from refractory shock
and multiple organ failure in sepsis (18, 225). Also, a bi-
allelic polymorphism located in the promoter of the TNF-
alpha gene, which influences its plasma levels, is associated
with outcome in patients with severe sepsis (262). These
and other future prospective studies hold promise to
improve the identification and treatment of severe sepsis
patients.

8. SUMMARY AND  PERSPECTIVE

The antithrombotic role of APC is well
established but recent data suggests that APC can modulate
the fibrinolytic and inflammatory pathways, which become
deregulated during sepsis. APC has an indirect effect on
inflammation because it limits thrombin generation, but it
also has a direct effect on inflammation. Many of these
effects can be attributed to the signaling effects of
APC/EPCR, which suppresses proinflammatory signaling,
inhibits the expression of cytokines and adhesion
molecules, decreases adhesion, activation and extravasation
of leukocytes and modulates the apoptotic pathway. During
sepsis, the excessive activation of the inflammation and
coagulation pathways damages the endothelium and
decreases the functions of the protein C pathway, which
can ultimately result in vascular dysfunction, end organ
failure and death. Drotrecogin alfa (activated) or rhAPC
improves organ function and decreases mortality in patients
with severe sepsis. The exact mechanism by which
drotrecogin alfa (activated) improves survival is currently
uncertain but is most likely attributed to its ability to
modulate multiple pathways. Ongoing studies have been
designed to elucidate the mechanism of APC function and
to optimize its use as a therapy for severe sepsis patients.
Because of its ability to modulate multiple pathways,
drotrecogin alfa (activated) may be useful in treating other
acute critical coagulation/inflammation disorders.
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