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1. ABSTRACT  
 

It is now well-accepted that autoimmune diseases 
develop as a result of interactions between a complex 
genetic basis and environmental triggers.  Autoreactive B 
cells play a major role in many autoimmune diseases, by 
secreting autoantibodies or cytokines and/or presenting 
auto-antigens to T cells.  Studies performed with human 
patients and murine models have accumulated evidence 
that B-cell autoreactivity, or its manifestation as the 
presence of autoantibodies, are also supported by multiple 
genetic determinants.  These studies will be summarized in 
this review and presented in a critical perspective of the 
approaches used to obtain these results, and their 
significance for our understanding of B-cell tolerance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

It is now well accepted that many autoimmune 
diseases such as type 1 diabetes (T1D), systemic lupus 
erythematosus (SLE), or rheumatoid arthritis (RA) have a 
genetic basis.  The disease phenotypes result from the 
synergistic interactions of many susceptibility alleles that 
individually contribute only modestly to the overall 
phenotype (1).  This conclusion has been reached from the 
convergent findings of many studies conducted with both 
human patients and well-established animal models.  The 
identification of the specific genes contributing to the 
autoimmune process is a complex task, with forward and 
reverse genetic approaches having made significant 
contributions.  In humans, genome-wide linkage analyses 
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of autoimmune families have identified large genomic 
regions that were significantly linked to the transmission of 
the disease.  In animal models, similar studies have been 
conducted on specific crosses between susceptible and 
resistant strains.  The next step, which is to pinpoint which 
genes within these regions are responsible for the linkage, 
has been a much more difficult task.  Reverse genetics 
approaches have been conducted with association studies 
on candidate genes, based on the known or suspected 
coincidence between the function of a gene and the 
etiology of an autoimmune disease. The conceptual 
equivalent in animal models, which consists of genetic 
targeting, either with transgenes to induce over-expression, 
or knock-outs resulting in a genetic deficiency, has been 
also extensively used.  Although these studies are 
inherently biased to a small subset of genes, they have been 
extremely useful to delineate the functional pathways that 
are genetically altered in human and animal diseases.  
Using either approach, only a small number of 
susceptibility genes, such as NOD2 in Crohn’s disease (2), 
CTLA-4 in Graves’ disease and T1D (3), PTPN22 in T1D, 
RA and SLE (4-6), PDCD1 in SLE and RA (7,8), and 
SUMO4 in T1D (9), have been identified in human 
autoimmune diseases. 
 

Autoimmune diseases are complex not only from 
a genetic point of view, but also from a functional point of 
view in that many cellular processes involving the immune 
system and the target organs participate in the 
pathogenesis.  If the disease as a whole has a genetic basis, 
it implies logically that the various mechanisms that lead to 
its development must also have a genetic basis.  
Furthermore, these mechanisms should be more proximal 
to the individual genetic defects than the clinical 
presentation of the disease, which is often heterogeneous 
and evolves with time.  Autoreactive B cells are a common 
feature to most autoimmune diseases, which are 
characterized by the presence of autoantibodies (AAbs). 
Recently, autoreactive B cells have enjoyed considerable 
interest, largely due to the promising therapeutic results 
obtained with B-cell ablation treatments in RA, SLE and 
other autoimmune diseases (see the reviews by Silvermann 
and Sanz in this issue).  The relatively small clinical trials 
that have been conducted so far with rituxan have 
highlighted the need for a better understanding of the role 
of B cells, autoreactive or not, in autoimmune 
pathogenesis.  Deciphering the genetic networks that are 
mobilized by the lost of tolerance in B cells is most likely 
to contribute greatly to this endeavor.  
 

Although the generation of autoreactive B cells is 
probably the best characterized autoimmune process from a 
genetic point of view, as will be detailed in this review, its 
genetic basis remains relatively unexplored. The genetics of 
other major effector mechanisms, such as autoreactive T 
cells, have been given far less attention, although results 
are starting to emerge in diseases such as lupus (10).  The 
reasons why there is less information available on the 
genetics of individual effector mechanisms than on the 
diseases themselves are not clear.  One may speculate that 
the complexity of the genetics of multifactorial diseases has 
pushed investigators to make choices and focus on the “big 

picture”, the presence or absence of the disease, at least 
initially.  One other reason may be that it is sometimes 
difficult to distinguish primary from secondary phenotypes, 
i. e. whether a specific phenotype is the direct primary 
consequence from a genetic defect, or rather a secondary 
effect of the disease process.  It has been shown that the 
control of the production of particular autoantibody 
specificities, such as anti-Sm (for Smith antigen), is 
genetically determined (11).  This could be considered as 
the most primary checkpoint for the production of 
autoreactive B cells. But many other checkpoints, both B-
cell intrinsic and non-intrinsic, are involved in controlling 
whether the autoreactive B cells will be selected, expanded, 
and will express AAbs.  The autoimmune process results in 
tissue damage that may release large quantities of normally 
sequestered autoantigens, or in the presentation of 
autoantigens in an inflammatory milieu that may break self-
tolerance.  In this case, B-cell autoreactivity is most likely a 
secondary process that is not directly linked to B-cell 
autoreactivity is a secondary process that is most likely not 
directly linked to any genetic defect affecting B cells.  This 
review will focus on the identification and characterization 
of primary genetic defects associated with the generation of 
autoreactive B cells in humans and murine models. 
 
3. THE GENETICS OF HUMAN AUTOREACTIVE B 
CELLS  
 

A familial aggregation has been reported for the 
presence of anti-nuclear antibodies (ANA) among the 
relative of children with SLE (12) and inflammatory bowel 
disease (IBD) (13), suggesting that B-cell autoreactivity 
against nuclear antigens has a genetic basis.  Since then, 
familial aggregation of a large number of antibodies has 
been reported, including against neutrophils in ulcerative 
colitis (14), heart-specific antigens in dilated 
cardiomyopathy patients and their relatives (15), goblet 
cells in IBD (16), thyroid antigens in autoimmune thyroid 
disease (AITD) (17,18), phospholipids in a family with 
anti-phospholipid syndrome (19), Ro60/SS-A in SLE-
affected families (20), and β-cell antigens in T1D-affected 
families (21).  These studies conducted across a broad 
spectrum of diseases argue in favor of a genetic basis for B-
cell autoreactivity, but also point to the strong possibility of 
non-B cell factors that expand autoreactive B cell clones 
directed against specific antigens.  Genomic mapping via 
linkage analysis has been initiated for the production of 
lupus-related AAbs (22).  Interestingly in this study, AAbs 
with different specificities mapped to different regions and 
anti-Ro/SSA or anti-La/SSB mapped to 4q34-35, a locus 
that has been previously identified in multiple other 
autoimmune diseases, including SLE patients with 
dermatological manifestations.  To the best of our 
knowledge, no other genome-wide mapping of 
autoantibody production or any other B-cell associated 
phenotypes has been performed in humans. 
 

Two linkage analyses performed in AITD 
families of Japanese (23) or Caucasian (24) descent have 
identified a locus on 8q23-24.  Although mutations in the 
thyroglobulin gene are likely to be the major contributor to 
this locus (25), an additional association study has
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Table 1. Quantitative trait loci (QTLs) linked to autoreactive B-cell phenotypes. 
QTL Position (chr, cM) Strain Phenotype Disease model References 

Sle1  1 (76-110) NZM2410/NZW ANA, B cell hyperactivity SLE 51,57,56 
Nba2 1 (75-100) NZB B cell survival, AAbs SLE 87 
NZBc1 1 (35-106) NZB B cell activation, AAbs  SLE 90 
Ltk 1 2 (65.5-69) NZB High B-1 cell numbers SLE 33 
Sle2 4 (21-57) NZM2410/NZW/NZB Increased B-1a cell numbers, lower threshold for B cell activation  SLE 50,83 
Imh-1, 
Mott-1 

4 (62-69) NZB Hypergammaglobulinimia, Mott cell formation SLE 34,35 

Lbw2 4 (59-62) NZB B cell hyperactivity, IgM AAbs SLE 144 
Idd11 4 (59-60) NOD Increased MZ B-cell numbers T1D 36,4 
Sle3 7 (23-53) NZM2410/NZW Ig repertoire SLE 145 
Bpal-2 13 (8-35) NZW High B-1 cell numbers SLE, B-CLL 42 
NZBc13 13 (24-73) NZB B cell hyperactivity, autoAbs SLE 146 
Bpal-1 17 (H-2z linked) NZW High B-1 cell numbers SLE, B-CLL 42 

 Susceptibility gene identified within the QTL 
 

identified a single nucleotide polymorphism (SNP) in the 
promoter of a B-cell specific anti-sense transcript, SAS-
ZFAT (26).  ZFAT is a novel zinc finger protein of 
unknown function.  The expression of the anti-sense 
transcript is B-cell specific and its disease-associated allele 
results in a reduced expression of a truncated ZFAT 
isoform (TR-ZFAT).  The elucidation of ZFAT and TR-
ZFAT functions promise to uncover new functional 
pathways that are implicated in B cell tolerance. 
 

Two other association studies have been 
performed between B-cell expressed genes and 
autoimmune manifestations.  These two genes belong to the 
Fc receptor family and both map to the 1q23 region, which 
has been implicated with susceptibility to multiple 
autoimmune diseases, including SLE (27) and psoriasis 
(28).  FCGR2B encodes for a low-affinity Fc receptor that 
contains an immunoreceptor tyrosine-based inhibitory 
motif (ITIM) that mediates negative regulation of B cells 
(29). A reduced FCGR2B expression due to a -343 G/C 
SNP in the promoter was significantly associated with SLE, 
and consequently, with the presence of autoreactive B cells 
(30). Furthermore, the murine ortholog gene has been 
associated with systemic autoimmunity and autoreactive B 
cells (see below). FCRL3 is a yet poorly characterized 
member of the Fc receptor family that is expressed on 
lymphocytes, primarily on B cells.  A -169 C/T 
polymorphism controls the high expression of FCRL3, 
which is associated with RA, SLE, and AITD and the 
production of high titer autoantibodies in patients afflicted 
with these diseases (31).  This association across multiple 
diseases suggests that the elucidation of FCRL3 functions 
will provide important clues on the regulation of B-cell 
tolerance.  
 
4. MAPPING THE GENETICS OF MURINE B-CELL 
AUTOREACTIVITY BY LINKAGE ANALYSES 
 

Only a few linkage analyses were purposely 
designed to map genomic regions linked to autoreactive B-
cell phenotypes (Table 1).  High numbers of B-1a cells 
were mapped in an (NZB x NZW) cross to a region on 
NZB chromosome 2.  A gain-of-function mutation was 
found in the NZB allele of the Ltk gene, which maps within 
the quantitative trait locus (QTL) and encodes for leukocyte 
tyrosine kinase.  This gain of function polymorphism 

affects a binding motif for the p85 subunit of 
phosphatidylinositol 3-kinase (PI3K). PI3K plays a major 
role in B cell development and activation, and p85 gene 
targeting results in B-1 cell depletion (32). Interestingly, 
the same Ltk polymorphism was also found in humans and 
its frequency, albeit low, is significantly higher in SLE 
patients than in controls (33). 
 

Hypergammaglobulinia was mapped in the 
autoimmune strain NZB to a major locus on chromosome 
4, Imh-1 (34).  The same group later mapped to the same 
region a locus, Mott-1, linked to the presence of B-1 cell 
derived Mott cells (35).  Mott cells represent pathologic 
state of plasma cells containing intracellular inclusions of 
immunoglobulin (Russell bodies), and they are frequent in 
lymphoid tissues in murine and human autoimmune 
diseases.  It is likely that Imh-1 and Mott-1 correspond to 
the same genetic determinant, since an increase in plasma 
cells is likely to result in an increased immunoglobulin 
secretion.  Interestingly, an overlapping region on 
chromosome 4 has been also linked to an increased number 
of marginal zone (MZ) B cells in the NOD mouse, the 
primary model of T1D (36).  B cells are required for 
disease development in the NOD mouse, and several 
reports have suggested that the essential contribution of B 
cells  to T1D is through their antigen presentation capacity 
(see review by Silveira in this issue).  Due to their specific 
phenotypes, including the ability to prime naïve T cells 
(37), the expansion of MZB cells in the NOD mouse have 
been proposed to be critical for disease development (38). 
This genomic interval on chromosome 4 around 59-60 cM 
away from the centromere was already identified as the 
Idd11 diabetes susceptibility locus (39,40), suggesting that 
the MZB phenotype could directly contribute to disease 
susceptibility.  The analysis of MZB-cell numbers in 
congenic strains in which the NOD Idd11 region was 
replaced by the corresponding segment from the non-
autoimmune C57BL/6 (B6) strain revealed that the Idd11 
region was not sufficient to affect the MZB-cell numbers 
(41). As the significance of the original mapping puts the 
odds of a false positive finding at less than 1:25,000 (36), 
these latter findings clearly indicate a complex genetic 
determination of the MZB-cell numbers in the NOD 
mouse, requiring the interactions between Idd11 and other 
yet unknown loci.  Finally, a linkage analysis was 
performed to map the high number of B-1 cells found in the 
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lupus prone strain NZW.  This study linked this phenotype 
to the H-2z haplotype (which was called Bpal-1 for this 
linkage), and another locus on chromosome 13, Bpal-2 
(42).  B-1 cells constitute a B cell compartment with 
distinctive functional and developmental properties (43).  
Their increased numbers in lupus-prone strains and some 
patients with SLE, Sjogren’s syndrome and RA, and their 
polyreactive/autoreactive repertoire have suggested that 
they may participate to the autoimmune process, although 
the subject is still controversial (44).  The H-2z haplotype is 
a major contributor to SLE pathogenesis, either as a 
susceptibility (45) or resistance (46) locus, and an increased 
B-1 compartment may be a way by which it is achieved.  
However, it should be noted that, similarly to Idd11 and the 
size of the MZB compartment, congenic analysis has 
shown that the H-2z locus was not sufficient by itself to 
increase the size of the B-1 pool (47). 
 

A large number of linkage analyses have been 
performed in animal models of autoimmune diseases to 
map susceptibility loci.  Congenic strains have been 
produced to validate some of these loci.  When 
susceptibility locus were bred on a resistant strain, detailed 
phenotypic analyses were carried out to assess their 
functional contribution to the disease (48,1).  Several SLE 
susceptibility loci characterized in that fashion affect B 
cells (Table 1).  We have mapped the position of four lupus 
nephritis QTLs, Sle1-4 in NZM2410, an inbred strain 
combining about 70% NZW and 30% NZB genomes (49), 
and produced four congenic strains, B6.NZMSle1, -Sle2, -
Sle3, and -Sle4, each carrying the corresponding 
NZM2410-derived genomic interval on the C57BL/6 (B6) 
genome (47).  The phenotypes contributed by each locus 
have been determined via detailed analysis of the 
immunological properties of each congenic strain in 
comparison to B6 (50-57).   
 

The locus with the strongest linkage to lupus 
nephritis was Sle1 on telomeric chromosome 1, a region 
that has been independently linked to SLE in several mouse 
models and human patients (58).  Functional analyses of 
the B6.Sle1 congenic mice carrying Sle1 on a non-
autoimmune B6 background have shown that this locus 
mediates a loss of tolerance to nuclear antigens (51,53), 
primarily directed to the H2A/H2B/DNA sub-nucleosomal 
particles, which are the primary target in the early 
production of anti-nuclear antibodies (59).  Genetic 
experiments have demonstrated that Sle1 was necessary for 
the development of nephritis in the NZM2410 model 
(46,60).  Moreover, co-expression of Sle1 with a number of 
single mutations such as Yaa (60), Lpr (61), or FcrγRIIb-/- 
(62), or other SLE-susceptibility locus such as Sle3 (63) 
produced a highly penetrant clinical pathology.  By using 
both mixed bone-marrow chimeras and genetic ablation of 
the T cell compartment, we have shown that the anti-
nuclear AAbs production and B-cell activation mediated by 
Sle1 were due to B-cell intrinsic defects (57,56).  Sle1 
congenic recombinants have shown that production of anti-
nuclear AAbs corresponds to at least three independent 
loci, Sle1a, Sle1b and Sle1c (64). The Sle1a locus 
represents a 2.5-Mb segment that is relatively gene-poor, 
with 14 reported known genes or predicted transcripts, but 

no strong candidate gene identified yet for Sle1a.  We have 
shown that Sle1a contributes to the production of 
autoreactive T cells (65), and we have not been able to 
show a direct contribution of Sle1a to B cell phenotypes 
(Morel et al, unpublished).  The Sle1b locus is allelic with 
polymorphisms in a cluster of four genes (Cd48, Cd150, 
Cd84 and Ly108) from the CD150/SLAM family (66).  The 
contribution of the CD150 family to immune regulation and 
tolerance is not well understood.  These genes are 
expressed on T cells and antigen presenting cells, including 
B cells (67).  Our knowledge of the effects of the SLAM 
family members on B cell functions is still sketchy. It has 
been recently shown that B cells can activate NK cell 
activation via CD48/CD244 interactions (68), and that 
CD150 ligation induces the activation of the ERK pathway 
(69).  Interestingly, Sle1b has been associated with an 
aberrant activation of the Ras-ERK pathway in B 
lymphocytes (70).  CD84 is up-regulated on human 
memory B cells, and its ligation induces the recruitment of 
the SH2-domain containing adaptor proteins SAP and 
EAT-2 (71). It has been recently shown that the differential 
expression of the two Ly108 isoforms, Ly1081 and Ly1082, 
accounted for the apoptosis resistance in immature B cells 
expressing Sle1b, and that this phenotype was associated 
with a loss of peripheral B cells tolerance (72).  Although 
these results do not exclude the involvement of the other 
SLAM family genes, it definitively places Ly108 as a 
strong contributor to Sle1b phenotypes. 
 

Sle1c is located in a 7 Mb interval on the 
chromosome 1 telomere.  A candidate gene approach has 
proposed that polymorphisms in the complement receptor 2 
(Cr2) gene were responsible for Sle1c phenotypes (73).  
The CR1 and CR2 proteins, which are isoforms from the 
same Cr2 gene, function as B-cell co-receptor and increase 
germinal center efficiency through antigen trapping by the 
follicular dendritic cells (74).  Cr2 deficiency has been 
associated with loss of B cell tolerance and autoantibody 
production, especially in the absence of FAS expression 
(75,76).  Finally, CR1/CR2 levels are significantly 
decreased in lupus patients (77,78), and in certain cases, 
inversely related to disease activity (79). Similarly, 
decreased CR2 expression has been reported on B cells 
before the onset of disease in the MRL/lpr (80) and chronic 
graft versus host disease (cGVHD) models of SLE (81).  
Sle1c recombinants have shown that several susceptibility 
genes are located within Sle1c, some of them inducing the 
production of autoreactive T and B cells (82).  The 
impaired humoral response to T-dependent antigens and the 
abnormal formation of germinal centers are still consistent 
with the involvement of Cr2 in the Sle1c phenotypes, but 
other genes are also clearly involved in the overall Sle1c 
contribution to NZM2410 disease.  
 

NZM2410 SLE-susceptibility locus Sle2 leads to 
B-cell hyperactivity and elevated B-1 cell numbers in the 
peritoneal cavity and later in the spleen (50).  These 
phenotypes are intrinsic to Sle2-expressing B cells, and we 
have shown that Sle2 mediates an accumulation of B-1 
cells through four mechanisms: Increased output from fetal 
liver, continuous output from adult lymphoid organs, 
increased spontaneous in vivo proliferation, and decreased 
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apoptosis (83).  Sle2 congenic recombinants have shown 
that at least three loci mediate these phenotypes, NZW-
derived Sle2a and Sle2b, and NZB-derived Sle2c (84).  
Sle2c is the most penetrant locus in terms of B-1-cell 
numbers; surprisingly, however, Sle2a and Sle2b, but not 
Sle2c, aggravate disease when co-expressed with both Sle1 
and Sle3, indicating that the mere expansion of the B-1 
pool does not contribute to autoimmune pathology (84).  
Additional work is being conducted to identified the genes 
responsible for these phenotypes and to better characterize 
the mechanisms by which they contribute, or not, to 
pathogenesis. 
 

Sle3 leads to increased T cell activation and 
decreased activation-induced cell death in CD4+ T cells 
(52), with evidence that this phenotype is induced by 
defects in the myeloid compartment (85).  Most 
attention has been given to the phenotypes that Sle3 
confers to T cells and myeloid cells.  A detailed analysis 
of the B-cell repertoire after hapten-immunization has 
shown, however, that Sle3 affected VHDJH junctional 
diversity and VH mutational diversity, and that it led to 
the recombinational activation of allelically excluded 
IgH genes in the periphery (86). Such characteristics of 
somatic IgH diversification have been shown to 
contribute to the repertoire of autoreactive B cells in 
other systems, and we propose that they also do in the 
NZM2410 model.  It is not currently known whether 1) 
the effects of Sle3 on the B-cell repertoire are intrinsic 
to Sle3-expressing B cells and 2) the same gene(s) is 
responsible for the myeloid and B-cell phenotypes.  The 
production and characterization of bone marrow 
chimeras and Sle3 congenic recombinants will be 
necessary to address these questions. 
 

Several QTLs mapped in the NZB strain affect 
B-cell functions.  Among them, Nba-2, which was 
mapped by two independent groups to the same region 
of telomeric chromosome 1 (87,88), results in the 
production of anti-nuclear AAbs, spontaneous IgM 
production and B-cell activation (88,89).  It has been 
proposed that the interferon inducible gene Ifi202 gene 
is responsible for the Nba-2 phenotype by mediating 
apoptosis resistance in autoreactive B cells (87).  Sub-
congenic strains showed that, as in NZM2410, there are 
probably multiple susceptibility genes on NZB 
chromosome 1 and that both T and B cells are affected 
(90,91).  It is not known whether the NZB-derived and 
NZW-derived SLE susceptibility loci are allelic or 
correspond to different genes.  One hand, we have 
shown that NZB and NZW share the same Sle1b 
haplotype (66), and that both Sle1 and Nba2 result in 
severe disease when bred to either NZW or Yaa, and are 
suppressed by the H-2z/z locus (46,92,93).  On the other 
hand, detailed side by side characterization of the Sle1 
and Nba-2 congenics revealed some phenotypic 
differences (94,95). 
 

Lbw2 was initially mapped in a NZB x NZW 
cross (which implies that it is different between the two 
strains) as being linked to lupus nephritis and splenomegaly 
but not to IgG anti-chromatin AAbs (96).  This locus is 

telomeric to Sle2c, but overlaps with Imh-1 and Idd11.  The 
absence of Lbw2 in BWF1 congenic mice resulted in a 
significantly reduced nephritis, total IgM and IgM AAbs 
levels and B-cell response to LPS, but not of total and anti-
dsDNA IgG, suggesting that Lbw2 corresponds to a novel 
B cell activation gene (97). Another QTL, Adnz1, was 
mapped in virtually the same chromosome 4 region of the 
NZM2328 mouse, a region which is also derived from NZB 
(98).  Surprisingly, this locus was linked to anti-dsDNA 
IgG, but not nephritis (99), which is the opposite of Lbw2.  
It should be noted that congenic strains used in these two 
studies were produced by replacing the susceptibility locus 
by the resistance locus on an autoimmune background.  
These genomic combinations allow for the expression and 
interactions of the other susceptibility loci, which 
complicate phenotypic interpretation, and may explain 
some of the divergent results.  As with telomeric 
chromosome 1, the complexity of this chromosome 4 
region which probably contains several genes affecting B 
cells, as well as its sharing among several autoimmune 
strains, underscore the need for further characterization, 
and the identification of the susceptibility gene(s) will be 
ultimately necessary for a full understanding of its 
contribution to the development of autoreactive B cells.  
 

Finally, an NZB chromosome 13 region was 
linked to an increased expression of co-stimulatory 
molecules on B cells (88).  This locus has been previously 
linked to disease susceptibility in NZB (100) and 
NZM2410 (101,49), which has an NZB-derived 
chromosome 13.  Congenic analysis of this locus expressed 
on a B6 background showed that it was associated not only 
to increased B cell activation, but also to an expanded 
marginal zone and B-1a compartments, and increased total 
IgM and IgM AAbs production (102). 
 
5. AUTOREACTIVE B CELLS RESULTING FROM 
SINGLE GENE TARGETING OR NATURAL 
VARIANTS 
 

A large number of single gene targeting 
experiments in mice have resulted in lupus-like systemic 
autoimmunity (103,104). Since lupus is a disease in which 
autoreactive B cells play a major role, it is not surprising 
that a significant number of these genes affect B cells 
(Table 2).  A few naturally occurring polymorphisms 
affecting B-autoreactivity have been described, and they 
will be discussed in this section along with the results 
obtained with genetic engineering.  
Only a minority of B-cell specific genes affect directly 
autoreactive B cells.  Among them, polymorphisms in the 
immunoglobulin Kappa locus may contribute to the 
autoreactive repertoire, specifically anti-insulin AAbs, in 
the NOD mouse, and that some of these alleles are shared 
with the NZB strains (105), which produces a wide variety 
of AAbs.  Other genes have a more widespread expression, 
such as Ptprc or Cr2, and we have restricted this review to 
those with a strong B-cell component.  Most of the genetic 
ablation experiments, a.k.a. knockouts (KO), were not 
performed in a B-cell specific manner, and the observed 
autoreactive B cells may result from a number of cellular 
pathways, including B cells.  
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Table 2. B-cell expressed genes whose targeting is associated with autoreactivity in rodent models 
Gene Protein Position 

(chr, cM) 
Method Allele type Function Associated 

disease 
References 

bcl2 Bcl-2 1 (59.8) Eu-hBcl2 tg over-expression in B 
cells 

apoptosis Lupus 147 

Ptprc CD45 1 (74) KO null allele signaling Lupus 148 
Fcgr2b FcγRIIB 1 (93) KO on B6 null allele signaling Lupus 149,62 
Fcgr2b FcγRIIB 1 (93) association NZB, BXSB, MRL, and 

NOD allele 
signaling Lupus 150,151,11

7 
Fcgr2b FcγRIIB 1 (93) Association, retroviral 

transduction 
NZW/NZM2410 allele signaling Lupus 152,153 

Cr2 CD21/CD35 1 (106.6) KO Null on lpr background BCR co-receptor Accelerated lupus 75,76 
E2f1 E2F 

transcription 
factor 1 

2 (84) KO on Eu-hBcl2 tg null allele apoptosis Lupus 154 

Plcg2 phospholipase 
C, gamma 2 

8 (62) ENU gain of function signaling arthritis, dermatitis 155 

Lyn Lyn 4 (0) KO null allele signaling Lupus 156,157 
Lyn Lyn 4 (0) Tg gain of function signaling Lupus 158 
Lyn Lyn 4 (0) polygenic hypomorph hemizygote signaling Lupus 112 
Igk Ig kappa 6 (30) candidate gene NOD allele antibody gene T1D 159 
Hcph SHP-1 6 (60) motheaten me and mev signaling Lupus 160,161 
Hcph SHP-1 6 (60) polygenic hypomorph hemizygote signaling Lupus 112 
CD22 CD22 7 (9) polygenic hypomorph hemizygote signaling Lupus 112 
Cd22 CD22 7 (9) KO null allele signaling Lupus 162,163 
CD19 CD19 7 (59) Tg hypermorph signaling Lupus 107 
Tnfsf13b BAFF 8 (3) Tg over-expression growth factor Lupus 164 
Tnfsf13b BAFF 8 (3) Tg on B6.Sle1 or 

B6.Nba2 
over-expression growth factor Accelerated lupus 95 

Fli-1 Fli-1 9 (16) Tg (class I promoter) over-expression apoptosis Lupus 165 
 

With a few exceptions involving apoptosis, 
growth, and co-stimulation, all of which have been 
abundantly covered in past reviews (106,103), the vast 
majority of genes whose over-expression or deficiency 
produce autoreactive B cells are involved in B-cell 
signaling.  Generally, either over-expression of positive 
regulators of the B-cell receptor (BCR) such as CD19 
(107), or decreased expression of negative regulators such 
CD22 (108,109) result in autoreactive B cells, presumably 
by lowering the BCR activation threshold and allowing 
autoreactive B cells to respond to what would be sub-
threshold signals in wild type littermates.  Gene targeting 
experiments result in drastic changes in expression levels 
which are not likely to correspond to naturally occurring 
disease alleles. In fact, variations in proteins corresponding 
to only a few of these targeted genes, such as CR2 (77,78), 
BAFF (110), CD154 (111), or FcγRIIB (see below), have 
been validated in autoimmune patients.  It has been 
demonstrated, however, that the combination of 
hemizygous null alleles of 3 genes encoding for BCR 
negative regulators, Lyn, CD22, and SHP-1, results in a 
dose-dependent production of autoreactive B cells (112).  
These results validated the use of single gene targeting 
approaches to explore functional pathways involved in 
spontaneous autoimmunity, and showed the power of 
interactions between susceptibility alleles, which are singly 
devoid of phenotypes, but produce strong synergistic 
effects in combination. 
 

One of these genes affecting B cells, Fcgr2b, has 
crystallized more attention than others in the recent years.  
Fcgr2b encodes for FcγRIIB, a low affinity IgG Fc receptor 
expressed on B cells that contains an inhibitory ITIM motif 
(113) that recruits SHIP and initiates a signaling cascade 
that precludes the intracellular calcium mobilization 
necessary for B-cell activation (114).  Promoter

 
polymorphisms identified in the Fcgr2b promoter in a 
number of autoimmune strains, including NZB, have been 
associated with a reduced expression and function of 
FcγRIIB (115,116,117).  This result fits with the expected 
function of this receptor and with its promoter 
polymorphisms associating the human ortholog FCGR2B 
with lupus (30).  Another polymorphism found in the third 
intronic region in NZB, NZW, and 129/SVJ is associated 
with the failed up-regulation of FcγRIIB on GC B cells 
(118).  The importance of this latter polymorphism was 
dramatically illustrated by the complete prevention of 
autoimmune pathogenesis achieved with the retroviral 
transduction of a normal Fcgr2b allele in the bone marrow 
cells of lupus-prone NZM2410 mice, which carry an NZW 
Fcgr2b allele (119). This result suggested that restoration 
of FCGRIIB expression on B cells from lupus patients to a 
level equivalent to that of normal controls may be a 
promising therapeutic venue. 
 

A growing body of data is accumulating on the 
functions of FcγRIIB through the analysis of Fcgr2b null 
mice.  FcγRIIB deficiency results in the spontaneous 
production of antinuclear AAbs and severe autoimmune 
disease on a B6 but not on a BALB/c background (62).  
The differences between the B6 and BALB/c genome in 
controlling FcγRIIB-/- mediated autoimmunity have been 
mapped to three loci on chromosomes 9, 12, and 17 (62).  
This strain difference is in fact due to a more robust 
receptor editing by BALB/c mice, which are therefore able 
to censure most autoreactive clones (120).  This result is 
very interesting as it demonstrates a genetic regulation of 
receptor editing, and the characterization of the BALB/c 
loci that silence FcγRIIB-/- generated autoreactive B cell 
clones, as well as Sle3 in NZM2410 (86), has the potential 
to reveal the genes involved in this process.  The analysis 
of the fate of 56R B cells bearing a transgenic BCR with
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Table 3. Genetics of BCR trangenic B cells 
Transgene  Specificity Permissive background Resistant background References 
AM14 Ig2a 1 B6/lpr/IgH 1 

MRL/lpr/IgH 1 
BALB/c 
BALB/c 

172 
173 

glD42 dsDNA NZB/WF1 B6 174 
3-32 dsDNA NZB/WF1 B6 175 
V3H9 dsDNA MRL.lpr 

BALB/c/lpr, BALB/c/gld 
MRL+/+, BALB/c 
BALB/c 

176 
177 

V3H9/56R dsDNA MRL.lpr BALB/c 178 
V3H9/56R dsDNA B6.FcgRIIb BALB/c.FcgRIIb 120 
2-12H Sm MRL.lpr B6 179 
MD4 HEL B6.CD5-/- B6 132 
MD4 HEL NZB B6.H-2d 131 

 
anti-DNA specificity has shown that FcγRIIB controls a 
novel tolerance checkpoint between the germinal center 
and the plasma cell stage (120).  This result fits nicely with 
data obtained with the NZW allele in the B6.Sle1 congenic 
mice, which is associated with a failed FcγRIIB up-
regulation on GC B cells (118).   
 

The Fcgr2b gene is located in a region that 
include the Sle1 locus, and for which either the NZB, 
NZW, or 129/SV haplotype mediates autoreactivity on a 
B6 background (121). This can be explained by the fact 
that NZW, NZB and 129/SV share the same alleles for 
some genes such as the SLAM family members in the 
Sle1b region (66).  As for most KO strains, 129/SV 
embryonic stem cells (ESC) were used to target Fcgr2b, 
and B6.FcγRIIB-/- therefore carries a 129/SV-derived 
chromosome 1 region flanking this gene (122). Although 
the FcγRIIB deficiency in the NZB and NZW-derived 
strains and its functional consequence for autoimmunity 
have been demonstrated without a doubt (118,119), 129SV 
alleles of flanking genes may also contribute to the strong 
autoimmune phenotype displayed by B6.FcγRIIB-/- mice. 
 

Finally, the Yaa (for Y chromosome accelerated 
autoimmunity) locus has been known for a long time to 
affect B cells (123). The identity of the gene responsible for 
the Yaa-phenotypes has been elusive until two recent 
papers have recently determined that Yaa results from the 
translocation of X-chromosome encoded TLR7, a single-
stranded RNA-binding innate immune receptor (124,125).  
This is an important finding as it bridges the innate immune 
response to pathogen to the amplification of autoreactivity, 
a concept that has been previously postulated, but never as 
beautifully demonstrated.  
 
6. TRANSGENIC MODELS OF AUTOREACTIVE B 
CELLS 
 

Immunoglobulin transgenic models have been 
used very successfully to determine the fate of autoreactive 
B cells. Many different antigenic specificities have been 
used, covering both neo-autoantigens, such as hen egg 
lysozyme (HEL) expressed as a transgene, and self-
antigens, such as dsDNA or Sm.  These models have 
revealed different mechanisms by which tolerance is 
maintained and autoreactive clones eliminated or silenced 
on a non-autoimmune background (126,127).  When these 
transgenic autoimmune BCRs are expressed in lupus-prone 
strains, the overall result is that the transgenic autoreactive

 
clones are expressed (Table 3).  Defects in FAS or FASL 
(as lpr or gld mutations, respectively) have consistently 
been permissive for the expression of autoreactive clones of 
several specificities.  It is unclear however if  this is due to 
a defective FAS pathway in the B cell themselves.  FAS 
plays a critical role in the ability of B cells to regulate T 
cells and other B cells (128). It has been recently shown 
however that  FAS-regulated apoptosis of dendritic cells, 
and not in lymphocytes, is critical for maintenance of self 
tolerance (129). Furthermore, although the MRL 
background controls the production of anti-SM AAbs (11), 
it is not sufficient in FAS-sufficient mice to allow the 
follicular entry and secretion of anti-dsDNA AAbs by 
V3H9 B cells (130).  In summary, FAS plays a critical role 
in controlling autoreactive B cells, but it is surprisingly not 
clear how it is achieved.  

 
Anti-HEL B cells are normally anergized in the 

presence of soluble HEL (126). This tolerance is however 
breached by the NZB genetic background, which allows the 
proliferation and differentiation of the transgenic B cells 
into Ab-producing cells in spite of their follicular exclusion 
(131). Deficiency in a single gene, CD5, which is a 
negative regulator of lymphocyte signaling, also breaches 
tolerance of the anti-HEL transgenic B cells (132).  The 
mechanisms involved in these two models are probably 
different since CD5 seems to regulate anergy induction. 
 

With the exception of FAS and CD5, the identity 
of genes that control the fate of these transgenic 
autoreactive B cells is unknown.  Efforts in that direction 
are ongoing, with a recent report that the Sle2 locus is 
permissive for the expression of V3H9/56R cells (133).  In 
that specific case, this “break of tolerance for anti-dsDNA 
specific B cells” should provide an addition tool in the 
ongoing efforts to identify the Sle2 genes. 
 
7. CONCLUSIONS AND PERSPECTIVES 
 

Strong evidence has emerged that the generation 
of autoreactive B cells is controlled at the genetic level 
from data collected mostly from autoimmune patients and 
murine models.  Phenotypic analysis of mutations, either 
spontaneous or engineered, in genes affecting B cells has 
also been very useful in establishing a genetic basis of B 
cell autoreactivity.  As reported in this review, most of this 
data has been associated with lupus research.  This may be 
the result of a heightened attention to B cells in that field, 
since B cells play such an important role in this disease.  
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On the other hand, it is possible that in other autoimmune 
diseases, the production of AAbs is a secondary process, 
and therefore not under direct genetic control.  One recent 
result in favor of this latter hypothesis is that B cells 
expressing an anti-insulin antibody as a transgenic receptor 
are similarly tolerized both in the NOD strain, which 
normally produces anti-insulin AAbs, and B6, which does 
not (134).    
 

Progress in the identification and characterization 
of the genes involved in the generation and survival of 
pontaneous autoreactive B cells is uneven, from large 
genomic segments with several dozens of genes (Table 1), 
to a single gene such as Ly108 or Fcgr2b, for which the 
mechanisms by which it is involved in B-cell tolerance is 
rapidly unraveling.  The pursuit of the existing leads will 
certainly achieve a better understanding of B-cell tolerance.  
The emergence of new tools is also re-energizing the field.  
The large amount of the genome that is still waiting for 
annotation, and the limitations of the current approaches, 
both in forward and reverse genetics, have pushed for 
combining alternative approaches with high through-put 
engineering.  This high-tech revamping of vetted concepts 
is showing promises.  The high-through put screen of 
ethylnitrosourea (ENU)-generated point mutations for 
autoimmune phenotypes (135,136) has recently started to 
make significant contributions.  ENU has first assigned 
new functions to known genes, such as NF-κB2 regulating 
the number of circulating follicular B cells (137), or a gain 
of function in Plcg2 resulting in B-cell autoreactivity (138). 
Another known gene, Carma-1, has been identified through 
this approach as a key regulator of the plasticity in antigen 
receptor signaling that underpins opposing mechanisms of 
immunity and tolerance (139). ENU mutagenesis has also 
identified a novel gene, roquin (Rc3h1), that encodes a 
highly conserved member of the RING-type ubiquitin 
ligase protein family and controls follicular T helper cells 
in providing help to autoreactive B cells (140).  It is likely 
that novel genes that directly affect B-cell tolerance will be 
identified in the near future through the continuing ENU 
screens.   

 
Microarray analyses are now widely used to 

define molecular signatures of B cell lymphomas and 
leukemias.  Transcriptional signatures have also been used 
to define the normal peripheral B-cell compartments in 
humans (141) and memory B cells in the mouse (142).  It is 
likely that transcriptional profiling of autoreactive B cells, 
providing the adequate model is used, would provide a 
wealth of new data that would push this field forward. 
 

Finally, whole genome association studies (143), 
in which large numbers (100,000) of SNPs are being 
simultaneously tested on the same patient or control, are 
being conducted on various cohorts of autoimmune 
patients.  Although no result has been published yet, it is 
widely expected that the strong statistical power of 
association studies combined with high-throughput 
technology will deliver the identity of new susceptibility 
genes in these diseases.  It is very likely that some of these 
genes will directly affect B-cell tolerance.  It is also 
possible that whole genome association studies will be 

conducted directly with autoreactive B cells, or AAb 
production as a phenotype.   
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