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1. ABSTRACT  
 

The recent use of multiparametric flow cytometry 
to monitor T cell immune responses complements 
traditional assays, such as IFN-gamma ELISPOT, to 
provide more information on the functional complexity of 
CD4+ and CD8+ T cell immune responses induced either by 
natural infection, or by immunization. In this review, we 
provide a general background on T cell subsets, and 
describe the cellular immune response during natural HIV-
1 infection. We then review T cell responses to current 
candidate HIV-1 vaccines. Taken together, this helps to 
formulate our understanding of the immune correlates of 
protection required for an effective prophylactic HIV-1 
vaccine.  Finally, we emphasize current dendritic cell based 
vaccine strategies designed to modulate immunity to 
establish immune protection against HIV-1. 

 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Recent advances in the development of 
multiparametric flow cytometry (1) have provided more 
information on the functional complexity of both CD4+ 
and CD8+ T cell immune responses induced either 
during  natural infection, or by immunization. In this 
review, we will first provide general background on T 
cell subsets, and then describe the cellular immune 
response during natural HIV-1 infection. We will then 
review T cell responses to current candidate HIV-1 
vaccines, and how this knowledge, taken together, helps 
inform our understanding of the immune correlates of 
protection required for an effective vaccine against 
HIV-1. Finally, we will emphasize some current 
vaccination strategies designed to direct the immune 
system towards this protective response. 
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3. GENERAL T CELL IMMUNE RESPONSES 
 

After infection or vaccination, naïve T cells that 
traffic through lymphoid organs encounter specific antigens 
presented at the surface of antigen presenting cells (APCs), 
specifically dendritic cells (DCs). Following this 
interaction, the antigen-specific T cells undergo a program 
of extensive division and differentiation, and become 
activated effector T cells (2) that migrate to tissues and 
defend against infection. This massive expansion is 
followed by a rapid and well-regulated contraction phase, 
which might or might not coincide with clearance of the 
antigen, in which approximately 90-95% of the effector 
cells are eliminated (3). These successive events give rise 
to a pool of antigen experienced memory T cells which are 
maintained, in some cases, for life (4). The establishment of 
this population of memory T-cells allows the individual to 
respond quickly and efficiently to subsequent encounters 
with the same pathogen.  
 

Although both CD4+ and CD8+ T cells initiate 
their program of differentiation simultaneously, CD8+ T 
cells divide sooner and more rapidly, and therefore more 
readily develop into effector cells after short-term primary 
stimulation than do CD4+ T cells (5). Meanwhile, evidence 
indicates that CD4+ T cells can regulate the quality of the 
memory CD8+ T cells generated. These cells are likely 
important for optimal generation of memory CD8+ T cells 
following acute infections (6-8),  and for sustained CD8+ T 
cell responses during chronic infections (9). 
 

 In both humans and mice, memory CD4+ and 
CD8+ T cell populations exhibit considerable 
heterogeneity. The first distinction between memory and 
effector T cells, early after in vivo priming, can be 
demonstrated by the expression of IL-7R (CD127) at the 
cell surface (10). The CD127+ memory T cells then further 
divide, based on homing characteristics and effector 
functions, into central memory (Tcm) and effector memory 
(Tem) subsets (11). This clear method of differentiation is 
particularly true after resolution of infection, in which the 
exposure to antigen is transient due to the clearance of the 
pathogen by effectors. However, during chronic /persistent 
infections, with pathogens such as HIV-1, the strength and 
the duration of antigenic stimulation affect both the 
differentiation process, and the functional competency of 
the resulting effector and memory cells (12, 13) . Indeed, 
several studies have validated that memory T cells 
constitute intermediates arrested at different stages of 
differentiation (14, 15). Thus, the functional properties of a 
given antigen specific T cell response are determined by 
the relative proportions of memory T cell subsets generated 
(16). 
 
3.1. Effector T cells 

Effector T cells constitute the first line of defense 
against pathogens, and circulate during acute infections. 
Primed T cells are highly activated and dividing cells that 
initially express CC-chemokine receptor 7 (CCR7), the 
lymph-node homing receptor CD62 ligand (CD62L) and 
the co-stimulatory receptors CD28 and CD27. These 
markers are progressively down regulated, as these primed 

T cells become effector T cells. CD8+ T cell effectors can 
secrete IFN-gamma, and TNF-alpha in an antigen-specific 
manner to induce cell death. They also express perforin 
which directly mediates cytotoxicity of target cells. Their 
ability to produce IL-2 is low, but increases gradually 
during memory CD8+ T cell differentiation (12). 
Accordingly, analysis of CD4+ T cell responses in patients 
with primary HIV-1 and primary CMV infection have 
shown that the large majority of antigen-specific CD4+ T 
cells are single IFN-gamma-secreting cells, while IFN-
gamma/IL-2- secreting cells and single IL-2-secreting cells 
are poorly represented (17). 

 
3.2. Memory T cells:  Tem and Tcm 

Memory T cells persist for extended periods of 
time due to antigen-independent homeostatic turnover. 
They constitute a potent line of immediate defense, because 
they are present at higher numbers than naïve cells, and 
respond rapidly upon reencounter with a pathogen. 
Memory T cells can be divided into two subsets: central 
memory T cells (Tcm) and effector memory T cells (Tem).   
Both are present in the spleen and the blood, and are 
thought to play complementary roles in this defense 
process. 
 

Effector memory T cells mainly reside within, or 
recirculate through, peripheral non-lymphoid tissues, and 
provide an immediate/rapid effector defense. These cells do 
not express CCR7 or CD62L (CCR7-CD62L-), and rapidly 
acquire effector functions such as cytokine production ( e.g. 
IFN-gamma ) upon antigen restimulation. CD8+ Tem cells 
also acquire the ability to directly kill target cells through 
perforin and granzyme secretion.  Tem cells are  
characterized by a limited proliferative capacity (11). 
Through their expansion and differentiation, these cells 
constitute a pool of secondary effector cells (as compared 
to the effector cells during the acute response) which 
ultimately lead to a subset of CD45 RA+ CD27- CCR7- T 
cells expressing CD95 ligand, high levels of perforin and 
granzyme B,  and are directly cytotoxic ex vivo.  These T 
cells have been designated as late differentiated effector T 
cells (14) . 
 

Central memory T cells (Tcm) have the potential 
to generate a functional secondary (recall) response and 
provide a reserve of defense. They express CCR7 and 
CD62L molecules (CCR7+ CD62L+) that permit trafficking 
into the lymph nodes. In steady state, these cells are 
capable of self-renewal by homeostatic proliferation (18). 
Upon antigenic restimulation, Tcm also convert to 
secondary effector cells, but their ability to expand is more 
vigorous than that of Tem. Their full proliferative capacity 
correlates with their ability to maintain interleukin-2 (IL-2) 
production. This ability to produce IL-2 is a hallmark of 
Tcm cells. For example, in the tetanus model of Ag 
clearance, it has been shown that the dominant population 
of antigen-specific T cells was represented by CD4+  T 
cells with a typical Tcm phenotype, that secreted IL-2, but 
not IFN-gamma (17). Most importantly, due to their ability 
to generate a larger population of highly activated 
secondary effector cells (e.g, generate a potent recall 
response), Tcm are more effective mediators of protective 
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immunity than Tem, and play a crucial role in long term 
protection (19-23). 

 

The relationship between Tem and Tcm, and 
whether they represent interconnected or distinct lineages, 
is still subject to  debate. Three different models of 
differentiation have been proposed. The detection of human 
CD4+ and CD8+ Tem by flow cytometry analysis, several 
years after priming suggests that they are intrinsically 
stable or continuously replenished through differentiation 
of Tcm. In line with this hypothesis, in vitro culture 
systems using human T cells have shown that Tcm cells 
differentiate into Tem cells (11). However, in contrast with 
this study, analyses of the TCR repertoire of human blood 
CD8+ memory T cells indicate that Tcm and Tem represent 
mostly separate lineages (24).  Moreover, another study has 
shown that human CD4+ and CD8+ Tem cells exhibit  
dynamic differentiation, involving transient and stable 
changes to the Tcm phenotype and its properties (25). 
Lastly, investigation of the molecular profile of human 
CD8+ Tcm and Tem using gene expression microarrays 
distinguish Tcm from Tem cells based on their ability to 
express genes involved in self renewal. This study 
reinforces the concept that Tcm represent memory stem 
cells (26). 
 

Understanding the relationship between these 
populations is particularly important for the design of 
interventional therapeutics as well as prophylactic vaccines.  
It will be important to determine whether naïve T cells can 
be educated to become Tcm, or whether Tcm can be 
expanded from existing Tem during chronic infection. 

 
4. T CELL IMMUNE RESPONSES DURING HIV-1 
INFECTION 
 

Although untreated HIV-1 infection follows a 
progressive course in virtually all infected individuals, 
there is strong evidence that anti-HIV-1 immune T cell 
responses are essential in limiting HIV-1 replication.  
 

Cytotoxic CD8+ T cells (CTLs) have been 
strongly implicated in the control of virus replication in 
HIV-1-infected humans and SIV-infected monkeys.  For 
example, rhesus macaques fail to contain the initial peak 
SIV viremia if their CD8+ T cells are depleted at the time of 
infection.  In humans, evidence for the protective role of 
CD8+ T cells comes from the temporal association of CTL 
responses with the decline in plasma viremia following 
acute infection and peak viremia (27) and also, from the 
presence of a vigorous proliferative response in long-term 
non-progressors (LTNPs).  
 
4.1. CD4+ T cell response 

During primary infection, a large majority of 
anti-HIV-1 specific CD4+ T cells with an effector 
phenotype (single IFN-gamma secreting cells) develop in 
response to the high antigen load (17). Later in the course 
of untreated infection, despite severe depletion of CD4+ T 
cells, the functional CD4+ T cell response to different HIV-
1 antigens (Gag, Nef, Pol, Env) persists in the peripheral 
blood of infected patients, as demonstrated by detection of 

IFN-gamma  and class II tetramer staining (28). In general, 
in chronically infected patients, Gag-specific responses 
dominate the CD4+ T cell response to HIV-1 (29). Despite 
the presence of HIV-1 specific IFN-gamma secreting cells 
CD4+ T cells, many groups have documented that these 
cells have lost their ability to produce IL-2 and to 
proliferate in response to antigen stimulation (30-32). Thus, 
upon chronic exposure, there is a skewed representation of 
IFN-gamma only producers that are not associated with 
control of HIV-1 replication. Phenotypic analysis of these 
cells have shown that high viremia skews the Gag-specific 
CD4+ T cells away from an IL-2 producing Tcm phenotype 
(CCR7+ CD45RA-) and toward poorly proliferative IFN-
gamma producing Tem phenotype (CCR7- CD45RA-) (33). 
When this CCR7 - T cell population was further subdivided 
based on CD57 expression,  CD57+ CD4+ T cells were 
found to be proliferation incompetent cells associated with 
increased apoptosis (34). In contrast, the presence of HIV-1 
specific CD4+ T cells that are able to strongly proliferate in 
response to HIV-1 antigens has been associated with the 
control of HIV-1 replication in the naturally protected, 
LTNPs (35). Whether these highly proliferating cells fall 
into the subset of Tcm versus Tem remains to be 
elucidated. In direct contrast with progressors, PBMC from 
clinical non-progressors (LTNPs) exhibit strong and broad 
responses to many HIV-1 antigens associated with 
secretion of both type 1 and type 2 cytokines (IL-2 and IL-
4, respectively) expressing a normal memory phenotype 
(36). Finally, during infection with HIV-2, which is 
associated with a better clinical outcome, it has been shown 
that the frequency of CD4+ T cells able to produce IL-2 is 
better preserved than in HIV-1 infection (37, 38). Thus, the 
ability of HIV-1 specific CD4+ T cells to secrete IL-2 
constitutes a correlate with protective immunity. Recently, 
a comprehensive analysis of T cell phenotype and function 
was performed within a group of 45 antiretroviral naive 
controllers with low level viremia. These patients exhibited 
higher frequencies of  HIV-1 specific IL-2+ IFN-gamma + 
CD4+ T cells, as previously described, with a low level of 
proliferating cells within the less differentiated T cell 
subpopulation (CD45RA+, CD27+, CD28+ CCR7+). Thus 
the apparent T cell control of HIV-1 replication is 
associated with an immunological state in which the host 
responds to HIV-1 by expanding, but not exhausting 
HIV-1 specific T cells, while maintaining a relatively 
quiescent immune system (39). This low level of 
immune activation has also been associated with low 
susceptibility to HIV-1 infection in high risk exposed 
seronegative individuals(40). 
 
4.2. CD8+ T cell response 

During acute HIV-1 infection, the induction of 
HIV-1 specific CD8+ effector T cells with the capacity to 
kill HIV-1 infected cells and secrete IFN-gamma is 
associated with a rapid and dramatic decline in viremia (41-
43) probably reflecting the strong antiviral activity of these 
cells. In this early phase of infection, the HIV-1 specific 
CD8+ T cell response is typically low in magnitude and 
narrowly directed against some viral epitopes, such as Nef, 
Tat and Env (44-46). In the absence of  HAART treatment, 
these initial CD8+ T cells responses tend to disappear. This 
is likely due in part to escape variants within the viral 
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epitopes which lead to the emergence of further responses 
which are less efficient in reducing viral load (46).  
 

In striking contrast, during chronic HIV-1 
infection, high levels of viral replication occur in the 
presence of large numbers of HIV-1 specific IFN-gamma 
producing CD8+ T cells.  These cells comprise high avidity, 
antigen-specific CD8+ T cells reactive to several viral 
proteins,  including Gag, Pol and Env (47-51). These data 
suggest that the HIV-1 specific CD8+ T cell responses 
become progressively less effective, and these defects are 
not detected by assays that quantify antigen specific 
interferon gamma production alone. 
 

In fact, several studies of chronically HIV-1 
infected patients have shown that the HIV-1 specific cell 
pool is predominantly composed of pre-terminally or 
intermediately differentiated effector memory T cells 
having a CD45RA- CCR7- CD62L- CD8+ phenotype and 
relative low levels of perforin (52-54). Papagno et al. have 
also demonstrated that HIV-1 replication in chronically 
infected individuals leads to activation of the early 
differentiated (CD27+ CD28+) antigen experienced CD8+ T 
cells. This activation occurs both in the HIV-1 specific and 
unrestricted cells, and results in further differentiation of 
these cells into a state of replicative senescence, 
characterized by a CD27-CD57+ phenotype (55).  
Altogether, these results, plus the absence of HIV-1 
specific central memory T cells support the idea that CD8+ 
T cell differentiation is incomplete or arrested in HIV-1 
infected individuals, and evidence an exhaustion of T cell 
competence. 
 

Beside phenotypic alterations, functional defects 
have also been detected in HIV-1 progressors: several 
studies using MHC class I tetramer binding or IFN-gamma 
detection to identify antigen-specific CD8+ T cells have 
clearly established that HIV-1-specific CD8+ T cells can 
not always be propagated after in vitro culture of PBMCs in 
response to HIV-1 peptides (56-58), polyclonal stimulation 
(54) or HIV-1-infected autologous CD4+ T cells (59). We 
have also reported this HIV-1 -specific CD8+ T cells defect 
in proliferation, even when these cells have been 
challenged with potent mature dendritic cells (60). 
In contrast to progressor patients, CD8+ T cells in acute 
HIV-1 infection have strong proliferative capacities, which 
are rapidly lost in the presence of continuing viral 
replication. This proliferation is critically dependant on the 
presence of IL-2 secreting HIV-1 specific CD4+ T cells. 
These data suggest that the proliferative impairment of 
HIV-1 specific CD8+ T cells during chronic infection is not 
primarily due to an intrinsic functional defect of these cells, 
but rather represents a direct consequence of the 
progressive loss of IL-2 secreting, HIV-1 specific CD4+ T 
cells (61). 
 

Also, HIV-1 specific CD8+ T cells from LTNPs 
have a greater capacity to proliferate than T cells from 
progressors, and this proliferation is tightly coupled to 
increase in perforin expression (59). In LTNPs, the strong 
proliferative capacity of HIV-1 specific CD8+ T cells, 
assessed by 3H thymidine incorporation, has also been 

associated with an increase in IL-2 in the supernatant upon 
in vitro expansion with specific peptides (36). In these 
unique patients,  we also reported the association of HIV-1 
specific CD8+ effector T cell expansion with the presence 
of a small subset of Gag-specific, IL-2 producing CD8+ T 
cells which might represent functional central memory, part 
of a complete maturation process in the CD8+ T cell 
compartment (60). Recently, Zimmerli and colleges have 
demonstrated that the HIV-1 specific IFN-gamma/IL-2 
secreting CD8+ T cells support the CD4 independent 
proliferation of HIV-1 specific CD8+ T cells (62). 
Phenotypically, it has also been shown through tetramer 
staining that up to 50% of HIV-1 specific  CD8+ T cells in 
non-progressors are characterized by a fully differentiated 
phenotype (CD45RA+ CCR7-), suggesting that full 
maturation can take place in HIV-1 infected individuals in 
the appropriate immunological setting (63). Thus, superior 
proliferative and effector functions distinguish LTNPs 
patients from typical HIV-1 infected progressors, 
suggesting that the capacity to make perforin and IL-2, and 
to vigorously expand in culture, represent essential 
functions in HIV-1 immunological control. 
 

Overall, polyfunctional IFN-gamma +/IL-2+ HIV-
1 specific CD4+ and CD8+ T cell responses define the best 
correlates of protective immune response during HIV-1 
infection known to date (64, 65).   
 

However, we are still far from a precise 
definition of a T cell mediated immune correlate of 
protection in HIV-1 infection. New studies that challenge 
our understanding of these correlates continue to emerge.  
Thus, very recently, Betts et al. focused on the quality of 
the T cell response in 79 HIV-1 infected progressors and 9 
non-progressors by using multicolor flow cytometry 
technology.  The measurement of five CD8+ T cell 
functions (degranulation(CD107a), IFN-gamma, MIP-1-
beta, TNF-alpha and Il-2) directed towards  multiple 
antigens (Gag, Pol, Env , Nef , Tat, Rev) in each patient 
allowed them to define a functional profile of HIV-1 
specific CD8+ T cells. Based on their ability to detect 
anywhere from two to five different functions in the same 
cell, they found that progressors had limited functional 
profile compared to non-progressors. The response in 
progressors is characterized by antigen specific cells with 
three or less simultaneous functions (IFN-gamma, MIP-1-
beta, TNF-alpha, CD107a), an absence of cells expressing 
all five measured functions, and a paucity in IL-2 
production. In contrast, non-progressors had a response 
notably shifted to cells positive for all five functions, a 
larger proportion of cells positive for four functions, and a 
higher percentage of responding cells producing IL-2.  
They also found that individual HIV proteins can stimulate 
qualitative diverse response profiles in both populations.  
Altogether their results indicate that measuring responses 
by five functions provides a better differentiation between 
progressors and non-progressors than measuring only IFN-
gamma and Il-2 (66). Of interest, their results also indicate 
that memory phenotype is not necessarily predictive of 
functionality. Thus the presence of five positive function 
cells in the non-progressors was not simply due to an over 
representation of cells with central memory phenotype. 
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5. T CELL IMMUNE RESPONSES TO HIV-1 
VACCINES 
 
5.1. Challenges in HIV-1 Vaccine Development 
 

Despite vigorous efforts for more than two 
decades, an effective vaccine to prevent HIV-1 eludes 
us.  Current licensed vaccines for other pathogens, both 
bacterial and viral, rely primarily on the antibody 
response to eradicate circulating virus.  Furthermore, the 
majority of these vaccines were developed empirically, 
based on whole killed or live attenuated pathogens.  
These approaches fail with regard to HIV for a number 
of reasons.  First, an effective vaccine against a 
retrovirus likely requires both efficient humoral and cell 
mediated immunity to eradicate free and cell-associated 
virus.  Second, administration of whole killed or live 
attenuated HIV has raised safety concerns (67) that 
prevent their use.  Lastly, natural host clearance of HIV-
1 has not been documented to date, so we have no clear 
indication of the type of immunologic response required 
for protection from infection.  These are some of the 
factors that have hindered development of an effective 
vaccine against HIV-1.   
 
5.1. Types of HIV-1 vaccines, and known responses to 
date 
5.2.1. Recombinant Proteins 

Initial vaccine attempts to induce neutralizing 
antibodies against HIV-1 included recombinant envelope 
proteins, gp120 and rgp160. In early studies, these vaccines 
generated neutralizing antibodies in chimpanzees (68). 
Exogenous proteins are presented by MHC Class II to elicit 
a predominant CD4+ T cell response, characterized by 
antigen-specific CD4+ T cells capable of lysing HIV-1 
infected CD4+ target cells in humans (69, 70).  Despite this, 
rgp120 failed to protect against HIV-1 infection in the only 
Phase III efficacy trial of a candidate HIV-1 vaccine to date 
(71).   
 
5.2.2. DNA 

The goal of a successful T-cell based vaccine 
is to expand the magnitude and breadth of T cell 
epitopes recognized after natural infection (72). 
Approaches to elicit a strong cell mediated immune 
response include DNA-based vaccinations, viral vectors, 
and adjuvants.  In contrast to proteins, recombinant 
DNA plasmids expressing one or more genes from HIV, 
simian immunodeficiency virus (SIV), or chimeric 
SHIV elicit CD8+ T cell responses in nonhuman 
primates (73) and humans (74).  These responses are 
characterized by cytotoxic T cell lysis of antigen 
expressing cells, cellular proliferation to antigen, 
antigen-specific tetramer staining, and IFN-gamma 
secretion in response to peptide antigen (75-77).  
Despite the fact that DNA based vaccines have shown 
protection against HIV-1 challenge in chimps (78),  
DNA vaccines alone are relatively weak immunogens in 
comparison to viral vectors, so several strategies are 
being developed to improve the immunogenicity of 
DNA vaccines in humans (79). 
 

5.2.3. Poxviridae 
Several researchers have used recombinant viral 

vectors encoding one or more HIV or SIV genes to improve 
gene delivery to cells, in order to drive endogenous 
expression and MHC Class I presentation. Canarypox was 
one of the earliest viral vectors to move forward in clinical 
development.  Intramuscular administration leads to 
antigen-specific CD4+ and CD8+ cytotoxic T lymphocytes 
in humans (80, 81), including a memory component, 
defined as CD3+CD8+ (or CD4+) CD45RO+ (82). Viral 
vectors have the additional advantage of stimulating the 
innate immune response.  Canarypox has been shown to 
expand natural killer cells elicit gamma delta cells, as well 
as lead to IFN-gamma secretion in response to vector, but 
not HIV-1, antigens (83). Intramuscular administration has 
also been shown to elicit mucosal CD8+ MHC-Class I 
restricted antigen specific CTL in the rectal mucosa, which 
may be important in preventing a sexually transmitted 
pathogen. Despite these responses, vaccination of 
recombinant canarypox expressing gp120, Gag and 
protease did not afford protection from heterologous HIV-1 
challenge in chimpanzees (84). A second viral vector in the 
poxvirus family is modified vaccinia ankara (MVA), an 
attenuated, non-replicating form of vaccinia virus.  It elicits 
similar antigen-specific CTL against expressed genes in 
macaques (85). 
 
5.2.4. Adenovirus 

Replication-defective adenovirus serotype 5 
(Ad5) is the third vector that has progressed the farthest in 
clinical development.  Adenoviral vectors are advantageous 
because they have a high insert capacity, are highly 
immunogenic, and are easily manipulated for large scale 
production (86). In rhesus monkeys, intramuscular 
immunization of Ad5 expressing SIV Gag led to high 
levels of antigen-specific CD3+ CD8+ T cells by tetramer 
assay and IFN-gamma ELISPOT.  This led to attenuation, 
but not protection, from subsequent SIV challenge (87).  In 
humans, a replication defective adenoviral vector 
expressing Gag, Pol and Env elicited primarily a CD8+ 
response by IFN-gamma ELISPOT and intracellular 
cytokine staining, with 20-30% of responders also 
developing a CD4+ T cell response (Casimiro DR and 
Merck Research Group, 2005, unpublished data). 
 
 5.2.5. Additional Viral and non-viral Vectors 

Measles virus expressing HIV-1 antigens elicit 
effective CTL in mice, and may be a good candidate for 
pediatric vaccines (88). Additional viral vectors that elicit 
HIV-antigen specific CTL in macaques include, but are not 
limited to, recombinant forms of poliovirus (89), 
venezuelan equine encephalitis virus (VEE) (90), vesicular 
stomatitis virus (VSV) (91), and semliki forest virus (SFV) 
(92).  Non-viral recombinant vectors include recombinant 
BCG vector (93), which is capable of eliciting HIV-1 
specific CD8+ effector (CD44hi, CD127-, CD62Llo) and 
central (CD44hi, CD127+ CD62Lhi) memory in mice. 
Salmonella (94) and Shigella (95) induce systemic CTL 
against HIV-1 in mice.  Salmonella, shigella, and 
adenovirus also induce mucosal immunity, which may be 
important in preventing sexual transmission of HIV-1. 
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5.3.  Prime-Boost Strategies 
Those viral vectors previously seen by the human 

immune system have the disadvantage of pre-existing viral 
immunity against the virus, which can diminish delivery of 
the genes of interest to target cells, subsequent antigen 
expression, and immunity.  This is particularly true of 
adenovirus serotype 5, vaccinia virus in smallpox 
vaccinees, poliovirus, and measles virus.  In addition, 
repeated boosting of any viral vector can create anti-vector 
immunity, diminishing the effect of subsequent boosts.  
 

To overcome these limitations, vaccine strategies 
can be combined to elicit a broader synergistic response.  
Different methods of antigen delivery (protein, DNA, viral 
vectors) can lead to qualitatively different T cell responses. 
For example, DNA and MVA control virus similarly with 
differing mechanisms (96). Priming with DNA before a 
viral boost may also help overcome pre-existing anti-vector 
immunity (97). Such combination vaccine approaches are 
known collectively as heterologous prime-boost 
vaccination strategies. 
 

As one example, the heterologous DNA-prime, 
MVA-boost vaccine strategy has proven immunogenic 
against a variety of pathogens in humans (98, 99), and has 
been shown to elicit cellular immunogenicity and control 
viremia after challenge in non-human primates (100-106). 
Sadagopal, et al. nicely demonstrated that 22/23 rhesus 
macaques vaccinated with  DNA-prime, MVA boost 
regimen expressing Gag-Pol-Env, controlled viremia for 
200 weeks after challenge with SHIV 89.6P.  These 
controllers developed high levels of neutralizing antibodies, 
in combination with high levels of antigen-specific CD4+ 
and CD8+ IFN-gamma producing cells 2 weeks after viral 
challenge.  Over time, however, the frequency of Gag-
specific CD8+ cells contracted (0.04-0.16%), while Gag-
specific CD4+ cells expanded (0.02%-0.27%).  A 
significant fraction of both populations produced both IFN-
gamma and IL-2. Overall, successful control was 
characterized by low-frequency, low-breadth CD4+ and 
CD8+ T cells co-producing IFN-gamma  and IL-2 (22).  
Subsequent depletion of CD8+ cells resulted in rebound 
viremia despite high neutralizing antibody levels and 
antigen specific CD4+ cells, confirming that CD8+ cells 
play a central role in long-term viral control  (107).  
Despite this, DNA priming did not significantly augment 
the IFN-gamma ELISPOT response to a Clade-A based 
MVA vaccine in humans (108). 
 

DNA is efficient at priming other viral vectors as 
well, including adenovirus (109), fowlpox (110) and Sendai 
virus (111) However, despite the fact that a DNA prime, 
Ad5 boost elicited a strong Gag-specific CD8+ T cell 
response in baboons (109), the same DNA prime did not 
significantly boost immunogenicity of Ad5Gag in humans 
(E. Emini and Merck Research Team, 2002 – unpublished 
data). 
Finally, heterologous viral prime-boost approaches appear 
better than homologous prime-boost approaches in 
generating CTL, likely due to the differing mechanisms of 
presentation, as well as avoidance of anti-vector immunity. 
Casimiro et al. found higher frequencies of antigen-specific 

IFN-gamma-producing PBMCs Ad5 prime, canarypox 
boost regimen that either vector in homologous prime boost 
(112).  Other heterologous prime-boost viral regimens 
include high levels of antigen-specific CTL, including 
SFV/MVA (113, 114), VSV/Vaccinia (115) and 
VSV/MVA (116). 
 
5.4.  Assay Limitations 

The majority of analysis of T cell response to 
HIV-1 vaccines to date has relied on functional CTL killing 
assays, antigen-specific tetramer staining, or IFN-gamma 
ELISPOT (117-119). However, the advent of multicolor 
flow cytometry (1) allows for finer characterization of these 
responses.  A detailed study of responses to tetanus and 
hepatitis B vaccines using multicolor flow cytometry by De 
Rosa et al. indicated that many CD4+ T cells produced 
interleukin-2 (IL-2) without IFN-gamma.  This study also 
describes a detailed immunologic characterization of four 
individuals who had been vaccinated with a clade A 
candidate DNA based vaccine.  In this very limited sample, 
responses were heterogeneous and included CD4+ T cells 
that secreted IL-2 and/or tumor necrosis factor alpha (TNF-
alpha) without IFN-gamma (120). Therefore, use of the 
IFN-gamma ELISPOT assay alone may be insufficient to 
detect critical memory responses to candidate vaccines (64, 
121). 
 
5.5. Breakthrough Infections 

Our lack of understanding of the true correlates 
of protection from HIV-1 is best evidenced by reports of 
breakthrough HIV-1 infections in subjects previously 
vaccinated in clinical trials.  Three separate trials of 
recombinant gp120 or gp160 antigens, expressed either as 
recombinant proteins or in recombinant vaccinia virus 
reported breakthrough infections in one or more 
individuals, despite development of CTL and antibody 
responses to vaccine (122-124). The only Phase III efficacy 
study of a candidate HIV-1 vaccine to date, consisting of 
rgp120, showed no protection from HIV-1 (71). 
Furthermore, in 28 canarypox vaccinees who later acquired 
HIV-1 infection despite CTL responses, the course of 
infection was not attenuated compared to placebo recipients 
(125). 
 

Betts, et al. recently described the immune 
response in a healthy vaccine volunteer receiving 
recombinant canarypox expressing gp120, gp41, Gag and 
protease.  Detailed flow characterization revealed the 
vaccine induced both Gag-specific central and 
effector/effector memory CD8+ T cells,  defined as CD28+ 
CD27+CCR7+ CD45RO+CD57- and CD28- CD27-CCR7- 
CD45RO-CD57+, respectively.  Of the antigen-specific 
CD8+ cells, more than 25% produced IL-2 in response to 
Gag peptides.  A significant fraction of CD4+ T cells 
produced IL-2 as well.  Despite these varied T cell 
responses, the subject subsequently became infected with 
HIV-1.  Over time, the virus escaped the dominant epitope 
sequences, and the T cell response took on the phenotype 
of a chronically infected subject (126).  Despite our more 
recent understanding of components of protective central 
memory, it is clear we still do not have a full grasp of what 
is required for protective immunity.   
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6. CONCLUSIONS AND PERSPECTIVES 
 

As described above, in the chronic progressive 
stage of disease, HIV-1 specific CD4+ and CD8+ T cells 
become progressively more dysfunctional, and CTLs 
against new and previously targeted epitopes do not fully 
mature, resulting in increasing viral load, and clinical 
immunodeficiency. In large scale (phase III) completed 
vaccination trials, vaccinees acquired HIV-1 infection 
despite documented CTL or neutralizing antibodies 
responses. Indeed, this lack of efficacy prompted the 
development of alternative or complementary strategies to 
attempt to restore antigen specific T cell responses in 
chronically infected patients and to improve the quality of 
HIV-1 vaccine candidates.   Multiple strategies to improve 
the quality, quantity, and duration of the T cell response to 
vaccines, including the use of adjuvant therapies (79) are 
beyond the scope of this review. 
 

We will conclude by focusing on one potentially 
promising strategy, involving the dendritic cell (DCs) to 
restore or stimulate the HIV-1 immune response.  DCs are 
professional antigen presenting and capturing cells that are 
able to stimulate effective immune responses both in vitro 
and in vivo (127). Exploiting the full immunostimulatory 
potential of DCs may be key to achieving an effective 
immune response to prevent or control HIV-1 infection. 
 

Several techniques have been studied to allow 
DCs to present specific antigens, including pulsing with 
peptides, transducing with recombinant viral vectors, 
loading with apoptotic infected cells, or electroporating 
with autologous mRNA.  Using such methods, many 
groups have successfully used DCs expressing HIV-1 
antigens, to stimulate memory or even primary HIV-1 
specific CD8+ T cell responses in vitro (128-133). In those 
studies, the stimulatory effect of the DCs was mostly 
represented by an increase in the frequency of IFN-gamma 
ELISPOT responses and in increased perforin expression of 
the effector T cells. However, as evidenced by the chronic 
infection state, higher quantities of IFN-gamma alone are 
not sufficient to control the viremia. Thus, in addition to 
quantity, the quality of the immune response, in terms of 
differentiation and function, must now be investigated more 
deeply to try to better define correlates of protection. In our 
hands, the use of potent mature DCs to restimulate HIV-1-
specific CD8+ T cells in chronically infected patients with 
high viremia in vitro, does not help to restore the deficit in 
proliferation of those cells (60). This underlines the need to 
determine under which circumstances DC-based 
interventions may be appropriate to help establish a good 
immune response and not to exhaust an already exhausted 
one. 
 

Interestingly, in the murine model of Listeria 
monocytogenes immunization, it has been shown that using 
peptide-pulsed DCs as an adjuvant accelerates the 
generation of memory T cells. In contrast, the 
administration of CpG oligodeoxynucleotides, a potent 
inflammatory agent that allows the action of IFN-gamma 
on the responding T cells, prevents memory T cells from 

developing (134). This reinforces the concept that it is 
important to maintain a relatively quiescent immune system 
while establishing a memory T cell response. 
 

Importantly however, Lu and coworkers have 
published promising results regarding therapeutic DC 
vaccination in chronically HIV-infected individuals. These 
subjects, untreated but with a stable viral load for at least 6 
months, were immunized with autologous monocyte 
derived DCs loaded with autologous aldrithiol-2 inactivated 
HIV-1. In the majority of subjects, viral load was 
suppressed for at least one year. Control of viremia was 
associated with a robust HIV-1-specific CD4+ T helper type 
1 response, comprised of IFN-gamma and IL-2 producing 
CD4+ T cells,  and perforin expressing CD8+ effector cells 
(135).  Again, this demonstrates that HIV-1 specific CD4+ 
T cells can sustain and restore HIV-1 specific CD8+ T cell 
function, as also demonstrated by Litcherfeld and colleges 
(61) . 
 

It is interesting to note that in a mouse model, 
one single vaccination with HIV-1 Gag fused to anti DEC-
205, a DC-targeting antibody, leads to a high frequency of 
IFN-gamma and Il-2 Gag-specific CD4+ T cells which 
persist long-term, and protect from virus challenge in a 
vaccinia-Gag challenge model (136). 
 

Finally, alternative strategies using a combination 
of co-stimulatory molecules expressed at the surface of 
APC demonstrate that expansion and acquisition of effector 
function by antigen experienced CD8+ T cells can be 
achieved.   Thus, Bukczynski and colleges have shown that 
the dual co-stimulation with CD80 and CD137L of HIV-1-
specific CD8+ T cells in vitro can lead to better expansion 
and accumulation of effector molecules such as perforin 
(137). 
 

Recently, a new approach based on inhibition of 
antigen presentation attenuators (SOCS1) in murine DCs 
have demonstrated that SOCS1 silenced DCs broadly 
induced enhanced HIV-1- specific CTLs and CD4+ helper 
T cells as well as antibody responses. Furthermore, the co-
immunization with SOCS1 siRNA expressor DNA 
significantly enhanced the potency of HIV-1 DNA 
vaccination (138).  
 

Globally, this review reminds us that the 
requirements for controlling HIV-1 infection are complex, 
and not completely defined.  In addition to a strong 
neutralizing antibody response, and a polyfunctional CD4+ 
and CD8+ T cell response, several other factors may 
influence the ability of a host to control HIV-1 infection.  A 
more detailed dissection of the quality of T cell response 
must be systematically addressed in humans and animals 
models capable of controlling HIV-1 viral replication to try 
to better define correlates of immune protection. 
Determinants of the quality of T cell response include the 
breadth of the response to various HIV-1 antigens, multiple 
cytokine secretion, memory phenotype, proliferation in 
response to antigen re-exposure, cytotoxicity, regulatory 
functions, anatomic location, and the kinetics of response.  
Thus ,in addition to an adequate memory response, CTL 
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expansion must occur rapidly enough to control initial 
infection (139). Localization of the response to the mucosal 
compartment may therefore be important in containing 
initial infection. 
Attempts to improve the method of HIV-1 vaccine delivery 
are also critical, as the route, dosage, and vector used for 
vaccination influence the quality of the T cell response 
(140). Improved understanding of the quality of immune 
responses induced by both natural HIV-1 infection, as well 
as by various vaccine regimens, will allow us to design 
better strategies to direct the initial vaccine response 
towards a more protective response against HIV-1.  
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