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1.  ABSTRACT 
 

Cardiovascular disease is a major public health 
problem in the United States.  In many survivors, extensive 
tissue damage from myocardial infarction leads to the 
development of congestive heart failure. Unfortunately, 
thus far, heart transplantation has remained the only viable 
treatment for end-stage congestive heart failure.  Lack of 
available donor hearts has thus led to search for alternative 
therapies.  Among these, cell therapy has raised a great 
enthusiasm for myocardial repair.  However, it suffers 
limitations associated with cell retention, survival and 
differentiation. In addition, the results from preclinical and 
clinical studies based on such treatments have generated 
mixed results. For this reason, hybrid therapies that 
incorporate tissue engineering are being developed as 
potentially new therapeutic approaches for repair of 
myocardial tissue.  Here, we review the current progress in 
cardiac tissue repair and engineering; and discuss the new 
emerging technologies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  INTRODUCTION 
 

Coronary artery disease (CAD) affects an 
estimated 60 million patients in the US alone.  It is 
estimated that this year, an additional 1,100,000 Americans 
will experience either a new or recurrent myocardial 
infarction. CAD is the leading cause of death and carries over a 
45 percent mortality rate in the first year (1, 2).  Surviving 
patients often experience severe myocardial damage that 
ultimately leads to debilitating congestive heart failure. Due to 
high incidence and debilitation caused by myocardial 
infarction, the annual cost of healthcare for this disease is 
approximately 186 billion dollars (1, 2).  So far, the only 
successful treatment for end-stage heart failure is heart 
transplantation that can be offered to selected patients 
based on the availability of donor hearts (3, 4). However, 
recent progress in tissue engineering has opened a new 
strategy for myocardial tissue repair.  Here, the use of this 
new technology for enhancement of cell based treatment 
strategies for myocardial infarction will be reviewed. 
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3.  PATHOPHSIOLOGY OF A MYOCARDIAL 
INFARCTION 
 

A myocardial infarction (MI) can lead to 
congestive heart failure even with the most advanced 
medical treatment.  Cardiomyocytes undergo necrosis after 
a MI. Subsequently, macrophages, monocytes, and 
neutrophils infiltrate the infarcted area, resulting in 
inflammation and formation of granulation tissue around 
the necrotic tissue.  Fibroblasts infiltrating the infarcted 
area secret matrix metalloproteases (MMPs).  The 
extracellular matrix (ECM) is degraded, causing myocyte 
slippage at the border of the MI leading to ventricular wall 
thinning and ventricular dilation.  At the end of the 
inflammatory response, scar tissue forms as 
cardiomyocytes in the border zone undergo apoptosis and 
myocardial fibrosis occurs in both the infarcted area and 
noninfarcted border zone (5).  At the same time, the 
vasculature in the infracted area changes as the number of 
vessels decreases and the size increases (6).  Therefore, the 
negative remodeling process of the left ventricle following 
a MI includes the loss of cardiomyocytes, change of the 
vasculature and modification of the ECM.  These changes 
contribute to left ventricular dilatation and congestive heart 
failure. 
 
4.  IN SITU CELLULAR CARDIOMYOPLASTY 
 

For over a decade, the possibility of cell 
transplantation for myocardial regeneration and repair has 
been investigated.   Issues common to all cell types used for 
cardiac repair are survival of engrafted cells, 
differentiation, host tissue-transplant cell interactions, and 
electromechanical coupling (7). A variety of cell types have 
been reported to be beneficial in myocardial repair.  This 
has led investigators searching for “the best cell type for 
myocardial regeneration”.  
 
4.1. Potential candidate cells for cardiac transplantation 

Cell types including fetal, neonatal, and adult 
cardiomyocytes (7), skeletal myoblasts (8), bone marrow 
progenitors cells (9) and embryonic stem cells (10, 11) 
have been considered for cardiac repair. Adult 
cardiomyocytes were unable to survive even when 
transplanted into normal myocardium.  Both fetal and 
neonatal cardiomyocytes were able to form viable grafts 
and expressed cadherin and connexin 43 (gap junction 
protein), which are necessary to form electromechanical 
junctions (12).  Although the fetal and neonatal 
cardiomyocytes were able to form these junctions, they are 
currently not a feasible source of transplant cells due to the 
many ethical and donor availability issues. Cardiac stem 
cells are the perfect candidate for MI repair.  However, they 
are limited in number within the myocardium and are 
currently difficult to expand.  Embryonic stem cells 
injected post-infarction have been shown to produce long-
term improvement in cardiac function over 32 weeks (10).  
However, the difficulty in amplifying the cells in culture, 
the possibility of feeding layer contamination of human 
embryonic stem cell lines, potential for teratoma formation 
and ethical concerns have limited the use of embryonic 
stem cells.  Skeletal myoblasts, on the other hand, are not 

subject to such ethical issues.  These cells may be isolated 
from a muscle biopsy and subsequently expanded in vitro.  
They have been shown to survive and form intercalated 
discs in myocardium (8); however, they do not form gap 
junctions and thus it is unlikely that they contract 
synchronously with the surrounding cardiomyocytes (13).   
 

Recent clinical trials utilizing autologous skeletal 
myoblasts have demonstrated modest improvements in left 
ventricular  (LV) function and a low incidence of 
hospitalizations for heart failure patients (14, 15).  
However, electrical instability has been seen in some 
patients transplanted with skeletal myoblasts (8). Therefore, 
use of skeletal myoblasts for cardiac repair may be limited.  
 
4.2. Hematopoietic stem cell transplantation 

Tomita et al reported that autologous transplanted 
nonmyogenic stem cells from bone marrow repaired 
cryoinjured myocardial injury by reducing the scar size, 
increasing systolic pressure, and inducing angiogenesis.   
Interestingly, these nonmyogenic stem cells transdifferentiated 
into muscle like cells after treatment with 5-azacytidine in rats 
(16).  Human bone marrow derived G-CSF mobilized CD34+ 
cells were shown to induce vasculogenesis and angiogenesis in 
rat MI model and recover LV ejection fraction by 22% (17).   
Orlic et al reported myocardium regeneration, new vessel 
formation, and further cardiac function improvement and 
decreased mortality by the use of c-kit+, lin- bone marrow 
derived stem cells in an syngeneic mouse model with total 
ligation of left anterior descending artery (LAD) (18, 19).  
Other studies have also reported functional improvement and 
cell transdifferentiation into cardiomyocytes, smooth muscle 
cells and endothelial cells (20).   These studies have shown 
hematopoietic stem cell transplantation improves cardiac 
function. The possible mechanisms could involve cell 
transdifferentiation to replenish the infarcted area, improved 
blood supply, an additional cell source to the native 
hematopoietic stem cells mobilized after acute MI (21) to 
minimize the cell loss in the remodeling process, and/or a 
paracrine effect to accelerate the healing process.   
 

A clinical phase I study showed improvement in 
LV dimension and LV ejection fraction after injecting 
autologous CD133+ cells into infracted myocardium (22).  
Most of the transplanted hematopoietic stem cells (HSC) 
remained undifferentiated in the infarct; while some 
differentiated into endothelial phenotype (3.3%), and very 
few differentiate into cardiomyocyte phenotype (0.02%).  
These data are comparable to those seen for cell fusion 
(23).  A prevalent hypothesis is that stem cells improve 
cardiac function through a paracrine effect.  This notion is 
supported by VEGF overexpressed stem cells enhancing 
the improvement in LV function more than the control in a 
rat MI model (24).  Use of HSC for myogenesis is fading 
with the report of this cell type unable to transdifferentiate 
into myogenic cells but retaining the hematopoietic fate in 
a mouse model (13, 25, 26).  This clinical study suggests 
that the benefit is derived from the revascularization in the 
infracted area and/or a paracrine effect.   
 

Clinical studies have substantiated preclinical 
reports that HSC improve myocardial function following an
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Table 1.  Polymers used in myocardial repair 
Type of Polymers Application Reference 
Natural polymers   
• Alginate ESC differentiation, Scaffold for fetal cardiomyocytes, stand alone matrix 70, 87, 88 
• Collagen type I Stand alone matrix, scaffold for ESC 47, 69, 89 
• Collagen type I and Matrigel  Scaffold for neonatal cardiomyocytes 90, 91 
• Fibrin Stand alone matrix, scaffold for skeletal myoblasts, bone marrow mononuclear cells, or growth factors 47, 48, 64-67 
• Gelatin  Stand alone matrix, scaffold for fetal cardiomyocytes, scaffold for growth factors 74, 88 
• Matrigel Stand alone matrix, scaffold for ESC 47, 71, 72 
Synthetic polymers   
• Polyglycolide/polylactide Scaffold with dermal fibroblasts 92 
• PLGA Scaffold for ESC 46 
• PLLA Scaffold for ESC 46 

Polypropylene  Left ventricular restraint device 93-96 
Polyester  Left ventricular restraint device 97-103 
PTFE, PLA mesh, collagen 
type I and Matrigel 

Stand alone scaffold or with bone marrow derived mesenchymal progenitor cells 104 

PNIPAAM Cell sheet of neonatal cardiomyocytes or adipose-derived mesenchymal stem cells 105 
Self-assembling peptides Stand alone matrix, Scaffold for neonatal cardiomyocytes, or scaffold for growth factors 75, 76 

 
ischemic insult (27, 28).  Academicians and industry 
groups have demonstrated the feasibility of harvesting HSC 
from cardiac patients (29-32).  Despite these encouraging 
advances, advocates recognize the variability in clinical 
response with potential major limitations due to insufficient 
homing and retention of HSC within the injured 
myocardium (33). 
 
4.3. Mesenchymal stem cell transplantation 

Mesenchymal stem cells (MSCs) have also 
shown promise for cellular cardiomyoplasty.  The plasticity 
of MSCs reignites the idea of myogenesis (34).  Shake et al 
first reported autologous transplantation of MSCs after ex 
vivo expansion shows better contractility and less wall 
thinning in a porcine MI model (35).  Transplantation of a 
cocktail of MSCs and other type of cells or growth factors, 
like fetal cardiomyocytes (36), skeletal myoblast (37), 
and VEGF (24), attenuates the negative remodeling after 
a MI.  MSCs can be readily transduced with genes, like 
Akt (38), and this feature can be used to direct the 
differentiation of MSCs.  An in vitro study demonstrated 
that MSCs are able to migrate through an endothelial 
monolayer in 30min (39); therefore suggesting that 
MSCs are able to home to a MI through capillaries.  
Therefore, an intravascular mode of administration may 
be possible.  Restoration of in vivo conduction has also 
been suggested due to the ability of human MSCs to 
form functional gap junctions with rat cardiomyocytes 
and restore conduction in vitro (40).  Additionally, 
MSCs demonstrate immune tolerance as MSCs lack the 
major histocompatibility complex II (MHC II) antigens 
upon differentiation (41), and inhibit T cell proliferation 
(42); thus, allogeneic transplantation is possible with MSCs 
(43).   
 
4.4. Limitations of stem cell delivery 

Stem cells have been administered 
systematically, intracoronary, or directly injected into the 
myocardium in most of the cellular cardiomyoplasty 
studies.  Although positive results have been observed, the 
accumulation of transplanted cells in other organs as the 
lung (44), cell death because of an unsuitable milieu, poor 
retention and the low transdifferentiation rate into 
cardiomyocytes are issues which need to be addressed to 
increase the efficacy of stem cell therapy.  

 
5.  CARDIAC TISSUE ENGINEERING 
 
5.1. Extracellular matrix 

The emerging fields of tissue engineering and 
biomaterials have begun to provide potential treatments for 
myocardial repair (45). Tissue engineering approaches 
utilize growth factors, cellular transplantation, and 
biomaterial scaffolds to repair lost or damaged tissue. 
Biodegradable polymers have traditional been used as 
scaffolds to enhance attachment, migration, and survival of 
transplanted cells (46, 47).  More recently, biopolymers 
have been shown to be biologically active agents producing 
tissue angiogenesis (47, 48), activating cells to produce 
cytokines (47), enhancing cell retention (48) and 
influencing cell differentiation (49).  Biological effects of 
polymers have been shown to be influenced by integrin 
binding sites, matrix pore size and substrate topography 
and substrate rigidity (50).  Candidate polymers used for 
cell scaffolds are generally categorized as naturally-derived 
or synthetic polymers (45, 51-59) (Table 1).   Surface 
modification of polymers or the formation of nanoparticles 
has enhanced the applicability and application of polymers 
for tissue engineering (49, 60). 
 
5.2. In vitro approaches 

A hybrid approach utilizing tissue engineering 
may help to overcome the deficiencies of cellular 
cardiomyoplasty (45).  Tissue engineering approaches are 
designed to repair lost or damaged tissue through the use of 
growth factors, cellular transplantation and biomaterial 
scaffolds. Cardiac tissue engineering can be categorized 
into in vitro and in situ approaches.  For in vitro 
approaches, the myocardial substitute is developed outside 
the body by growing appropriate cells in a 3D scaffold 
under precise control of the culture condition.  This 
construct is transplanted to the scar region to replace the 
lost myocardium. Pioneering studies have been performed 
using neonatal rat or chick embryo cardiomyocytes to 
construct 3D myocardial tissue.  The cardiomyocytes are 
seeded on different polymer scaffolds, like alginate (61), 
collagen (62), Matrigel (63), or the mixture of some of 
these polymers.  Exciting results, such as vigorous 
cardiomyocyte contraction, have been observed in these 
constructs.  However, a large portion of the cells in the 
constructs undergo apoptosis after transplantation due to
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Figure 1. Influence of extracellular matrix.  Extracellular 
matrix proteins influence cell apotosis, cell migration and 
differentiation.  Characteristics of pore size, integrin 
binding sites and rigidity all play a role of extracellular 
matrix proteins' influence on cells. 
 
lack of vascularization within the construct. Additionally, 
placement of any cardiac patch would require 
cardiothoracic surgery.  An ideal construct should be able 
to restore the contractility of the myocardium, promote 
arteriogenesis in the construct and the damaged area, and 
repair cardiac conduction abnormalities.  Besides these 
functional requirements, the construct should be 
biocompatible, in other words, it would be nontoxic, not 
provoke immuno-rejection, and be biodegradable at a rate 
compatible with the formation of native ECM.  Although 
exciting results have been reported, an ideal construct does 
not exit so far.  
 
53.  In situ approaches 

In situ tissue engineering approaches combine 
polymers and cells directly injected into the injured 
myocardium.  Instead of an external bioreactor to grow 
myocardial tissue, in situ approaches utilize the body as its 
own bioreactor.  This form of tissue engineering can be 
administered via a percutaneous catheter delivery, thus 
clinically more feasible than the surgically applied in vitro 
developed patches.  However, engineering of the tissue is 
less controllable compared to the in vitro approach.  A 
number of investigators have used various polymers as 
fibrin glue (47, 48, 64-67), collagen (47, 68, 69), alginate 
(70), matrigel (47, 71-73), collagen type I (74), geletin (74) 
and self-assembling peptides (75, 76) alone or in 
combination with cells for myocardial repair.  In addition to 
the passive role of mechanical support for cell adhesion and 
survival, biopolymers can actively influence the cell fate 
after transplantation (Figure 1).  
 

Polymers can be biologically active agents.  
Biopolymers have been shown to promote angiogenesis in 
infracted myocardium (47, 48, 69, 70).  The increased 
vascularization may provide an environment more suitable 
for cell survival.  ECM proteins are known to have integrin 
binding sites.  In addition to increasing cell adherence, 
activation of integrins can activate cells (77, 78).   Fibrin 

glue has been shown to activate human MSCs to produce 
basic fibroblast growth factor leading to increased 
angiogenesis and decreased ventricular dilatation following 
a myocardial infarction (Huang, et al., unpublished data).   
It is presumed that the integrin binding sites contained by 
fibrin glue play a role in the activation of the MSCs.  
 

Engineering specific integrin binding sites into 
polymers can influence transplanted cells.  Modification of 
the surface of a polymer with differentiation related ligands 
may guide the differentiation of the stem cell in this 
scaffold.  One commonly used ligand is the peptide 
sequence Arg-Gly-Asp (RGD), the most abundant integrin 
binding site on native ECM.  Skeletal myoblast phenotype 
can be controlled by altering the conjugated RGD density 
on alginate (79).  The selection of a peptide sequence of 
specific integrin binding site may affect stem cell 
differentiation.   In a similar manner, peptide modification 
of polymers may be able to activate cells to produce 
beneficial cytokines or growth factors.  Therefore, 
controlling and maintaining differentiation of a transplanted 
cell may be possible. 
 

Intramyocardially injected polymers can be used 
as a gene-activated matrix.  Fibrin glue has been shown to 
synergistically increase vascularization when combined 
with pleiotrophin plasmid, an angiogenic growth factor 
(65).  This suggests that a scaffold can increases the 
transfection efficiency of the plasmid as a gene-activated 
matrix.  The gene-activated matrix can carry genes as Akt 
or stromal cell derived factor (SDF) that may help stem cell 
survival, differentiation, and/or migration without the use 
of viral vectors (38, 80).  
 
6.  ANTIBODY TARGETING 
 

To overcome challenges of delivering large 
quantities of stem cells to injured myocardium, a novel 
strategy to target stem cells to the ischemic myocardium 
has been developed (81, 82).  The use of bispecific 
antibodies was adopted from the cancer field where 
immunoadoptive therapy has been developed to effectively 
combat cancer (83-85). The basic principle is to conjugate 
an antibody directed at a unique antigen expressed in the 
infarct area with another antibody directed at a surface 
antigen of the stem cell.  Arming the stem cells with such 
bispecific antibodies before intravenous administration 
targets the stem cells specifically to the infarcted area 
(Figure 2). The ability to specifically target stem cells to 
injured myocardium overcomes many of the variables that 
can affect homing of stem cells.  These variables include 
the expression of tissue injury receptors and the analogous 
cell ligands.  Lum et al reported targeting of  hematopoietic 
stem cells to an acute MI with the aid of an anti-c-kit X 
anti-VCAM-1 bispecific antibody (82).  A follow up study 
targeting human CD34+ cells to a MI in a xenogeneic rat 
model demonstrated that the CD34+ cells were targeted 
specifically to areas of myocardial injury (81).  Despite a 
low transdifferentiation rate into myocardial cells, the 
delivery of the bispecific targeted CD34+ cells was 
accompanied by an improvement of LV function compared 
to control animals.  These results support the current
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Figure 2. Bispecific antibody targeting of myocardial 
infarction.  Occlusion of the left anterior artery leads to 
myocardial injury (blue scar) and a surrounding rim of 
ischemic, but viable myocardium.  Chemical cross-linking 
of the anti-stem cell (SC) associated antigen to the anti-
injury associated antigen (IAA) forms the bispecific anti-
SC x anti-IAA that binds to the SC and targets the SC to 
the injury antigen in the myocardial infarction.  BiAb 
Arming greatly enhances SC localization to the infracted 
myocardial region and leads to a decrease in myocardial 
injury and improved cardiac function. 

 
literature that the predominant benefit from hematopoietic 
stem cells is from angiogenesis and/or a paracrine effect.  
The improved function derived from intravenously 
delivered armed stem cells were comparable to that 
obtained by direct intramyocardial injections of CD34+ 
cells (86).  The advantages of an intravenous route of 
administration would include a less invasive approach of 
delivering stem cells for organ repair and the ease of 
multiple doses of stem cell therapy.  These proof of concept 
studies provide a reliable and effective way to target stem 
cells to the infarct area; and provide a new mode of 
delivering tissue engineering components to injured organs 
for tissue repair/regeneration.   
 
7.  CONCLUSION AND PERSPECTIVES 
 

The field of cardiovascular tissue engineering is 
still in its infancy state for myocardial repair and 
regeneration. Initial studies of in situ cellular 
cardiomyopathy show promise for myocardial repair and 
are aided with the use of hybrid approaches integrating 
polymer scaffolds.  The integration of traditional tissue 
engineering concepts coupled with newer materials, growth 
factors and delivery platforms offer excitement and 
promise for the future of cardiovascular tissue engineering. 
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