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1. ABSTRACT 
 

Measles is caused by infection with measles virus 
(MV), a negative strand RNA virus in the Morbillivirus 
genus of the Paramyxoviridae family.  Measles is a highly 
infectious disease of humans spread by the respiratory route 
and characterized by fever and rash. Important 
complications include secondary infections associated with 
MV-induced immune suppression and the neurological 
disease post-infectious encephalomyelitis.  The virus was 
first isolated in 1954 paving the way for development of the 
vaccines that have played an essential role in decreasing the 
worldwide morbidity and mortality due to measles.  One of 
the first vaccines was a formalin-inactivated vaccine that 
provided only short-lived protection from infection and 
primed for a more severe disease, atypical measles. This 
vaccine was withdrawn.  The other early vaccine was a live 
attenuated vaccine (LAV) developed by passage of the 
original isolate of Edmonston virus through cells in culture, 
primarily chicken cells. LAV was reactogenic and often 
given along with immune globulin.  Further passage of the  

 
 
 
 
 
 
 

Edmonston virus resulted in further attenuation and the 
well-tolerated vaccines in common use today. LAV is 
generally given between 9 and 15 months of age.  
Seroconversion at 9 months is about 85% and at 12 months 
is about 95%.  At younger ages seroconversion is hampered 
by the presence of maternal antibody and the immaturity of the 
immune system.  The R0 (numbers of people in a susceptible 
population that will be infected by one person with the disease) 
for MV is 15-20 and interruption of endemic transmission of 
MV in a population requires that >95% of the population is 
immune.  A second dose is necessary to achieve this level and 
can be given either as a part of a routine immunization 
program or through periodic mass vaccination campaigns.  
Research toward improved measles vaccines has focused 
on development of a vaccine that could be given before 6 
months of age, needle-less delivery and heat stability. 
Several new recombinant vaccines expressing MV proteins 
have demonstrated induction of protective immunity in 
macaques and are in various stages of development. 
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2. INTRODUCTION 
 

Measles is a highly contagious disease of humans 
characterized by a prodromal illness of fever, coryza, 
cough, and conjunctivitis followed by the appearance of a 
generalized maculopapular rash. There is an increased 
susceptibility to other infectious diseases that is associated 
with measles virus (MV)-induced immune suppression and 
responsible for most measles-associated deaths.  Despite 
the availability of a safe and efficacious live attenuated 
vaccine, measles remains a major cause of morbidity and 
mortality in children in resource-poor countries and a cause 
of continuing outbreaks in industrialized nations. 

 
3. MEASLES VIRUS AND ITS REPLICATION 
 
3.1. Virus and viral proteins 

MV is an enveloped, nonsegmented, negative-
strand RNA virus first isolated in 1954 by Enders and 
Peebles from the blood of a child with measles (1).  MV is 
a member of the Morbillivirus genus of the 
Paramyxoviridae family that also includes canine 
distemper and rinderpest viruses, important causes of 
disease in dogs and cattle.  Virions are pleomorphic and 
range in size from 100-300 nm.  The envelope has surface 
projections composed of the viral hemagglutinin (H) and 
fusion (F) glycoproteins.  The matrix (M) protein lines the 
interior of the virion envelope.  The helical nucleocapsid is 
formed from the genomic RNA wrapped with the 
nucleocapsid (N) protein and is packed within the envelope 
in the form of a symmetrical coil with the phosphoprotein 
(P) and large polymerase (L) proteins attached. 

 
The N mRNA is the first transcribed from the 

genome and N is the most abundant of the viral proteins. N 
binds both to RNA and to P and is required for 
transcription and replication. The conserved N-terminal 
portion of the protein is required for self-assembly into 
nucleocapsids and for RNA binding (2-6).  The C-terminal 
125 residues are more variable and this domain belongs to a 
family of proteins with intrinsically disordered regions 
structurally similar to the acidic activation domains of 
cellular transcription factors (7-10).  

 
The P protein is a polymerase cofactor activated 

by phosphorylation that forms trimers and links L to N to 
form the replicase complex (11). The P gene of MV, like 
many members of the Paramyxoviridae family, encodes 
nonstructural proteins in addition to P. C is a basic protein 
translated using an initiator methionine codon in an 
overlapping reading frame (12).   V shares the initiator 
methionine and the amino terminal 231 amino acids of the 
P protein, but a non-templated guanosine residue is added 
through RNA editing that shifts the reading frame to 
produce a different C-terminus that is cysteine-rich and has 
zinc-binding properties (13, 14). Neither C nor V is 
necessary for MV replication (15, 16), but both interact 
with cellular proteins to regulate the response to infection 
(17, 18).  

 
H is the receptor-binding protein and an 

important determinant of cellular tropism.  It is a type II 

transmembrane glycoprotein that resides on the surface of 
infected cells and of virions as a disulfide-linked 
homodimer which self-associates to form tetramers. H has 
a 34 amino acid cytoplasmic tail preceding a single 
hydrophobic transmembrane region and a large C-terminal 
ectodomain with a propeller-like structure and 13 strongly 
conserved cysteines. F is a highly conserved type I 
transmembrane glycoprotein synthesized as an inactive 
precursor Fo that is subsequently processed to the active 
disulfide-linked F1 and F2 that cooperate with H for fusion 
and entry (19).  

 
3.2.  Cellular receptors  

Two receptors have been identified: membrane 
cofactor protein (MCP) or CD46 (20, 21) and signaling 
lymphocyte activation molecule (SLAM) or CD150 (22).  
CD46 is a widely distributed human complement 
regulatory protein expressed on all nucleated cells (23, 24).  
It acts as a cofactor for the proteolytic inactivation of 
C3b/C4b by factor I (25), but also induces proliferation and 
differentiation of regulatory T cells (26). SLAM is an 
important costimulatory molecule expressed on cells of the 
immune system (27, 28). The cytoplasmic domain has 
tyrosines and SH-2 domain-binding regions that constitute 
an immunoreceptor tyrosine-based switch motif (ITSM) 
that binds small SH-2 domain adaptor proteins important 
for cell signaling (27-29). Both vaccine and wild type 
strains of MV can use SLAM as a receptor (28-30). 
Vaccine strains tend to use CD46 efficiently while wild 
type strains often do not (28, 30). The receptor binding 
regions for CD46 and SLAM on H are contiguous or 
overlapping and most H proteins can bind both receptors, 
but affinity and efficiency of entry differ (32-36).  In 
general, binding affinity for SLAM is higher than for CD46 
(33). Differences in the efficiency of receptor usage may 
involve interactions with F, in addition to H (37, 38). 

 
MV probably uses at least one additional 

receptor.  The distributions of SLAM and CD46 in tissues 
do not account for the tropism and sites of MV replication 
in acute infections where epithelial and endothelial cells, as 
well as cells of the immune system, are infected (39-42) or 
in chronic infections where cells of the central nervous 
system (CNS) are important targets for infection (23, 43).  
In addition, several in vitro studies have shown that 
infection can occur independent of either CD46 or SLAM 
(37, 42-44). Receptors used by attenuated vaccine strains 
adapted to growth in cells from nonsusceptible hosts 
probably represent an additional category of MV receptors 
that have not been identified (45). 

 
3.3. Sequence and antigenic variation  

Estimates of MV mutation rates range from 10-4 
to 10-3 per nucleotide per year (46). Strains separate into 
eight different clades (A-H) and at least 23 different 
genotypes based on the sequence of the variable C-terminal 
450 nucleotides of N (47). Identification of genotypes has 
been useful for analysis of the molecular epidemiology of 
measles.  Several lineages of MV that have characteristic 
temporal and geographic distributions have been identified 
(48, 49).  Some are localized to specific regions of the 
world and some are extinct, but most are widely 
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distributed. Assembly of an increasingly large database of 
MV genotypes has aided in the identification of global MV 
transmission pathways and has become increasingly 
important as control programs are implemented and 
classification of cases as imported or indigenous is 
necessary (50). 

 
Although the H gene sequence is variable, 

particularly in the glycosylation region (51), MV is 
relatively stable antigenically. Antisera from individuals 
infected decades ago retain the ability to neutralize current 
wild type strains of MV and vice versa, although with 
varying efficiency (52). 

 
4. MEASLES AND ITS COMPLICATIONS 
 

Measles is a human disease that is spread by the 
respiratory route.  There is a latent period of 10-14 days 
and a 2-3 day prodrome of fever, coryza, cough, and 
conjunctivitis followed by the appearance of a 
characteristic maculopapular rash.  The onset of the rash 
coincides with the appearance of the immune response and 
initiation of virus clearance.  Recovery is accompanied by 
lifelong immunity to reinfection (53) and, in unvaccinated 
populations measles is typically a disease of childhood. 
Complications include increased susceptibility to other 
infections that can cause diarrhea or pneumonia, the 
autoimmune diseases post-infectious encephalomyelitis and 
the late persistent CNS infection subacute sclerosing 
panencephalitis (SSPE). In addition, individuals with 
deficits in cellular immunity can develop progressive MV-
induced giant cell pneumonia or inclusion body 
encephalitis (54-56). 
 
4.1. Virus replication and spread  

MV is spread from infected to uninfected 
individuals by the respiratory route via aerosol or 
respiratory droplets. Initial infection is established in the 
respiratory tract with virus replication in tracheal and 
bronchial epithelial cells and pulmonary macrophages (57).  
From the respiratory tract there is extension to local 
lymphatic tissues, perhaps carried by pulmonary 
macrophages or dendritic cells (58-60). Amplification of 
virus in regional lymph nodes results in spread of virus 
through the blood in monocytes, T cells and B cells to 
infect a variety of organs (61-63). Lymphocytes and 
dendritic cells produce little virus unless activated (64, 65).   

 
Primary and secondary lymphoid tissues, 

including thymus, spleen and appendix, are prominent sites 
of secondary virus replication (57). MV also spreads to 
numerous other organs, including the skin, conjunctivae, 
kidney, lung, gastrointestinal tract, respiratory mucosa, genital 
mucosa, and liver. In these various sites the virus replicates 
primarily in endothelial cells, epithelial cells, and monocytes or 
macrophages (40, 61, 66, 67). Pathologic examination of 
infected tissues shows multinucleated epithelial giant cells that 
can also be readily demonstrated in nasal secretions and the 
conjunctivae during the prodrome and first days of the rash 
(68, 69).  MV-infected epithelial cells are also shed into the 
urine (68). The initial event in formation of the measles 
rash is the infection of dermal endothelial cells (70) followed 

by spread of infection into epidermal keratinocytes (67) and 
infiltration of mononuclear cells into the area of infection.  
Epidemiologic data suggest that individuals become 
infectious for susceptible contacts a few days before the 
onset of the rash and remain infectious during the rash.  
During this time virus can be cultured from the 
nasopharynx, conjunctivae, and mouth (71), suggesting that 
the respiratory tract is the site of virus release.  

 
5. THE IMMUNE RESPONSE IN RECOVERY AND 
PROTECTION 
 

The immune responses to MV are important for 
clearance of virus and recovery from infection, for several 
of the clinical manifestations of measles and for 
establishment of long-term protective immunity. The roles 
of various components of the immune response in recovery 
from infection have been deduced from the outcome of 
infection in patients with immune deficiencies and from 
studies of monkeys (72-75). Although it is difficult to 
isolate MV after the rash is cleared, MV RNA can be 
detected for many weeks indicating that complete viral 
clearance is a prolonged process (73, 76-78). In general, 
individuals with deficits in antibody production recover, 
while individuals with deficits in cellular immune 
responses are prone to slowed clearance and progressive 
disease. 

 
5.1. Innate responses 

MV infection of some types of cells in vitro 
induces production of interferon (IFN)-α and IFN-β, but 
IFN induction by wild type strains is generally less efficient 
than by vaccine strains (79). Increased levels of IFN and 
IFN-induced proteins are detectable in blood after measles 
immunization (80), but elevated plasma levels of 
biologically active IFN have not been documented during 
natural infection (81, 82). MV shuts down IFN production 
by plasmacytoid dendritic cells, but stimulates IFN 
production by myeloid dendritic cells in vitro (83; 84). 
Induction of IFN mRNA and protein synthesis may occur 
at the cell surface through signaling initiated by interaction 
of the virus with CD46 or toll-like receptor (TLR)-2 or 
after virus has entered the cell (85-87). MV activates 
signaling pathways involving the transcription factors NF-
κB and IRF-3 (85, 88).  

 
MV replication is sensitive to inhibition by the 

IFN-inducible protein MxA (89). Although innate 
responses probably contribute to control of virus replication 
during the incubation period, the onset of clinically 
apparent disease coincides with the appearance of MV-
specific adaptive humoral and cellular immune responses.    

 
5.2. Antibody responses  

Antibodies are first detectable when the rash 
appears (90-92).  The isotype of MV-specific antibody is 
initially IgM followed by a switch to IgG3 and then, in the 
memory phase, to IgG1 and IgG4 (90, 93).  IgG is initially 
of low avidity, but avidity increases steadily over several 
months (94).  IgA, IgM, and IgG antibodies to MV are 
found in secretions and sampling of saliva has provided a 
noninvasive method for determining immune status (95).  
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The most abundant and most rapidly produced 
antibody is to N (92).  Because of the abundance of anti-N 
antibody, absence of this antibody is a reliable indicator of 
seronegativity.  The M protein elicits only small amounts of 
antibody, except in atypical measles (92, 96).  Antibodies 
to H are the primary antibodies measured by tests based on 
neutralization of virus infectivity  (97, 98). Human 
convalescent sera show reactivity to linear epitopes, as well 
as to epitopes dependent on conformation and 
glycosylation (99-101). Major conformational epitopes 
have been localized to regions between amino acids 368-
396 and in the SLAM-binding region  (102, 103). 
Essentially all of these epitopes are predicted to be a part of 
exposed surfaces on top of the molecule (102; 104). 
Antibodies to F contribute to virus neutralization, probably 
by preventing fusion of the virus membrane with the cell 
membrane at the time of virus entry (105, 106).   

 
Antibody can protect from MV infection and may 

contribute to recovery from infection (107, 108). Antibody 
is sufficient for protection because infants are protected by 
maternal antibody (108) and passive transfer of immune 
serum can modify or interfere with measles vaccination and 
can partially protect children from measles after exposure 
(109).  The best correlate of protection from infection is the 
level of neutralizing antibody.  In infants, the level of 
maternal antibody correlates with failure of the humoral 
response to vaccination (108).  In outbreaks, antibody 
levels correlate with protection from disease, with a plaque 
reduction neutralizing titer (PRNT) of 120 mIU/mL 
generally considered the level needed (110). 

 
Contributions of antibody to virus clearance are 

less clear.  Failure to mount an adequate antibody response 
carries a poor prognosis (111) and levels of  antibody-
dependent cellular cytotoxicity correlate with clearance of 
the cell-associated viremia (112). Antibody binding to 
infected cells alters intracellular virus replication and may 
contribute to control of infection (113-115). However, 
transient depletion of B cells does not affect virus clearance 
in infected monkeys (75).  

 
5.3. Cellular responses  

The ability to recover from measles was 
postulated by Burnet to be an indication of the adequacy of 
T lymphocyte-mediated immune responses (116).  There is 
substantial evidence of a vigorous CD8+ T cell response 
during infection.  MV-specific and proliferating CD8+ T 
cells with evidence of clonal expansion are detectable in 
blood at the time of the rash and in bronchoalveolar lavage 
fluid during pneumonitis (117-122). IFN-γ, soluble CD8 
and β2 microglobulin are increased in plasma (121, 123, 
124) and CD8+ T cell memory is established by infection 
(119, 120, 125, 126). Depletion of CD8+ T cells in infected 
monkeys impairs control of virus replication (74). MV 
antigens that induce CD8+ T cells include the N, P, H, and 
F proteins (119, 127, 128).  H contains the majority of 
epitopes recognized by HLA-A2-positive humans (129).  

 
CD4+ T cells are also activated in response to 

MV infection. CD4+ T cells proliferate during the rash 
(117) and soluble CD4 is elevated in plasma during acute 

disease and remains so for several weeks after recovery 
(130). MV-specific T cell proliferation and production of 
cytokines, are stimulated during measles (120, 121) and 
CD4+ T cell memory is established after recovery (128, 
131, 132).   

 
MV-specific T cells are responsible for 

production of a variety of cytokines and soluble factors 
during disease and recovery.  Plasma levels of IFN-γ, 
neopterin (a product of IFN-γ-activated macrophages) and 
soluble IL-2 receptor rise during the prodrome, prior to the 
appearance of the rash (123, 133).  This is followed by 
increases in IL-2 at the time of the rash (121, 124).  As the 
rash fades IL-4, IL-10 and IL-13 increase and elevation of 
these cytokines persists in some individuals for weeks (121; 
124). This pattern of cytokine production suggests early 
activation of CD8+ (IFN-γ) and type 1 CD4+ (IFN-γ and IL-
2) T cells during the rash followed by activation of type 2 
CD4+ T cells (IL-4, IL-13) and then regulatory T cells (IL-
10) during recovery. IFN-γ may also have an important 
direct antiviral effect because it can suppress MV 
replication in epithelial and endothelial cells in vitro 
through induction of indoleamine 2,3 dioxygenase (134).  

 
The cellular immune response is necessary for 

development of the characteristic measles rash.  Biopsies 
show infiltration of CD4+ and CD8+ T cells and 
macrophages into areas of virus replication (74).  
Individuals with deficiencies in cellular immunity may 
develop measles without a rash  (55, 56).  MV shedding is 
prolonged in children with impaired cell-mediated 
immunity.  Giant cells were detected in nasal secretions up 
to 28 days after the onset of rash in malnourished Kenyan 
children with severe measles (69) and MV antigen was 
detected up to 13 days after rash onset in malnourished 
Nigerian children (135). Prolonged presence of MV RNA 
has been associated with HIV-1 infection (73) and 
congenital measles (136).   

 
 5.4. Longevity of the immune response 

 Measles is an acute infection from which there is 
usually complete recovery and the establishment of life 
long immunity.  Epidemiologic studies of island 
populations have documented that long term protection 
from MV re-infection does not require re-exposure to the 
virus (53).  Immunologic memory includes both continued 
production of antibody (137) and circulation of MV-
specific CD4+ and CD8+ T cells (120, 138-140). There is 
no evidence for persistence of virus, although clearance is 
slow. Extensive replication of MV in lymphoid tissue may 
maximize the interaction of viral antigen with antigen-
retaining follicular dendritic cells in germinal centers 
leading to a more robust memory B cell response. 

 
5.5. Immune suppression 

 Activation of the immune system is coincident 
with the appearance of immune suppression and both 
persist for many weeks after apparent recovery. 
Manifestations of immune suppression include loss of 
delayed type hypersensitivity responses to recall antigens, 
such as tuberculin (141, 142), limited in vitro lymphocyte 
proliferation to mitogen stimulation (143) and impaired



Measles vaccines 

1356 

 
 
Figure 1. Time line of the development and use of licensed 
measles virus vaccines. 
 

 
 
Figure 2. Schematic diagram of the immune responses to 
different types of measles virus vaccines that are and are 
not associated with subsequent susceptibility to atypical 
measles. 

 
cellular and humoral immune responses to new antigens 
(144). This alteration in immune responses renders 
individuals more susceptible to the secondary bacterial and 
viral infections that account for most of the deaths due to 
measles (145, 146).   

 
Multiple factors probably contribute to immune 

suppression. Viremia is accompanied by lymphopenia, with 
a reduction in both CD4+ and CD8+ T cells, that may be 
due to the death of infected cells or to altered lymphocyte 
trafficking (147, 148). IFN can suppress T cell proliferation 
in cultures of MV-infected PBMCs (149).  Dendritic cells 
infected with MV in vitro mature poorly, lose the ability to 
stimulate an allogeneic lymphocyte response and undergo 
cell death (150).  The dominant Th2 response during 
recovery can inhibit Th1 responses and increase 
susceptibility to intracellular pathogens (130).  The 
production of IL-12, which is important for the generation 
of the Th1 response, is decreased in vitro following binding 
of CD46 and is reduced for several weeks in children with 
measles (151, 152). Conversely, IL-10, which can 
downregulate Th1 cytokine synthesis and suppress 
macrophage activation, T cell proliferation and DTH 
responses, is elevated for several weeks in children with 
measles (121).  

 
6.  VACCINE DEVELOPMENT AND 
CHARACTERISTICS OF PROTECTION 
 

The isolation of MV in tissue culture by Enders 
and Peebles opened the way for vaccine development (1).  
The Edmonston strain of MV was isolated from the blood 
of a child with measles and successfully propagated in 
human and monkey cells.  Culture of MV led to the 

simultaneous development of inactivated and live 
attenuated vaccines (Figure 1).  

 
6.1 Foramalin-inactivated vaccine  

Killed MV vaccines were developed using 
formalin or tween-ether for inactivation of the Edmonson B 
strain of MV (153). The alum-precipitated formalin-
inactivated measles vaccine (FIMV) was given in a 3-dose 
regimen (153, 154). Recipients of the inactivated vaccine 
developed moderate levels of neutralizing and 
hemagglutination inhibiting (HI) antibodies and low levels 
of complement fixing (CF) antibody (154-156). The 
vaccine was protective when exposure to measles occurred 
within several months after immunization (156-158). 
However, antibody titers declined rapidly, and recipients again 
became susceptible to measles (157, 159).  When infected, 
these previously FIMV-vaccinated individuals had a tendency 
to develop a more severe disease, atypical measles (159, 160).  

 
Atypical measles was characterized by a higher 

and more prolonged fever, unusual skin lesions and severe 
pneumonitis compared to measles in previously 
unvaccinated persons (160, 161).  The rash was often 
accompanied by evidence of hemorrhage or vesiculation 
and began on the extremities rather than the head and trunk. 
The pneumonitis included distinct nodular parenchymal 
lesions and hilar adenopathy (162, 163).  Abdominal pain, 
hepatic dysfunction, headache, eosinophilia, pleural 
effusions and edema were also described. Cases of atypical 
measles were reported up to16 years after receipt of the 
inactivated vaccine.  Administration of the live virus 
vaccine after 2 to 3 doses of killed vaccine did not 
eliminate subsequent susceptibility to atypical measles and 
was often associated with severe reactions at the site of live 
virus inoculation (164-166). 

 
Hypotheses about the pathogenesis of atypical 

measles included an abnormally intense cellular immune 
response (166), an inability of the inactivated vaccine to 
induce local respiratory tract immunity (167) and a lack of 
production of antibody to F which allowed virus to spread 
from cell to cell despite the development of antibody to H 
(155, 168). Studies in rhesus macaques have shown that the 
inactivated vaccine induces a poor cytotoxic T cell 
response and antibody that does not undergo affinity 
maturation (169, 170) (Figure 2).   Low-avidity antibody 
can neutralize in vitro infection with viruses that use CD46 
as a receptor, as routinely measured by PRNT assays in 
Vero cells, but cannot neutralize infection with wild type 
viruses that primarily use SLAM (170).  This difference in 
neutralization properties may be due to the higher affinity 
interaction between MV and SLAM compared to MV and 
CD46. 

 
Subsequent infection with MV induces an 

anamnestic antibody response, but the antibody is also of 
low avidity and cannot neutralize wild type virus.  This 
leads to formation of complexes of non-neutralizing 
antibody and MV resulting in immune complex deposition, 
vasculitis and pneumonitis (170, 171). The exact nature of 
the defect in immune priming exhibited by FIMV has not 
yet been identified. 
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6.2. Live attenuated vaccine (LAV) 
 The process of adaptation of MV grown in 

primary renal and amnion cells to cells of nonsusceptible 
hosts, such as the chick embryo, canine and bovine kidney 
cells, led successfully to the development of LAV strains 
(172, 176). The first attenuated live measles vaccine was 
developed by passage of the Edmonston strain of MV in 
chick embryo fibroblasts to produce the Edmonston B virus 
(177).  Inoculation of this virus into primates produced no 
clinical symptoms, no detectable viremia and no spread to 
the respiratory tract (148), but did induce an immune 
response that protected the monkeys from subsequent 
challenge with wild type virus (173) (Figure 2).  

 
This vaccine protected children from measles 

(178) and was licensed in March 1963 (Figure 1). 
However, Edmonston B LAV induced fever and rash in a 
large proportion of immunized children (179). Reactions 
were reduced when immunoglobulin that contained 
antibodies to MV was given at the same time as the vaccine 
(109, 180, 182).  More extensive passage of the Edmonston 
B virus in chick embryo fibroblasts produced the more 
attenuated Schwarz vaccine (182) that currently serves as 
the standard measles vaccine in much of the world. The 
Moraten strain used in the United States is closely related 
to the Schwarz strain (183).  Other Edmonston-derived 
vaccine strains (e.g. Zagreb, AIK-C) and attenuated strains 
developed independently (e.g. CAM, Leningard-16, 
Shanghai-191) are also successful vaccines (184-187). Few 
differences have been described among MV vaccine strains 
(all genotype A) regardless of the geographic origin of the 
parent virus (183).  However, there may be some biologic 
differences. Edmonston-Zagreb is produced in human 
diploid cells, rather than chick embryo fibroblasts, and may 
be more immunogenic in young infants and when delivered 
by the aerosol route (188).   

 
The lyophilized vaccine is relatively stable, but 

the reconstituted vaccine rapidly loses infectivity.   LAV is 
inactivated by light and heat, and after reconstitution loses 
about half of its potency at 20oC and almost all potency at 
37oC within an hour (189).  Therefore, a cold chain must be 
maintained for the vaccine prior to and after reconstitution.  
LAVs replicate less efficiently than wild type MV (148, 
190), but induce both neutralizing antibody and cellular 
immune responses qualitatively similar to that induced by 
natural disease, although antibody titers are lower (178, 
191). Antibodies first appear 12-15 days after vaccination 
and peak at 1-3 months. In many countries, LAV is 
combined with other live attenuated virus vaccines such as 
those for mumps, rubella (MMR) and varicella (MMRV). 
These measles-containing vaccines have proven safe and 
effective and have saved the lives of many millions of 
children (192, 193). 

 
The recommended age of vaccination varies from 

6 to 15 months.  The probability of seroconversion and the 
amounts of antibody induced are determined by the levels 
of persisting MV-specific maternal antibody and the age of 
the infant at the time of vaccination (109, 194-197). Levels 
of passively acquired antibody are dependent on the 
mother’s level of antibody, on the transfer of antibody 

across the placenta and on the rate of antibody decay in the 
infant (198).  The cellular immune response is induced 
while the antibody response is impaired in young infants 
with maternal antibody (195). As measles is controlled in a 
region, an increasing proportion of mothers will have 
measles immunity induced by vaccination rather than 
natural infection.  This will result in lower levels of 
passively acquired antibody in infants and the possibility of 
lowering the age of vaccination (199-202).  Currently, the 
proportions of children that develop protective levels of 
antibody are approximately 85% at 9 months of age and 
95% at 12 months of age (196).  The recommended age of 
vaccination varies regionally and is a balance between the 
optimum age for seroconversion and the probability of 
acquiring measles before that age (196).  In areas where 
measles remains prevalent, measles vaccination is routinely 
performed at 9 months, whereas in areas with little measles, 
vaccination is often at 12 to 15 months. During epidemics 
and in human immunodeficiency virus (HIV) type 1-
infected infants in developing countries, vaccination at 6 
months is recommended with a second dose at 9 months (203). 

 
LAV is administered subcutaneously or 

intramuscularly.  However, there is substantial interest in 
alternate routes of delivery that would not require needles 
and syringes. Neither oral nor intranasal administration is 
effective (204; 205), but respiratory delivery may be more 
promising. There are several ongoing efforts to develop and 
evaluate aerosol delivery of aqueous and dry powder forms 
of LAV (188, 206, 207).  Aerosol administration was 
advocated by Albert Sabin in the early 1980s, is highly 
effective in boosting pre-existing antibody titers and may 
hold promise for use in older children (188, 208, 209). 
Respiratory routes of vaccination have also been advocated 
as a means to lower the age of immunization (208, 210).  
However, the primary immune response to aerosolized 
measles vaccine is lower than it is to subcutaneous 
administration of the same vaccine (211, 212). The reasons 
for this are not known, but may be related to dose or 
efficiency of delivery and infection.  

 
Genetic background affects the likelihood of 

seroconversion and antibody titers (213-215). Common 
childhood illnesses at the time of vaccination may also 
have an effect (216).  Any potential decrease in 
seroconversion must be balanced against the loss of the 
opportunity for vaccination and the consequent risk of the 
child acquiring measles. Similar compromises must be 
considered with respect to immunizing individuals infected 
with HIV-1 (217). Overall, measles vaccine has been well 
tolerated in HIV-infected children and adults, although the 
antibody response is lower and progressive fatal infection 
has occurred occasionally (218-222).  Because of the 
potential severity of wild type MV infection in HIV-
infected individuals (223, 54), LAV is recommended for 
routine administration to infants without respect to HIV-1 
infection status in most countries, but, in the US is not 
recommended for those with known low CD4+ T cell 
counts (224).  LAV is also contraindicated in individuals 
with severe deficiencies of cellular immunity because of 
the possibility of disease due to progressive pulmonary or 
CNS infection (225-227). 
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The dose of MV routinely used for immunization 
is between 103 and 104 plaque-forming units. Overall, the 
efficacy of a single dose of measles vaccine in infancy is 
estimated at 80-95% (195).  When ten- to 100-fold higher 
doses were used, seroconversion in younger infants 
improved and in 1990 the WHO recommended use of the 
high-titer Edmonston-Zagreb (EZ) vaccine at 6 months of 
age in countries in which measles before the age of 9 
months was a significant cause of death.  However, 
subsequent follow-up of children receiving high-titer 
vaccines in countries with high childhood mortality showed 
an increased mortality in girls over the subsequent 2 to 3 
years and this recommendation was withdrawn (228-230).  
Mortality was not due to measles, but rather to a relative 
increase in the deaths due to other infections (231).  The 
pathogenesis of delayed increased mortality after the high 
titer vaccine is not understood but occurred primarily in 
those who developed a rash after vaccination and may be 
related to long-term suppression of immune responses 
similar to that induced by measles (232) or alteration of 
immune responses associated with a change in the sequence 
of delivery of vaccines (233-235). 

 
The duration of vaccine-induced immunity is 

variable. In general, levels of antibody are lower after 
vaccination than after recovery from natural disease and 
MV-specific antibody and CD4+ T cells decay with time 
(178, 236-238).  Secondary vaccine failure rates have been 
estimated to be approximately 5% at 10 to 15 years after 
immunization, but are probably lower when vaccination is 
given after 12 months of age (239-241).  However, 
decreasing antibody titers do not necessarily imply a 
complete loss of protective immunity, as a secondary 
immune response usually develops after re-exposure to 
MV, with a rapid rise in antibody titers without overt 
clinical disease (239).  These secondarily infected 
individuals may constitute an epidemiologically protected, 
but infectious, population of individuals (242). 

 
7. CONTROL OF MEASLES WITH THE CURRENT 
VACCINE 
 
7.1. Measles epidemiology in the absence of vaccination  

Measles is one of the most infectious of 
communicable diseases.  It is estimated that 76% of 
household exposures of susceptible persons lead to measles 
(243) and that the basic reproductive number (Ro) or 
average number of secondary cases produced by an 
infectious individual in a totally susceptible population, is 
15-20 (244). Transmission is most efficient through direct 
exposure to an infected individual, but MV can survive for 
hours in respiratory droplets, and direct contact is not 
required.  Individuals are most infectious from 4-5 days 
before through 4 days after the appearance of the rash 
(245). 

 
There is no animal reservoir and no evidence of 

latent or epidemiologically significant persistent infection 
in humans (246).  Therefore, maintenance of MV in a 
population requires a continuous supply of susceptible 
individuals.  Because older members of a community are 
immune through previous exposure to the virus, endemic 

measles is primarily a disease of childhood.  If the 
population is too small to establish endemic transmission, 
the virus cannot be maintained (247).  Mathematical 
calculations and studies of islands and cities with 
populations of different sizes have shown a requirement for 
a population of 250,000-500,000 to establish measles as an 
endemic disease (248, 249).   

 
In large population centers, measles is endemic 

with occasional epidemics as the numbers of susceptible 
individuals increase. These epidemics spread in waves from 
large cities to smaller cities and then to rural areas over 
time (250).  In temperate climates measles is more frequent 
in the winter and early spring. Epidemic frequency is 
determined by the number of susceptible individuals, the 
duration of infectiousness and patterns of population 
mixing (249).  The size of the population is also a primary 
determinant of the age of seroconversion. The average age 
of infection is earlier in urban than in rural areas in both 
developed and developing countries (228).  In developing 
countries with large populations, high birth rates lead to 
infection at an early age. Very young infants are protected 
from measles (and from response to vaccine) by maternal 
antibodies.  The duration of protective antibody in the 
infant is dependent on the level of maternal antibody, a 
primary determinant of the level of antibody in the infant at 
birth.  The source of maternal immunity (vaccine vs. 
natural measles), gestational age, and presence of maternal 
infections such as HIV and malaria, are determinants of the 
amount of antibody passively transferred and, therefore, the 
length of time required for initial levels of antibody to 
decay to the point that an infant will become susceptible to 
measles (198).  

 
7.2. Routine vaccination with a single dose 

 Prior to the widespread use of measles vaccine, 
measles was estimated to result in 5-8 million deaths each 
year.  The decline in mortality from measles in developed 
countries can be attributed to improved nutrition and 
medical care, but mostly to effective delivery of LAV. In 
developing countries, routine delivery of vitamin A has 
also contributed to decreased case fatality ratios for measles 
(251, 252).  

 
Routine infant immunization with LAV alters the 

epidemiology of measles by reducing the numbers of 
susceptible individuals in the population. In countries with 
high rates of vaccination the average age for measles is 
increased because herd immunity reduces transmission and 
indirectly protects young children from infection. 
Vaccination also lengthens the time between epidemics 
(228). When outbreaks occur in areas of sustained high 
vaccine coverage an increasingly large proportion of the 
cases will be in older individuals who are susceptible due to 
primary or secondary vaccine failure (253). Outbreaks 
become increasingly likely to be local and dependent on 
social networks (254).  

 
7.3. Development of a two-dose vaccination strategy  

Because of the high infectivity of MV and the 
fact that not all individuals develop protective immunity 
following vaccination, a single dose of measles vaccine 



Measles vaccines 

1359 

does not achieve a sufficient level of population immunity 
to eliminate endemic MV transmission.  More than 95% of 
the population needs to be immune to interrupt endemic 
transmission. Ninety-five percent coverage with a 95% 
response rate will only achieve a level of population 
immunity of 90%.  Therefore, to achieve 95% immunity, a 
second dose of vaccine is necessary to immunize persons 
who missed or did not respond to the first dose (217, 255-
257). The 2-dose strategy has been credited with 
elimination of indigenous measles in many countries in 
which it has been employed (217).   

 
Two broad strategies to administer the second 

dose have been used.  In countries with sufficient 
infrastructure, the second dose can be delivered as a part of 
routine vaccination, typically prior to the start of school 
with school entry requirements enforcing the policy (258).  
A second approach, first developed by the Pan American 
Health Organization (PAHO), involves mass 
supplementary immunization campaigns to deliver the 
second dose of vaccine in a wide geographic area (259). 
The PAHO strategy consists of four subprograms: Catch-
up, Keep-up, Follow-up and Mop-up.  The Catch-up phase 
is a one-time, mass-immunization campaign that targets all 
children in a broad age group (typically 1-14 years) 
regardless of measles disease or vaccine history.  The goal 
is to rapidly achieve a high level of population immunity 
and interrupt MV transmission.  If successful, these 
activities are cost effective and can result in dramatic 
declines in incidence and mortality (192).  Keep-up refers 
to maintenance of routine infant measles vaccination.  
Follow-up involves periodic mass vaccination of 1-4 year-
olds to prevent the accumulation of susceptible children 
and Mop-up campaigns target children that are difficult to 
reach.   

 
However, even highly immunized populations in 

countries that have eliminated endemic transmission are 
vulnerable to localized outbreaks associated with 
importation from areas where measles remains endemic 
(50). 

 
8. DEVELOPMENT OF NEW VACCINES 
 

A new vaccine would be advantageous if it would 
allow vaccination of infants before 6 months of age.  This 
would both close the “window of susceptibility” between 
decay of maternal antibody and vaccination and facilitate 
delivery by allowing measles vaccine to be given at the 
same time as other WHO Expanded Program for 
Immunization (EPI) vaccines. Additional motivations for 
development of a new vaccine would be to increase 
thermostability, to avoid the use of needles and syringes for 
delivery and to provide a vaccine that would be safe for 
immunocompromised individuals (260).   

 
However, development of new vaccines has been 

hampered by an incomplete understanding of protective 
immunity and of the priming for enhanced disease by the 
inactivated vaccine.  In addition, the lack of a good small 
animal model has impeded study of protective immunity 
and efficient testing of novel vaccine approaches.  

Nevertheless, a number of experimental vaccines have been 
developed and vaccination with individual MV proteins 
expressed in plants, viral or bacterial vectors, or as DNA, 
peptides or proteins have been explored in animal models 
such as mice and cotton rats (261, 262, 263).  However, 
macaques are the most relevant model system because they 
allow assessment of immunization in the face of maternal 
antibody, of vaccine-induced protection from challenge, 
and of the potential for a vaccine to prime for enhanced 
disease (106, 169, 265-268).  

 
8.1. DNA  

Delivery of viral genes into host cells for 
processing and antigen presentation without the need for 
virus infection, along with thermostability, inexpensive 
manufacture and the potential for mucosal administration, 
make DNA vaccines an attractive possibility for 
development.  In mice, naked DNA expressing H or F 
delivered by gene gun or intramuscularly induced humoral 
and cellular responses (269, 270).  Immunization with 
DNA expressing N did not protect against intracerebral 
challenge with rodent-adapted MV (271). Delivery of 
naked DNA by various mucosal routes induced a cytotoxic 
T cell response that was potentiated by co-administration of 
cholera toxin or cationic lipids as an adjuvant (272). DNA-
prime, oral protein-boost strategies have also shown some 
promise in mice (263). DNA expressing H has also been 
mucosally delivered to cotton rats using vaccine strains of 
Salmonella or Shigella and induced neutralizing antibody 
and T cell responses (273).  Challenge after 3 doses showed 
reduced lung titers in the immunized animals. 

 
Several DNA vaccines have been tested in 

juvenile cynomolgus and rhesus macaques. Transdermal 
delivery of 2 doses of plasmids encoding MV proteins 
elicited low serum antibody responses. On challenge 1 year 
later, there was evidence of immune priming with more 
rapid antibody and cellular immune responses and a 
tendency for lower viremia in immunized, compared to 
naïve, animals (274). Intradermal (500 µg) or gene gun (8 
µg on gold beads) delivery of two doses of DNA encoding 
the H protein, F protein or both elicited cytotoxic T cell 
responses and sustained, but low titer, antibody responses 
in rhesus macaques (106). Protection from challenge 2 
years after the initial immunization correlated with the 
levels of neutralizing antibody at the time of challenge. All 
monkeys having antibody levels of <120 mIU/mL (one 
immunized with F, one with H and one with H + F) 
developed a rash and viremia. However, the rashes were 
mild and there was no suggestion of atypical measles.  
Monkeys with intermediate levels of antibody developed 
viremia without a rash and monkeys with high levels of 
antibody did not develop a viremia.  These studies 
indicated that DNA vaccines could protect from measles 
and did not predispose to atypical measles. 

 
Studies of the same or similar vaccines in infant 

macaques have shown induction of lower levels of 
antibody, particularly in the face of maternal antibody, and 
limited protection from challenge (265).  Therefore, DNA 
vaccines will need to be improved if further development is 
contemplated.  Subsequent studies have focused on using 
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adjuvants to enhance the immunogenicity of DNA vaccines 
and more reliably exceed the threshold of antibody needed 
for complete protection.  These adjuvants have included 
cytokines such as IL-2 (275) and formulation with complex 
carbohydrates or lipids designed to improve immune 
responses by increasing DNA entry into cells or by 
providing a depot for prolonged release of DNA (276- 
280). 

 
8.2. Subunit proteins  

Recombinant proteins expressed in insect, plant 
or mammalian cells and proteins purified from MV have 
been used for vaccine development.  Early studies showed 
that immune-stimulating complexes (iscoms) that 
incorporated the F and H proteins into a matrix with quilaja 
saponins, phospholipids and cholesterol stimulated HI and 
hemolysis-inhibiting antibodies in mice (281).  Immunized 
mice were protected from intracerebral challenge with a 
hamster neurotropic strain of MV (282, 283). In 
cynomolgus macaques, these iscoms induced durable MV-
specific antibody in the presence and absence of passively 
transferred antibody and provided partial protection from 
challenge (284, 264). 

 
8.3. Vectored by other viruses or bacteria  

Several viruses have been used to express MV 
proteins and tested as experimental vaccines.  The first 
studies were done with vaccinia virus expressing H and F.  
This vaccine was not able to stimulate an antibody response 
in the presence of passively acquired antibody, but did 
provide partial protection presumably mediated by the 
observed MV-specific T cell responses (264, 285). 
Subsequently, studies of the replication defective modified 
vaccinia virus Ankara (MVA) expressing H and F showed 
that 2 doses of 108 pfu delivered intramuscularly and 
intranasally 1-2 months apart elicited neutralizing 
antibody and T-cell responses in juvenile cynomolgus, 
but not infant rhesus, macaques in the presence and 
absence of passively transferred antibody (267, 285).  
These monkeys were at least partially protected from 
challenge 3-12 months after vaccination. MVA-based 
vaccines have been shown to be safe in 
immunosuppressed macaques (286). 

 
Sindbis virus-based alphavirus replicon particle 

vaccines expressing MV H induced high-titered, dose-
dependent, MV neutralizing antibody after a single 
vaccination in mice. Vaccination of juvenile rhesus 
macaques with a single dose, and infant macaques with two 
doses, of 108 particles induced sustained levels of high-
titered MV-neutralizing antibody and IFN-γ-producing 
memory T cells.  Most monkeys were protected from 
disease, but not from viremia when challenged 18 months 
later (76).  However, newer versions of this vaccine using 
chimeras of Sindbis and Venezuelan equine encephalitis 
replicons expressing H and F were fully protective (Pan et 
al, unpublished data).   

 
Recombinant Bacille-Calmette-Guerin, the 

mycobacteria used for neonatal immunization against 
tuberculosis, has been engineered to express the MV N 
protein and used to immunize infant rhesus macaques 

(287).  Cellular immune responses were elicited, but 
provided only partial protection from MV challenge. 
Monkeys developed systemic infection, but lung 
inflammation was reduced.  

 
9. POTENTIAL FOR MEASLES ERADICATION 
 

The global elimination of measles has been 
debated since the 1960s when measles vaccines were first 
licensed (288).  The 1997 Dahlem Conference on Disease 
Eradication defined eradication as the permanent reduction 
to zero of the global incidence of infection with the 
consequence that interventions would no longer be 
necessary.  Criteria deemed necessary for a disease to be 
eradicable were: (1) humans must be crucial for 
transmission, (2) sensitive and specific diagnostic tools 
must exist, and (3) an effective intervention must be 
available. Interruption of transmission in a large geographic 
area for a prolonged period supports the feasibility of 
eradication.  Measles is thought by many to meet these 
criteria (259, 289).  
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