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1. ABSTRACT 
 

Clinical trials and animal studies showed that 
ingestion of soy proteins improves blood lipid profiles 
including lowering triglyceride, total and LDL cholesterol 
levels and increasing HDL cholesterol content. However, 
the effective components in the soy and the mechanisms 
involved in the hypolipidemic actions are not fully 
understood. Increasing evidence from animal studies have 
suggested that soy components may regulate lipid 
metabolism by modulating the activities of key 
transcription factors and thereby changing the downstream 
gene expression involved in lipogenesis or lipolysis. It has 
been shown that intake of soy proteins alters the expression 
of genes for sterol regulatory element binding protein, 
peroxisomal proliferator activated receptor, and liver X 
receptor. Dietary soy proteins suppress the DNA binding 
activities of hepatic nuclear receptors for thyroid hormones 
and retinoic acid, and alter the activities of key enzymes 
including cholesterol 7alpha hydroxylase and ATPase/ATP 
synthase through post-translational protein modifications. 
This paper reviews the current understanding of the cellular 
and molecular events by which soy components affect lipid 
levels, especially focusing on modulation of transcription 
factors and regulation of gene expression involved in lipid 
metabolism by soy proteins and associated isoflavones.   

 
 
2. INTRODUCTION 
 

Soy foods have been consumed for over 5000 
years in Asian countries. The epidemiological evidence 
suggest that soy consumption is linked to a lower incidence 
of chronic diseases including coronary heart disease, 
atherosclerosis, type 2 diabetes, osteoporosis, and certain 
types of cancers such as prostate cancer and breast cancer. 
Clinical trials (1) and animal studies (2-4) also showed that 
dietary soy proteins or isoflavones (ISF) reduce the risk 
factors for cardiovascular diseases including lowering 
triglyceride, total and LDL cholesterol levels and 
increasing the ratio of HDL/LDL cholesterol. 
Consequently, these studies have led to the approval of a 
food labeling health claim for soy proteins in the 
prevention of coronary heart disease by the U.S. Food and 
Drug Administration in 1999. Since then, soy food 
consumption in the U.S. has doubled, and over 2500 new 
foods containing soy have been introduced by U.S. food 
manufacturers. 

 
Similar health petitions for soy proteins have also 

been approved thereafter in the United Kingdom, South 
Africa, Philippines, Brazil, Indonesia, Korea and Malaysia. 
However, the purported beneficial health effects were quite 
variable in different clinical studies. The Nutrition 



Soy affects lipid metabolism 

2661 

Committee of the American Heart Association has recently 
assessed 22 randomized trials conducted since 1999, and 
found that isolated soy proteins with ISF only slightly 
decreased LDL cholesterol but had no effect on HDL 
cholesterol, triglyceride, lipoprotein(a) or blood pressure. 
Soy ISF failed to change HDL cholesterol and other lipid 
risk factors in 19 studies. The effects of soy proteins and 
ISF on vasomotor symptoms of menopause, 
postmenopausal bone loss, and prevention of breast, 
endometrial, and prostate cancers were not substantiated 
(5).  
 

More recent results suggest that a variety of 
factors could cause variations among different studies. 
These include processing procedures of soy protein isolate 
(SPI) which have been shown to affect the intactness of the 
protein subunits (6), different forms of ISF (conjugated or 
unconjugated to sugar) (7), and the ability of the subjects to 
metabolize daidzein, one of the major soy ISF, to produce 
equol (8). In addition, lack of understanding of the 
bioactive components in the soy and the molecular 
mechanisms by which lipid metabolism is impacted may 
contribute a major part to the discrepancies. Existing 
literature is quite controversial regarding which component 
(proteins or associated ISF) in soy has the lipid-lowering 
actions. This paper reviews the current understanding of the 
molecular events by which soy components affect lipid 
levels, especially focusing on the modulation of 
transcription factors and regulation of gene expression 
involved in lipid metabolism by soy proteins and associated 
ISF.   

   
3. EFFECT OF SOY PROTEINS AND ISF ON LIPID 
PROFILES 
 

Soybeans contain about 40% protein, and 
depending on the processing procedure, the protein content 
can reach over 90% as in SPI that is usually used in soy-
based infant formulas. Most of the attention in soy studies 
has been focused on the proteins and their associated ISF.  
 
3.1. Human clinical trials 

The first human study on the lipid-lowering 
effect of soy proteins was reported in 1967 (9). It was 
shown that a replacement of mixed proteins by vegetable 
proteins, mainly isolated soy proteins, remarkably reduced 
the average blood cholesterol levels by more than 100 
mg/ml, from approximately 295 mg/ml to 172 mg/ml in 
hypercholesterolemic men. The hypolipidemic action of 
soy proteins has been further demonstrated in the following 
clinical studies.   

 
A meta-analysis of 38 controlled clinical trials 

published between 1977 and 1994 showed that average 
intake of 47 g/day of soy proteins (ranged from 17 to 124 
g/day) significantly decreased total cholesterol by 9.3%, 
LDL cholesterol by 12.9%, triglycerides by 10.5%, and 
increased HDL cholesterol by 2.4% but this increase was 
not statistically significant. All of these studies used either 
isolated or textured soy proteins. Among them, 30 studies 
were conducted with hypercholesterolemic subjects (1). 
More recent results suggest that intact soy proteins with 

ISF (3.0~185.0 mg/d) were associated with significant 
decreases in serum total cholesterol by 3.8%, LDL 
cholesterol by 5.3%, and triglycerides by 7.3% and 
significant increases in serum HDL cholesterol by 3.0% in 
23 randomized controlled studies published from 1995 to 
2002. The effects on total and LDL cholesterol were greater 
in men than in women (10). 

 
The effects of soy ISF on blood lipid profile 

appear to be inconsistent among different studies. For 
instance, a meta-analysis showed that ISF-enriched soy 
proteins (61.7~317.9 mg/d ISF) markedly decreased serum 
total cholesterol by 1.8%, and LDL cholesterol by 3.6%, 
but no changes in HDL cholesterol and triglycerides were 
significant compared to the ISF-depleted soy proteins 
(1.2~14.6 mg/d ISF). ISF-depleted soy proteins 
significantly decreased LDL cholesterol by 2.8%, while 
ISF-enriched soy proteins significantly decreased LDL 
cholesterol by 5.0% and increased HDL cholesterol by 
3.0% compared to animal proteins (11). With equal 
amounts of soy protein intake, high ISF intake (averagely 
96 mg/d) resulted in significantly greater decreases in 
serum LDL cholesterol than low ISF intake (6 mg/d), 
suggesting that the LDL cholesterol-lowering effects of ISF 
are independent of soy proteins (12).  

 
However, the hypolipidemic benefits of soy ISF 

in other studies using a range of 40-150 mg/d ISF in either 
normocholesterolemic or hypercholesterolemic men or 
women were insignificant. For example, total and LDL 
cholesterol levels in healthy perimenopausal women 
receiving 61.8 mg/d of ISF or placebo for 4 weeks had no 
significant difference (13). The LDL cholesterol levels 
among the moderately hypercholesterolemic women 
supplemented with 42 g/d milk protein, soy plus ISF (80 
mg/d), or soy without ISF did not differ (14). When 
hypercholesterolemic postmenopausal women were given a 
much higher dosage of ISF (150 mg/d) for 6 months, total 
and LDL cholesterol levels were lower, but not statistically 
different (15). Similar results were observed in the study 
with healthy men given 55 mg/d of ISF (16). A recent 
meta-analysis of 10 randomized controlled trials from 1995 
to 2002 indicated that 36 g/d of soy proteins in combination 
with 52 mg of soy-associated ISF lowered LDL cholesterol 
by 4%; however, despite large increases in blood ISF 
concentrations, no significant correlation between soy ISF 
and change in LDL cholesterol was detected. It has been 
concluded that ISF did not have an independent effect on 
lowering LDL cholesterol levels in the presence of soy 
proteins (17). This conclusion was supported by another 
meta-analysis showing that supplementation with extracted 
soy ISF had no significant effect on total cholesterol 
reduction (10). 

 
 Nevertheless, soy proteins, regardless of ISF 

content, have been shown to lower the ratios of total to 
HDL cholesterol, and LDL to HDL cholesterol compared 
to the milk protein in healthy young men (18), and 
significantly reduced total and LDL cholesterol and 
triglyceride concentrations in hypercholesterolemic men 
and women (19). However, the added ISF had no effect on 
plasma lipid levels. In addition, the hypocholesterolemic 
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effects of soy proteins were closely associated with the 
initial blood cholesterol levels. The reductions in total or 
LDL cholesterol levels are much greater in 
hypercholesterolemic subjects than in 
normocholesterolemic subjects (1,10,11). 

 
3.2. Animal studies 

Obese Zucker rats fed soy proteins with high ISF 
(5.8 mg/g protein) for 8 or 11 weeks had lower liver 
weights, lower liver cholesterol and triglyceride content 
than those fed either casein or soy proteins with low 
amounts of ISF (0.1 mg/g protein) (20). Plasma cholesterol 
concentrations in the rats fed either ethanol-washed SPI or 
SPI with an ethanol extract of soy were comparable and 
significantly lower than those fed casein. Addition of 
ethanol extract to SPI or casein did not influence plasma 
cholesterol level, suggesting that the cholesterol-lowering 
effect of SPI in rats was attributed to its protein component 
but not to the ethanol-extractable minor constituents 
including ISF (21). Our study in Sprague Dawley rats also 
showed that intake of 20% alcohol-washed SPI with or 
without added ISF markedly lowered the plasma 
triglyceride levels compared to a casein diet, however the 
added ISF had no additional effects (22).  

 
3.3. Possible effective components 

Soybeans contain two major storage globulins, 
beta-conglycinin (7S) and glycinin (11S). Beta-conglycinin 
has three subunits (alpha’, alpha, and beta), and is believed 
to be essential for the hypolipidemic actions of soy. 
Consumption of beta-conglycinin decreased serum 
triglycerides in both normal and genetic obese mice (3) as 
well as in humans (23). Addition of beta-conglycinin into 
cultured HepG2 cells up-regulated LDL receptor activity 
measured by the uptake and degradation of 125I-labeled 
LDL (24). However, absence of alpha’ subunit in beta-
conglycinin derived from an alpha’ mutated soy cultivar 
had no effect (25). This suggests that the alpha’ subunit in 
the beta-conglycinin may be a bioactive component that 
mediates the hypolipidemic activities of soy. 

 
Different amino acid composition in soy proteins 

is believed to play a role in mediating the hypolipidemic 
actions of soy. It has been shown that lysine and 
methionine have moderate hypercholesterolemic effects 
(26,27), whereas arginine lowers cholesterol concentrations 
(28). Soy proteins contain a higher ratio of arginine to 
lysine and methionine, which may be at least partially 
responsible for the hypocholesterolemic effects of soy 
proteins (29,30).  
  

The major soy-derived ISF such as genistein and 
daidzein are potent regulators of many genes involved in 
lipid metabolism (20,31-33), however the lipid-lowering 
actions of soy-derived ISF are quite variable among 
different studies. The contributing factors causing these 
inconsistencies are not fully understood, but it has been 
suggested that the initial lipid levels and the ability of the 
subjects to metabolize the daidzein or daidzin to equol as 
well as the forms of ISF taken (glucosides or aglycones) 
may play a role in determining the bioavailabilities of the 
ISF and the responsiveness of the subjects to ISF (7,10,12).  

4. REGULATION OF TRANSCRIPTION FACTORS 
RELATED TO LIPID METABOLISM BY SOY 
PROTEINS AND ISF 
  

Although the molecular mechanism(s) by which soy 
components affect lipid metabolism is not fully understood, 
several hypotheses have been proposed to date based on the 
information obtained from studies in animals, humans, and in 
vitro tissue cultures.  These include suppressed cholesterol 
absorption (34), increased fecal excretion of bile acids (35,36), 
up-regulated hepatic LDL receptor activity (37), and elevated 
serum thyroxine (T4) levels (38).  

 
Recent studies suggest that dietary soy components 

may influence physiological functions via regulation of the 
expression of genes involved in various biochemical pathways. 
DNA-microarray analyses show that 33% out of 8000 liver 
genes were differentially expressed in soy-fed rats as compared 
to casein-fed rats. Most of those genes were involved in lipid 
metabolism, transcriptional regulation and energy metabolism. 
Among those, the ones involved in the fatty acid synthesis 
were down-regulated, whereas the ones related to cholesterol 
synthesis or steroid catabolism were up-regulated in soy-fed 
animals (39,40). More importantly, dietary soy proteins were 
shown to differentially regulate or modify transcription factors 
such as sterol regulatory element binding protein (SREBP) 
(3,41) and several nuclear receptors (42-44).  

 
4.1. Sterol regulatory element binding protein  

SREBP is synthesized in the endoplasmic 
reticulum as a precursor protein, and becomes active after 
cleavage of the NH2-terminal domain by two specific 
proteases, SP1 and SP2 in the Golgi apparatus. The active 
SREBP translocates to the nucleus, where it activates 
transcription of multiple target genes by binding to sterol 
response elements in their promoter regions (45). 
Transcriptional controls of fatty acid and cholesterol 
synthesis as well as cholesterol uptake genes are partially 
mediated by SREBP (46).  

 
There are three SREBP isoforms (SREBP-1a, -1c 

and SREBP-2) with specific and overlapping 
transcriptional targets. SREBP-1a and -1c preferentially 
regulate the enzymes involved in fatty acid and triglyceride 
biosynthesis such as acetyl-CoA carboxylase (ACC), fatty 
acid synthase (FAS) and microsomal triglyceride transfer 
protein and are activated in response to insulin. In addition, 
SREBP-1 is shown to reduce the mRNA expression of 
stearoyl–CoA desaturase 1 (SCD-1), an important enzyme 
to catalyze desaturation of long-chain fatty acids and 
enhance their incorporation into very low density 
lipoprotein (VLDL) assembly (47). SREBP-2 preferentially 
binds to promoters of the genes involved in cholesterol 
biosynthesis and uptake such as hydroxymethylglutaryl-
CoA synthase (HMG-CoAs), HMG-CoA reductase (HMG-
CoAr) and LDL receptor, and is activated by a low 
cholesterol content of the cell (45).  

 
Consumption of soy proteins reduces hepatic 

SREBP-1 mRNA and protein expression and concurrently 
reduces FAS and malic enzyme (ME) mRNA abundance as 
well as endogenous fatty acid biosynthesis (4,48-50). 
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Although the underlying molecular mechanism(s) are not 
fully understood, regulation of SREBP-1 gene expression 
by dietary soy proteins may be mediated through either 
insulin-dependent or -independent pathways. It has been 
shown that insulin stimulates SREBP-1 expression in liver 
(4) and rat primary hepatocytes (51), and that soy proteins 
decrease insulin secretion and increase hepatic insulin 
removal (52). However, recent evidence indicates that 
despite high insulin concentrations in hyperinsulinemic 
obese fa/fa rats, rats fed soy proteins have lower SREBP-1 
expression than rats fed casein (47). Further investigation 
demonstrated that reduction in SREBP-1 by soy proteins 
might be through the negative regulation of liver X receptor 
(LXR) mRNA expression (47). Interaction of SREBP with 
nuclear factors is a common mechanism through which 
SREBP activates gene transcription. For example, SREBP-
mediated activation of the genes for HMG-CoAs (53) and 
FAS (54) is dependent on the interaction between SREBP 
and nuclear factor-Y. Other studies have shown that 
SREBP activation of LDL receptor gene is dependent on 
the interaction between SREBP and sterol regulatory 
element-1 (55). 

 
Daidzein, genistein, or soy ISF have no effects on 

SREBP-1 content in cultured hepatocytes (56) nor in rats 
(47). However, a study in HepG2 cells demonstrated that 
genistein reduced the expression of site-1 protease which is 
responsible for the processing and activation of SREBP-1, 
and the processing of SREBP-1 but failed to change the 
expression of SREBP-1 mRNA. Meanwhile, the expression 
of SREBP-1-regulated lipogenic genes including SCD1, 
ACCalpha and ACCbeta were suppressed (31). 

 
SREBP-2 is a transcription factor regulating the 

transcriptional activation of HMG-CoAr and LDL receptor 
(45). Consumption of ISF-poor SPI decreased the mRNA 
levels of SREBP-2, HMG-CoAr, CYP7A1, and LDL 
receptor in the liver of rats and markedly reduced liver 
cholesterol and triglyceride content and plasma triglyceride 
concentrations (50). In contrast, ISF-containing soy extract 
and the individual ISF increased the mature form of 
SREBP-2 and HMG-CoAr protein as well as HMGCoAs 
mRNA levels in cultured HepG2 cells (56) and in rats 
(4,57), and elevated serum cholesterol clearance (4,57). 
The discrepancy between these studies may attribute to the 
variable content of ISF in SPI.  

 
4.2. Peroxisomal proliferator activated receptor  

Peroxisomal proliferator activated receptor 
(PPAR) is a ligand-activated transcription factor (58) and 
has three isoforms (alpha, gamma and delta). These 
isoforms are approximately 60-80% homologous in their 
ligand- and DNA-binding domains and have overlapping 
tissue distribution. PPARs are important in the regulation 
of lipid metabolism. For example, PPARalpha controls 
fatty acid oxidative metabolism through transcriptional 
induction of carnitine–palmitoyl transferase 1 (CPT-1). 
CPT-1 is a key enzyme involved in the transfer of fatty 
acids into the mitochondria to promote β-oxidation in the 
liver (59). PPARalpha knockout in mice remarkably 
elevates blood and hepatic cholesterol and triglyceride 
levels (60,61).  

 
Intake of soy proteins significantly decreased 

hepatic triglyceride levels and epididymal adipose tissue 
weight, and increased skeletal muscle CPT1 activity as well 
as CPT1 and PPARalpha mRNA levels in male Sprague-
Dawley rats (62). Up-regulation of CPT-1 mRNA 
expression by soy proteins was shown to be mediated 
through activation of PPAR in rat liver and thereby 
increased fatty acid oxidation (47).  

 
The effect of ISF on lipid metabolism might be 

mediated through both PPARalpha-dependent and 
independent pathways. The wild-type and PPARalpha 
knockout mice were fed soy proteins with or without ISF 
for 6 weeks. Soy proteins with ISF activated hepatic 
PPARalpha in wild-type mice and decreased serum 
triglyceride levels in both wild-type and PPARalpha 
knockout mice (61). Additionally, an ISF-containing soy 
extract doubled PPAR-directed gene expression in RAW 
264.7 cells containing either a PPARalpha or PPARgamma 
expression plasmid. A similar induction was observed 
when the soy ISF genistein or daidzein were used to treat 
cells (20). 

 
PPARgamma is a key regulator of glucose 

homeostasis and adipogenesis and is required for normal 
adipocyte differentiation. Activation of PPARgamma or its 
obligate heterodimer PPARgamma:RXR inhibited 
cholesterol accumulation by enhancing cholesterol efflux 
(63). Dietary soy proteins increased PPARgamma mRNA 
steady-state levels (47) and protein content (64) in adipose 
tissue of Zucker diabetic fatty fa/fa rats compared to a 
casein diet, and reduced the total and liver adiposity and 
maintained a lower number of dysfunctional adipocytes.  

 
4.3 Thyroid hormone receptor  

It has been established that thyroid hormones 
play important roles in the regulation of lipid metabolism. 
A deficiency in thyroid hormones results in elevated 
cholesterol levels in blood, however, it can be normalized 
by thyroid hormone substitution (65,66). Thyroid hormones 
influence lipid metabolism at several critical steps in the 
liver, including (a) regulation of fatty acid synthesis via 
ACC (67), FAS (68) and ME (69); (b) control of 
cholesterol biosynthesis via HMG-CoAr (70); (c) 
regulation of bile acid synthesis via CYP7A1 (71,72); and 
(d) mediation of cholesterol uptake from the circulation via 
LDL receptor (70,73).  

 
Increased T4 levels were proposed as a putative 

mechanism responsible for the hypocholesterolemic actions 
of soy proteins (38). T4 levels were negatively correlated 
with plasma cholesterol and triglyceride concentrations in 
gerbils (74), rats (75), and hamsters (76) fed soy protein-
based diets. However, this notion appears to be inconsistent 
with the results obtained from human clinical studies. Daily 
intake of SPI with either 1.64 or 61.7 mg ISF for 57 d had 
no effect on total triiodothyronine (T3), free T3, total T4, 
free T4, thyroid stimulating hormone (TSH) and thyroid 
binding globulin in healthy young men (77). The blood 
lipid levels including total cholesterol, LDL cholesterol, 
HDL cholesterol, triglycerides, apolipoprotein (apo) B, and 
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apo A-I were not different among three dietary groups. 
However, the ratios of total to HDL cholesterol, LDL to 
HDL cholesterol, and apo B to apo A-I were significantly 
lower with both SPI treatments than with milk protein 
isolate treatment (18).  

 
Of the seven trials (77-83) assessing the effects of 

soy proteins on serum TSH, total T3, and T4, only one 
study (82) showed elevated serum TSH, T3 and T4 by soy 
proteins compared with casein group. However, when 
compared to the normal baseline level, these increases were 
minimal. Another study also found that soy intake 
significantly decreased the plasma cholesterol 
concentration, but had no effect on T4 level in 
postmenopausal women with type 2 diabetes (79). In 
addition, although SPI and soy protein concentrates are 
both hypocholesterolemic in hamsters, only SPI increases 
T4 levels (84). These results indicate that modulation of 
thyroid hormone status may not be the only mechanism 
responsible for the cholesterol-lowering action of soy 
proteins.  

 
Thyroid hormone receptor (TR) mediates the 

thyroid hormone-regulated physiological functions. 
Mammalian TR is encoded by two genes, TRalpha and 
TRbeta. The primary transcript from each gene can be 
alternatively spliced to form different isoforms. Four TR 
isoforms have been reported to date and they are TRalpha1, 
TRalpha2, TRbeta1, and TRbeta2 (85). TRalpha and 
TRbeta differ slightly in structure and substantially in tissue 
distribution. TRalpha regulates heart rate and the speed and 
force of systolic contraction (86). TRbeta has diverse 
effects on lipid metabolism and hypothyroidism (87) and is 
highly expressed in liver (88). They are key regulators of 
many genes involved in lipid metabolism. 

 
We have shown that consumption of alcohol-

washed SPI markedly increased hepatic TRbeta1 protein 
content in rats compared with a casein-based diet, but had 
no effect on TRbeta1 mRNA abundances. Supplemental 
ISF had no additional effect compared with SPI alone. We 
further demonstrated that effects of SPI on TR were 
isoform- and tissue-specific (43). Interestingly, the binding 
ability of nuclear TR to the target genes measured by 
electrophoretic mobility shift assay was remarkably 
suppressed by dietary SPI (42). 

 
TRbeta isoform is the major functional TR in 

liver, accounting for 80% of hepatic T3-binding activity 
(89), and plays a unique role in the regulation of cholesterol 
metabolism. For instance, the normal stimulation of T3 on 
CYP7A1, a rate limiting enzyme in bile acid biosynthesis, 
was lost in TRbeta-/- but not in TRalpha-/- mice (90), and 
overexpression of TRalpha1 could not substitute for 
absence of TRbeta (91).  

 
Inhibition of TRbeta1 binding to target genes by 

SPI could block the stimulatory effects of thyroid hormones 
and alter downstream gene expression. In addition, 
suppression of TRbeta DNA binding may also affect lipid 
metabolism through altering PPARgamma-mediated gene 
expression involved in lipid homeostasis. It has been 

recently demonstrated that TRbeta can compete with 
PPARgamma and bind to the peroxisome proliferator 
response element (PPRE) as homodimers and heterodimers 
with PPARgamma or the retinoid X receptor (RXR) (92), 
thereby inhibiting PPAR-mediated gene expression at the 
level of PPAR binding to PPRE (93). Decreased DNA 
binding ability of TRbeta by SPI may result in increased 
binding of PPARgamma to PPRE and up-regulation of 
PPARgamma-mediated gene expression.  

 
4.4. Retinoic acid receptor  

RAR family is activated by both all-trans and 9-
cis retinoic acid (94). Three RAR subtypes (alpha, beta, and 
gamma) have been characterized (94,95) and are encoded 
by distinct genes. Several isoforms are produced from each 
gene. For example, RARbeta has four isoforms (beta1, 
beta2, beta3 and beta4) which are generated via alternative 
gene splicing of primary transcripts initiated from 2 
promoters (96,97). Retinoic acid (RA), a metabolite of 
vitamin A, is important in the prevention and treatment of 
various cancers (98,99) and also plays important roles in 
controlling lipid metabolism (100,101). 
 

However, induction of hypertriglyceridemia is 
one of the major adverse effects in the treatment of cancers 
with retinoids in both rats (102) and humans (98,103-105). 
Replacement of dietary casein with SPI markedly reduced 
the severity of RA-induced hypertriglyceridemia in rats 
(100,106). Although the involved molecular events are 
unclear, the RA-induced hypertriglyceridemia was shown 
to be mediated via retinoid receptors (100,107) and the 
serum retinoid level in RA-treated rats was not affected by 
dietary SPI (106). 

We have recently reported that ingestion of 20% 
alcohol-washed SPI significantly elevated hepatic 
RARbeta2 protein content, but had no effect on its mRNA 
abundance in rats, compared with a casein diet. However, 
the DNA binding abilities of hepatic RARbeta2 to its target 
genes were significantly suppressed. Increasing amounts of 
added soy ISF had no effect on RARbeta. We further 
demonstrated that dietary SPI induces modification of the 
receptor protein, which is believed to be responsible for the 
functional inhibition of RARbeta (44). RARbeta2 is the 
most abundant RARbeta isoform in the body (108). 
Suppression of RARbeta DNA binding activity may be an 
important cellular event by which dietary soy proteins 
alleviate the retinoid-induced hypertriglyceridemia.  

 
4.5. Liver X receptor 

LXR is predominantly expressed in the liver and 
can be activated by oxysterols. LXR regulates a variety of 
genes involved in the catabolism, transport, and uptake of 
cholesterol and its metabolites. CYP7A1 is one of those 
genes and contains a LXR response element in its promoter 
region (109). LXR acts as a cholesterol sensor and up-
regulates the expression of CYP7A1, which results in 
increased bile acid synthesis and subsequently excretion of 
cholesterol (110). Through regulation of ATP-binding 
cassette-A1 transporter system in extrahepatic cells, LXR 
controls the efflux of cholesterol from these cells which 
will then be taken up by HDL and transported back to the 
liver for further catabolism and elimination in bile (111). In 
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addition, LDL receptor and SREBP-1c genes possess the 
LXR response element through which LXR mediates 
endocytic uptake of LDL cholesterol in the liver (112) and 
insulin-induced SREBP-1 gene expression (113). Ingestion of 
non-extracted soy proteins (containing normal level of ISF) 
reduced hepatic cholesterol concentrations and down-regulated 
the expression of liver LXR, CYP7A1, ATP-binding cassette-
A1 transporter and SREBP-1 mRNA in obese rats (47).  

 
5. REGULATION OF GENES RELATED TO LIPID 
METABOLISM BY SOY PROTEINS AND ISF 
  
5.1. Fatty acid biosynthesis 

Three key enzymes are involved in fatty acid 
synthesis. ACC catalyzes the carboxylation of acetyl-CoA 
to form malonyl-CoA, which is the first step of the long-
chain fatty acid biosynthesis (114). FAS catalyzes malonyl-
CoA to generate long-chain fatty acids, a complex 
NADPH-dependent seven-step reaction (115). ME 
catalyzes oxidative decarboxylation of malate to pyruvate 
and CO2, with the concomitant reduction of the cofactor 
NAD(P)(+) to NAD(P)H (116), a process providing the 
source of NADPH for FAS. Alteration in the gene 
expression or enzymatic activity in any of these enzymes 
may affect fatty acid synthesis. 

 
5.1.1. ACC 

Two ACC isoforms have been identified and are 
encoded by distinct genes. ACCalpha is a cytosolic protein, 
highly expressed in liver and adipose tissue that exhibit 
high rates of fatty acid synthesis, whereas ACCbeta is 
located in mitochondria and is predominantly expressed in 
heart and muscle, and to a lesser extent in liver. ACCbeta 
plays a pivotal role in the regulation of mitochondrial fatty 
acid beta-oxidation (117) through feedback inhibition of 
CPT-1, an enzyme that controls the entry of long-chain 
fatty acid CoA esters into the mitochondria for degradation 
(118). Suppression of ACCbeta increases CPT-1 activity 
and enhances fatty acid beta-oxidation.  

 
It has been found that feeding soy proteins 

reduces hepatic ACCalpha mRNA content in fatty rats 
(119). This is further supported by our study in normal rats 
showing that intake of alcohol-washed SPI significantly 
reduced ACCalpha and ACCbeta mRNA and protein 
expression in the liver (22). Moreover, the ratio of 
phospho-ACCalpha/ACCalpha and phospho-ACCbeta/ 
ACCbeta were not different in liver, kidney and heart 
between rats fed SPI- or casein-based diet in our study (22), 
suggesting that dietary SPI may affect ACC mainly through 
transcriptional regulation rather than phosphorylation or 
dephosphorylation. 

 
Regulation of ACC gene expression by dietary 

SPI might be mediated through at least two different 
pathways which could be TR-dependent or SREBP-
dependent. ACC gene contains thyroid hormone response 
element in its promoter region and its expression is 
regulated by thyroid hormones (120).  In addition, SREBP-
1 is a transcription factor of the ACCalpha gene and is 
down-regulated by dietary SPI. However, a recent study 
showed that dietary SPI significantly decreased hepatic 

ACCalpha mRNA, but did not affect hepatic SREBP-1 
mRNA content (121). Further study revealed that 
ACCalpha expression was controlled by two promoters, PI 
and PII (121). Dietary SPI significantly decreased PI-
generated ACCalpha mRNA expression through inhibiting 
the binding ability of SREBP-1 to ACCalpha promoter, but 
did not affect PII and PII-generated ACCalpha mRNA 
(122), suggesting that SPI regulates ACCalpha mRNA 
mainly by regulating SREBP-1 binding to PI via nuclear 
factors other than SREBP-1 itself.  

 
5.1.2. FAS and ME  

Mammalian FAS is the product of a single non-
duplicated gene that generates a 250 kDa polypeptide 
chain. FAS is active as a homodimer (115) and its activity 
is regulated by diet, glucose, T4 and SREBP-1c through 
transcriptional control (123). Consumption of soy proteins 
reduced the mRNA expression of FAS and ME, and 
lowered hepatic triglyceride depots in rats (4,48,49). This 
regulation is suggested to be mediated through down-
regulation of SREBP-1 (4,48,49). However, FAS (124) and 
ME (125) also contain a thyroid hormone response element 
in their promoters. Inhibition of the DNA binding activity 
of TR by SPI (43) may be an alternative pathway for 
controlling gene expression and lipid synthesis.  

 
5.1.3. ATPase/ATP synthase 

ATPase/ATP synthase is an enzymatic complex 
responsible for ATP synthesis and hydrolysis in 
mitochondria. It consists of a membrane-bound F0 portion 
and a soluble F1 portion. F1 has five subunits (alpha, beta, 
gamma, delta, epsilon), and the beta subunit contains the 
catalytic sites of the ATP synthesis. F1 catalyzes the 
synthesis of ATP from adenosine diphosphate and 
inorganic phosphate. ATPase/ATP synthase plays 
important roles in the regulation of carbohydrate, protein 
and lipid metabolism via modulating energy homeostasis. 
Its beta subunit on the hepatocyte plasma membrane was 
recently identified as a high-affinity HDL receptor (126). 
HDL mediates the efflux and transport of cholesterol from 
peripheral cells to the liver for further metabolism, 
suggesting that ATPase/ATP synthase may play a role in 
the regulation of cholesterol metabolism. 

 
Dietary supplementation with soy isolated 

proteins containing ISF prevented reduction of Na+, K+-
ATPase activity, another member of the ATPase family, in 
diabetic rats (127). Genistein, one of the main soy ISF, 
suppressed brain and hepatic mitochondrial ATP synthase 
activity in vitro (128). We have recently shown that hepatic 
mitochondrial ATPase activity was significantly higher in 
the rats fed alcohol-washed SPI than in those fed casein. 
Addition of ISF to SPI eliminated the action of SPI. 
ATPase/ATP synthase beta protein content in the liver were 
unchanged; however its patterns (isoelectric points) 
measured by 2 dimensional Western blot were different 
among dietary groups. We further demonstrated that dietary 
SPI increases the dephosphorylation of the mitochondrial 
ATPase/ATP synthase beta subunit, which is responsible 
for the increase in the enzymatic activity (129). However, 
the physiological importance of this cellular response to the 
dietary SPI remains to be investigated. 
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5.2. Cholesterol metabolism 
5.2.1. Synthesis 

In most cells, cholesterol is derived either from 
endogenous synthesis via the mevalonate pathway or from 
the uptake of circulating cholesterol-rich LDL. HMG-CoAr 
is the rate-limiting enzyme in cholesterol biosynthesis and 
catalyzes the formation of mevalonate from HMG-CoA. 
Genistein has been shown to decrease cholesterol synthesis 
in cultured HepG2 (32) and inhibit HMG-CoAr activity in 
MCF-7 human breast cancer cells (33). Consumption of 
SPI significantly decreased HMG-CoAr mRNA abundance 
and cholesterol synthesis in the liver of nephrotic rats (49). 
We also found that hepatic HMG-CoAr protein content was 
significantly lower in the rats fed SPI with ISF supplement 
compared to casein control (unpublished data).  

 
5.2.2. Catabolism 

One of the mechanisms proposed to explain 
the hypocholesterolemic effect of soy proteins is 
through an increase in bile acid secretion. Rabbits fed 
casein diet excreted less neutral steroids and produced 
less bile acid than animals fed a soy protein diet. In 
addition, rabbits fed casein excreted mainly cholesterol 
whereas those fed soy proteins excreted unabsorbable 
coprostanol (35). Peptides prepared by the in vitro 
digestion of soy proteins were found to stimulate fecal 
steroid excretion and consequently lower serum 
cholesterol in rats (130) as well as in human volunteers 
(131). 

 
Bile acids are amphipathic and polar 

derivatives of cholesterol. The liver excretes bile acids 
to the intestine where ~ 95% of bile acids are then 
reabsorbed in the terminal ileum and returned to the 
liver. If bile acids are no longer available for transport 
back to the liver, they are lost in the faeces. As a result, 
there is an up-regulation of hepatic enzymes involved in 
bile acid biosynthesis such as CYP7A1.  

 
The activity of CYP7A1 is negatively 

regulated by bile acid, diet, drug and hormones. The 
effects of consumption of soy proteins on hepatic 
CYP7A1 gene expression are inconsistent in different 
studies. One study showed that dietary soy proteins 
increased CYP7A1 gene expression in the liver (30), 
whereas other studies reported opposite effects 
(47,50,132). We have recently demonstrated that ingestion of 
20% alcohol-washed SPI (containing minimal amount of ISF) 
remarkably reduced the total cholesterol levels in the blood and 
liver of the rats compared with a casein diet. However, the 
hepatic CYP7A1 protein contents measured by Western blot 
were not different between dietary groups. Our further study 
showed that SPI appears to increase the phosphorylation of 
hepatic CYP7A1, which may lead to a higher enzymatic 
activity (unpublished data). Although this remains to be 
confirmed, other studies have already demonstrated that 
increased protein phosphorylation is correlated with 
enhanced activity of CYP7A1 (133).  

 
5.2.3. Uptake 

LDL cholesterol is mainly from three sources: 
peripheral cholesterol synthesis, hepatic cholesterol 

synthesis, and intestinal cholesterol absorption. LDL 
receptor is a major regulator of circulating LDL 
cholesterol. It has been suggested that the 
hypocholesterolemic effects of soy proteins may be 
mediated through up-regulation of LDL receptors 
(37,134-137). Soy proteins enhance the expression of 
the LDL receptor in cultured human hepatoma cells 
(37,134), animals (136,137), and hypercholesterolemic 
type 2 diabetic patients (135). A similar effect has been 
observed with a soy protein polypeptide in cultured 
HepG2 cells (25). However, results obtained from a 
study with LDL receptor null mice did not support this 
hypothetical mechanism, in which SPI lowered the 
plasma LDL and VLDL cholesterol concentrations and 
inhibited atherosclerosis despite the absence of the LDL 
receptor in the mice (138). This suggests that LDL 
receptor–independent pathway(s) by which dietary SPI 
lowers cholesterol levels may exist.  
 
6. SUMMARY 
 

The hypolipidemic actions of soy components 
(mainly proteins and associated ISF) appear to be 
consistent in both animal and human studies. However, 
the size of the effect is variable, which might be 
attributed to the variation in the processing procedures 
of SPI, the content of ISF, the amount of unknown bioactive 
component(s) or the physiology of the subjects. It has been 
shown that different processing procedures affect the intactness 
of soy protein subunits that might be crucial for their 
physiological functions (6). Although the in vitro and animal 
studies showed that beta-conglycinin, particularly the alpha’ 
subunit, has most of the functions of the soy, all the human 
trials and animal studies were based on the amount of total 
soy proteins rather than the amount of the bioactive 
components which might be very different among 
different SPI preparations. In addition, the ability of the 
subjects to metabolize daidzein or daidzin to equol is 
suggested to be associated with their responsiveness to 
dietary soy. However, only 30-50% of the adult 
population can excrete equol in urine when challenged 
daily with soy foods (8). Soy proteins and ISF regulate 
lipid metabolism via multiple cellular pathways (fatty 
acid biosynthesis, cholesterol synthesis, catabolism and 
uptake) and through modulation of the key transcription 
factors including SREBP, PPAR, TR, RAR, and LXR. 
In addition to regulation at transcriptional levels, soy 
proteins have also been shown to posttranslationally 
modify the receptor (such as RAR) and enzymatic 
(ATPase/ATP synthase and CYP7A1) proteins via a 
phosphorylation and dephosphorylation mechanism, and 
thereby altering the DNA binding ability of the receptor 
or activity of the enzymes. Since most of the mechanism 
studies on soy actions have been conducted in either 
cultured cells or animal models, whether the same 
mechanisms are shared in humans remains to be verified 
using appropriate biomarkers.     
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