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1. ABSTRACT 

 
Choosing an appropriate animal model to study a 

disease is guided by a variety of factors including but not 
limited to the questions being asked, availability of 
reagents, knowledge of the animal species, personal biases 
of the researcher, and in some cases, cost and availability of 
facilities to effectively investigate the model.  The validity 
of an animal model can be further complicated when the 
etiology of the disease is incompletely defined.  Examples 
of these diseases include multiple sclerosis (MS) and type 1 
diabetes (T1D).  In addition to host genetics, 
epidemiological studies have implicated infectious agents, 
in particular viruses as triggers of these diseases.  Thus 
many studies of these diseases have focused on modeling 
the interactions of viruses and the host immune response in 
vivo in small animals.  Theiler’s murine encephalomyelitis 
virus (TMEV) infection of mice has been used for over 30 
years as a model of virus-induced demyelination.  TMEV 
induces a MS-like disease in susceptible strains of mice but 
does not cause pathology in humans.  While some 
researchers may question the rationale for using a non-
human pathogen to model human disease, the TMEV 
model of central nervous system (CNS) demyelination has 
permitted study of some aspects of human MS which 
would have been difficult to address in other models of the 
disease.  Despite being ‘merely a disease of mice,’ many of 
the findings in the Theiler’s virus model are directly 
applicable to the human condition, and studies from the 
model are responsible for our current understanding of 
mechanisms of pathology and clinical disability in human 
MS.  In this review we will present some of the key 
findings from the TMEV model in the context of human 
disease.   

 
 
 
 
 
 
 
 
2. AN OVERVIEW OF THE THEILER’S MODEL OF 
DEMYELINATING DISEASE 
 

Theiler’s murine encephalomyelitis virus 
(TMEV) is a positive-stranded RNA virus belonging to the 
family Picornavirade (genus Cardiovirus).  There are two 
subgroups of TMEV – GDVII and TO.  The GDVII 
subgroup viruses (FA and GDVII) are highly neurovirulent 
and cause necrotizing encephalitis and death in the murine 
host within 7 days of intracerebral (i.c.) infection even at 
very low doses (1).  Intracerebral infection of mice with TO 
subgroup viruses (DA and BeAn) induces acute 
encephalitis between days 5 and 10 post-injection (p.i.) in 
all strains of mice.  During this phase of infection virus 
replicates primarily in neurons and viral titers escalate 
rapidly (2).  Within two weeks of infection, virus is cleared 
from the gray matter of the brain.  In mouse strains resistant 
to persistent infection (H-2d, b) (3-5)TMEV is effectively 
cleared from the central nervous system (CNS) by a strong 
cytolytic T lymphocyte (CTL) response directed against the 
VP2 viral capsid protein (6,7).  These animals recover and 
experience no obvious functional deficits as a result of the 
infection.  Some strains of mice are unable to efficiently 
clear virus from the CNS and a persistent infection is 
established in the white matter of the brain and spinal cord, 
where demyelination and chronic inflammation develops.  
The infiltrate is comprised of CD4+ T cells, CD8+ T cells, 
B cells, and activated microglia/macrophages (8).  Low-
levels of virus can be detected in oligodendrocytes (9,10), 
microglia/macrophages (2,11,12), and astrocytes (10).  In 
the BeAn strain the macrophages are the main reservoir of 
virus in chronically infected mice (11).  Despite the high 
degree of sequence homology between DA and BeAn (13), 
the disease observed in DA-infected mice is distinct from 
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BeAn-induced disease.  DA-infected mice have higher 
levels of spinal cord demyelination, increased functional 
deficits, higher levels of virus-specific RNA and protein, 
and lower levels of TMEV-specific antibody compared 
to BeAn-infected animals (14).   

 
The initial demyelination in the TMEV model 

is due to direct viral damage to the myelin-producing 
oligodendrocyte.  Ongoing chronic demyelination is 
attributed to the development of autoimmune responses 
to previously sequestered self-epitopes, a phenomenon 
known as epitope spreading (15-17).  Clinical signs of 
chronic TMEV infection are similar to those observed in 
patients with chronic progressive MS.  These include 
spasticity, incontinence, weakness of the extremities, and 
eventually paralysis (2,18).  Akin to the oligoclonal 
bands found in the cerebrospinal fluid (CSF) of MS 
patients, i.c. infection of susceptible strains of mice with 
TMEV results in intrathecal antibody production (19).   

 
The wide availability of mutant and knockout 

mice has permitted the study of the contribution of 
various immune system components on susceptibility or 
resistance to demyelination (20-31), neuronal damage 
(20,21,32-34), and in some cases, death of the host 
(24,32,35).  Mice lacking adaptive immune systems die 
within two weeks of i.c. infection even when on a genetic 
background that is resistant to infection (32,35,36).  In 
addition, some immune component deficiencies may 
result in altered patterns of brain pathology in the acute 
phases of disease (20,21,32).  While Theiler’s virus 
infection of mice has been used primarily as a model of 
demyelination, TMEV infection of mice has been used to 
explore many more scientific questions beyond modeling 
MS.  TMEV infection of mice has also been successfully 
used to model T cell priming and antigen presentation in 
the CNS (17,37-41), mechanisms of virus transport from 
the PNS to the CNS (42-44), and understanding 
mechanisms of myelin damage (45) and repair (46-48).   
 
3.    MULTIPLE SCLEROSIS – A SHORT COURSE 
 

Multiple sclerosis is the most common 
demyelinating disease of the CNS in humans, with more 
females affected than males (49-51).  The disease is focal 
in nature and the lesions contain inflammatory infiltrates 
consisting of T cells, B cells, and macrophages (52).  The 
disease course in individuals diagnosed with MS is 
unpredictable although most individuals experience 
increasing loss of function as time progresses.  
Autoreactive T cells have been identified against several 
myelin components including myelin basic protein (MBP) 
(53-55) and proteolipid protein (PLP) (53, 56, 57).  As 
most studies have focused on individuals after diagnosis, 
the contribution of the autoreactive T cells to disease onset 
is murky.   

 
The etiology of MS is unknown, but both host 

genetics and environmental factors are likely involved in 
disease development (58-64).  A variety of genetic 
associations have been made between various HLA 
alleles and an increased relative risk rate of MS 

development (58, 59, 65-68).  The first genes implicated 
in the development of MS were HLA class I alleles – key 
participants in the immune response to viruses (61), 
suggesting that the response to intracellular pathogens 
may be important in disease development.  In addition to 
particular HLA alleles, polymorphisms in other genes 
that affect immune function have been made (69-76).  
Despite extensive study, no consensus has been reached 
with regard to which genes are most important in MS 
susceptibility.  The results of the genetic studies do 
support a role for multiple genes in determining MS risk. 
 

While the risk of disease development increases 
when a first degree relative is affected, genetics alone do 
not adequately explain disease development (77-83).  
Long-term studies in the Faroe Islands in the decades 
following World War II and migration studies have 
supported a role for infectious agents in disease onset  
(60, 62-64, 84, 85).  Since these original epidemiological 
studies, much work has focused on identification of 
pathogens that may trigger disease.  The most commonly 
implicated class of pathogens in the development of MS is 
viruses (86-94).  Viruses have been implicated or 
eliminated as causes of the disease based on their 
presence or absence in a demyelinating lesion, or the 
level of virus-specific antibody in the patient at or near 
diagnosis.  Some of the  pathogens proposed as triggers 
of MS include rabies (86,87), human herpes virus 6 (95, 
96), measles (96-100), adenovirus (88-89), parainfluenza 
type 1 (90-93, 101), rhinovirus (102), and Epstein Barr 
virus (94, 103, 104).   

 
Based on studies in the TMEV model of MS, 

mechanisms of demyelination that are triggered by virus 
may or may not require the presence of viral antigen at 
the lesion site at the time of clinical disease onset.  
Studies from the laboratory of Stephen Miller have 
demonstrated that while virus is required to initiate 
demyelination, it is ultimately the ongoing immune 
response to newly exposed self-epitopes that is 
responsible for the chronic, increased levels of 
demyelination that are observed (15-17).  The specificity 
of the autoreactive cells that develop changes over time 
in a predictable manner (15-17).  Extending these 
findings to the human disease, one could postulate that 
while a virus (or viruses) may trigger the disease in 
humans, it is long-gone by the time of diagnosis.  

 
Diagnosis of MS is difficult, as similar 

symptoms related to other disease conditions must be 
considered.  Diseases that must be excluded include 
Lyme Disease, sarcoidosis, vascular disease, syphilis, 
genetic diseases, or structural conditions such as 
herniated disks or tumors that may impair nervous 
system function.  Other diagnostic criteria include the 
presence of oligoclonal bands in the CSF and 
gadolinium-enhanced plaques in the spinal cord and 
brain upon magnetic resonance imaging (MRI) (105-
107).  Currently lesion activity, as defined by MRI 
visualization, is the key pathological feature of MS both 
in diagnosis and in monitoring disease progression. 
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4.    AXONAL INJURY IN DEMYELINATING 
DISEASE.  DOES DEMYELINATION REALLY 
MATTER? 
 
4.1. Axonal injury in multiple sclerosis  

Human multiple sclerosis has long been 
characterized as a primary demyelinating disease.  The 
hallmark pathology of the disease is a loss of myelin, with 
relative sparing of the axon (108).  Despite this 
categorization, the clinical course of the disease is 
perplexing because no firm association between the extent 
of demyelination lesions and patient disability has been 
described.  This lack of correlation between lesion load and 
clinical disability is referred to as the clinico-radiological 
paradox (109,110).  Until relatively recently, axonal 
damage has been thought to be a long-term sequelae that 
results from the assault on the denuded axon by the 
immune response (108).  Increasing evidence however 
currently suggests that axonal damage occurs significantly 
earlier than previously thought, and demyelination alone is 
not the cause of patient disability (108,111-116).  Axonal 
injury results in axonal transection, a condition for which 
there is no treatment.  In the past decade numerous studies 
have demonstrated that at least in some instances, axonal 
damage occurs in areas of normal appearing white matter 
of MS patients (111-114).   

 
To examine whether there were alterations in 

axonal density in normal appearing white matter in patients 
with MS, Bjartmer et al. examined autopsy tissue from a 
patient with acute MS.  Using immunohistochemical 
staining with an antibody to neurofilament protein as a 
marker for axons, these studies demonstrated that there was 
a decrease in axonal density of approximately 22% in 
normal appearing white matter in the the MS patient as 
compared to the axonal density in the CNS tissue from 
individuals with no known neurological pathology (111).  
In the course of these studies, the authors also demonstrated 
that despite the significant level of axonal dropout, myelin 
sheaths devoid of axons were also apparent.  These myelin 
sheaths were either intact or collapsed upon themselves.  In 
addition, macrophages containing myelin debris were also 
detected, indicating that myelin was also disrupted (111).  
Similar immunohistochemical studies have confirmed the 
observation that axonal dropout occurred in normal 
appearing white matter in autopsy tissue from MS patients.  
Decreases in axonal density of up to 65% were observed 
(112-114).  The axons at greatest risk were the small axons 
(113,114).  Despite the sex bias in MS patients, no 
difference in the level of axonal dropout has been reported 
between the sexes (114).  

 
While these findings were of interest, these 

studies did not address whether the axonal pathology was 
old or relatively recent.  To address this question, 
immunohistochemical staining of biopsy tissue from MS 
patients was performed using amyloid precursor protein 
(APP) as a marker of acute axonal injury (117).  Acute 
axonal injury was defined as damage that occurred within 
the last month.  The amount of acute axonal injury varied 
with the subtype of MS in the patient.  Patients with 
primary progressive MS had reduced levels of APP 

staining; patients with secondary progressive MS had much 
higher APP-positive staining than other forms of MS (117).  
APP was found in areas of demyelination, remyelination, 
and normal appearing white matter (117) indicating that 
axons in areas undergoing damage, invoking repair 
mechanisms, and normal appearing tissue were all 
vulnerable to axonal damage.   

 
The main focus of treatments used in MS patients 

is targeted toward reducing lesion activity and relapses as a 
measure of success (118-122).  Given that significant 
numbers of axons are damaged early on in some forms of 
MS, the view that clinical sequelae can be prevented if 
myelin sheaths can be repaired relatively quickly after the 
onset of demyelination may be naïve and outdated.  This is 
not to say that reducing or repairing demyelination in the 
treatment of MS is not warranted.  As myelination impacts 
conduction velocities along the axon, reduced myelination 
most certainly negatively impacts clinical symptoms in the 
patient.  However, it is imperitive that alternative measures 
be used to assess treatment efficacy. 

 
4.2. What has Theiler’s virus taught us about 
demyelination and axonal injury? 

The study of chronic infection of mice with 
Theiler’s virus has been used to demonstrate the disparity 
between the extent of demyelination in the host and the 
level of clinical disability.  Studies from this model first 
provided an experimental model demonstrating that clinical 
deficits and demyelination were independent of each other 
and ultimately providing a potential mechanism explaining 
the clinico-radiological paradox (123-126).  Using beta2 
microglobulin-deficient mice on a background resistant to 
demyelination (C57Bl/6J x 129), Rivera-Quinones et al. 
demonstrated that demyelinating lesions developed 
following intracerebral infection with Theiler’s virus (123).  
These beta2 microglobulin-deficient mice, devoid of both 
MHC class I expression and CD8+ T cells, were unable to 
mount CTL responses (127).  Despite the presence of these 
large areas of demyelination, spontaneous clinical activity 
and hindlimb evoked potentials in the virus-infected mice 
were similar to those observed in mice that were infected 
and efficiently cleared TMEV from the CNS (123).  The 
retention of normal function in the TMEV-infected beta2 
microglobulin-deficient mice parallels human cases of 
asymptomatic MS (128).  TMEV-infected beta2 
microglobulin-deficient mice also had increased sodium 
channel levels in the CNS, as well as relatively well-
preserved axons, findings that would provide the basis for 
the normal evoked potentials measured in these animals 
(123).  The development of this model permitted further 
studies on the role of CD8+ T cell/MHC class I interactions 
in the development of functional deficits in demyelinating 
diseases. 

 
The beta2 microglobulin knockout mice have 

been the focus of intense study since their initial 
characterization (23, 124-126).  One possibility for the 
observed differences in clinical function between beta2 
microglobulin-deficient mice and immunocompetent 
control mice susceptible to the development of large areas 
of demyelination and functional deficits was that the two 
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strains of mice developed lesions in different areas of the 
spinal cord.  Simply put, the lesions in the beta2 
microglobulin-deficient mice, while large, were in areas of 
the spinal cord that were less critical to motor function.  To 
address this potential mechanism of clinical function 
preservation in the beta2 microglobulin-deficient mice, 
geographic distribution of the lesions and the extent of 
remyelination were examined.  Beta2 microglobulin 
knockout mice and SJL/J mice, a strain of mice that 
experience significant loss of function following TMEV 
infection were used in these studies (125).  The hypothesis 
being examined was that the location of the demyelinated 
lesions was the key determinant as to whether clinical 
deficits developed.  Morphometric studies determined that 
both the lesion size, geographic distribution of the lesions, 
and the degree of remyelination in these two strains of mice 
were similar.  Using retrograde neuronal labeling to 
measure the level of axonal injury, it was determined that 
compared to beta2 microglobulin-deficient mice, SJL/J 
mice had reduced retrograde labeling of neurons in the 
major motor tracts compared to the beta2 microglobulin-
deficient mice (125).  Together, these studies provide 
further evidence for the hypothesis that demyelination and 
axonal damage are independent of each other.  These 
studies also implicate a role for CD8+ T cells in impacting 
axonal health.   

 
4.3. Mechanism of axonal injury in the TMEV model 

Key to induction of CTL response are that MHC 
class I molecules displaying a peptide in the binding cleft 
that corresponds to an appropriate T cell receptor on a 
CD8+ T cell.  Under normal conditions, MHC molecules 
are not expressed in the brain and spinal cord.  However, 
damage (infection, trauma, physiological) can result in the 
induction of MHC molecules in the affected area (129, 
130).  Thus, following damage or infection, CNS resident 
cells acquire the ability to present antigen to T cells.  
Increased expression of class I on the demyelinated axons 
in patients with MS has been reported, thereby 
demonstrating that one of the requirements for CTL-
mediated damage to the axons is fulfilled (131).  In studies 
exploring the interactions between CD8+ T cells and 
neurons in an in vitro setting, the hypothesis that cytotoxic 
T cells were directly responsible for damage to neuritis was 
tested (132).  Murine neurons were pulsed with 
lymphocytic choriomenigitis virus (LCMV)-derived 
peptides and then co-cultured with LCMV-specific CD8+ T 
cells.  The CD8+T cells attached to the neuritis and within 
3 hours, changes to the neurite cytoskeleton consistent with 
transaction of the neurite were observed (132).  No 
structural abnormalities were observed in neuritis when 
control peptides or neurons devoid of class I expression 
were used, indicating that the structural changes were the 
result of antigen-specific class-I mediated responses (132). 

 
While studies in the beta2 microglobulin-

deficient mice demonstrated that demyelination and axonal 
damage were not interdependent, they did not address the 
observation in human tissue that there are damaged axons 
in the normal appearing white matter (111-114).  The 
concept that axonal injury is a sequela to demyelination has 
also been examined in the TMEV model.  Using 

nonphosphorylated neurofilament protein as a marker of 
axonal damage, studies using SJL/J mice demonstrated that 
axonal injury was detected by one week p.i. with the DA 
strain of TMEV (133).  At this time-point in infection the 
majority of virus was localized to the neurons.  As the 
infection progressed the number of nonphosphorylated NPP 
immunoreactive axons increased in the spinal cord.  
Histologically there was an increase in the amount of 
axonal swelling in normal appearing white matter over 
time.  These studies were significant as they provided 
evidence that axonal injury did not occur solely as a 
secondary event following demyelination (133).  TMEV 
antigens rarely co-localized with axons indicating that 
direct virus-induced axonal damage was likely.  
Furthermore, similar to the pathology described in MS, 
empty myelin sheaths were observed indicative of axonal 
degeneration (111,133).  Using the highly neurovirulent 
GDVII strain of TMEV, similar studies determined that this 
strain of TMEV also induced high levels of axonal swelling 
and degeneration in normal appearing white matter.  As 
GDVII-infected animals do not demyelinate, these data 
demonstrate the independence of these distinct pathologies. 

 
Two proteins are involved in CTL-mediated 

killing.  Perforin is responsible for the generation of 
channels on the target cells, and granzymes enter the cell 
and cause damage to the target cell’s DNA.  To test the 
contribution of perforin to axonal degeneration and clinical 
deficits, perforin-deficient animals on a C57BL/6J 
background (that is, animals that can mount a vigorous 
CTL response and clear virus) were infected with TMEV 
and examined six months later.  TMEV-infected perforin-
deficient mice developed demyelinating lesions throughout 
the spinal cord but motor function and large diameter axons 
remained preserved (126).  The levels of function and 
axonal preservation were similar to those observed in 
immunocompetent wild-type mice.  In contrast, TMEV-
infected mice with CD4+ T cell deficits experienced similar 
levels of demyelination as the perforin deficient mice but 
also experienced a loss of function.  In addition, CD4-
deficient mice infected with TMEV experienced a loss of 
large diameter axons (126).  In these studies, demyelination 
alone was not a predictor of clinical function although the 
extent of loss of large diameter axons could be correlated to 
clinical disease.  Similar to the in vitro studies 
demonstrating the antigen-specific nature of the CTL-
mediated damage to the neuritis in vivo studies 
demonstrated that depletion of the VP2 121-130-specific T 
cells significantly reduces the damage in the TMEV model 
(124).  
 
 Because MS is typically categorized as an 
autoimmune disease the main focus of study in MS 
patients, as well as animal models, had been the host 
immune response.  Despite the obvious interest in the 
immune response, the role of non-immune factors in the 
establishment of disease has also been of great interest.  
Recently, the role of myelin in the establishment of TMEV 
persistence has been explored.  In these studies two mouse 
strains with myelin defects were studied and have presented 
us with new paradigms to understand the mechanism of 
viral persistence in this model.  Shiverer mice have a large 
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deletion in the myelin basic protein gene resulting in 
extremely low levels of myelin production (134-137).  
Rumpshaker mice have an X-linked mutation in proteolipid 
protein gene which results in dysmyelination and increased 
numbers of oligodendrocytes (138).  Even when infected 
with high doses of TMEV, it is not possible to induce a 
persistent infection in these mouse strains (139).  In 
contrast, infection of wild type control mice with much 
lower doses of TMEV results in virus persistence and 
subsequent demyelination.  These data cannot be explained 
solely by the immune response in the context of epitope 
spreading as the immune response to myelin basic protein 
is not one of the early identified self-reactivities (16). 
 
 To explore the basis of this protection from 
persistent TMEV infection, the optic nerve was used to 
model axon, myelin, and virus interactions (45).  These 
studies demonstrated that the axons of infected neurons are 
a key component in permitting infection of the cytoplasmic 
channels of myelin.  It was postulated that the virus 
attempts to gain a survival advantage in the host by 
establishing itself in an environment distal from the 
demyelinating lesion, which is the main target of the 
immune response (45).  What is the relevance of these 
findings in the context of human multiple sclerosis?  The 
data, while relatively new, provide a mechanism by which 
viruses could induce MS in humans, and provide an 
explanation as to the lack of viruses that have been 
identified at the lesion site. 
 
 5. LESSONS FROM THE ACUTE PHASE OF TMEV 
INFECTION 
 
 All strains of mice, regardless of their genetic 
background, experience the acute phase of TMEV infection 
characterized by high levels of virus replication in the 
neurons (2, 18). This virus-induced encephalitis has 
permitted the study of the role of immune system 
components in protection of discrete areas of the brain from 
TMEV-mediated disease (20, 21, 32-34).  It has been 
observed in viral encephalitis in humans that certain viruses 
induce distinctive patterns of pathology in the brain.  For 
example, rabies localizes primarily to the pons and 
medulla, while herpes simplex virus-1 induces disease that 
is localized to the frontal and temporal lobes (140).  While 
one possibility is that specific patterns of brain disease are 
related to virus receptor distribution, the host immune 
response also appears to significantly impact where 
pathology will occur.   
 
 To examine the role of specific immune system 
components on brain pathology, a series of mice with 
various immune system participants knocked-out were i.c. 
infected with TMEV and sacrificed at day 16 p.i.  This 
time-point was chosen as by this time virus has been 
cleared from the brains of immunocompetent mice that are 
capable of generating CTL responses sufficient to clear 
virus from the host.  Using mice deficient in MHC class I 
or II, alpha/beta TCR or antibody, it was demonstrated that 
class I-mediated immune responses are critical in clearing 
virus from areas of the brain rich in white matter, while 
areas abundant in neurons (i.e., gray matter) are protected 

primarily by antibody (32).  Given that white matter areas 
profoundly upregulate MHC class I levels following virus 
insult (141), it is logical that protective responses are 
induced that exploit this arm of the immune system.  As 
neurons less efficiently upregulate MHC after virus 
infection, the dependence on antibody-mediated protective 
responses would be expected.  Further studies using mice 
deficient in other immune systems components (ICAM-1, 
CD40, IL-6) have supported these initial observations (20, 
21, 33, 34). 
 
 The continuous stream of knockout mice 
available to investigators will permit further dissection of 
immune system components to protection from virus-
induced damage.  Furthermore, utilization of this approach 
with different viruses will allow us to determine whether 
the patterns of brain pathology are unique for TMEV or 
reflect general patterns for particular classes of viruses.  
 
6. INFECTION OF THE PERIPHERAL NERVOUS 
SYSTEM WITH TMEV 
 

Peripheral nervous system infection with TMEV 
is an area of research that has been examined in a minimal 
number of studies.  The natural route of CNS infection with 
TMEV in the wild is unknown.  Because TMEV is 
transmitted via an oral-fecal route in the wild, it is likely 
that the CNS infection occurs via the peripheral nervous 
system or possibly, the blood.  A small number of studies 
have examined the dynamics of virus spread from the 
peripheral to the central nervous system (42-44).   To 
examine whether TMEV could enter the CNS from the 
PNS via axonal transport, mice were injected into the 
footpad with the highly neurovirulent GDVII strain of 
TMEV (44).  Within one week, virus was detected in the 
spinal cord.  Initially paralysis was observed in the injected 
limb, and subsequently in the contralateral hindlimb.  
Cholchicine, an inhibitor of fast axonal transport, was used 
and prevented transport of the virus into the CNS, 
demonstrating a microtubule-dependent mechanism of 
transport of TMEV from the periphery to the CNS (44). 

 
More recently, studies were performed that 

propose a route for infection of the CNS with TMEV in the 
wild.  Injection of either the tongue or the hypoglossal 
nerve with TMEV resulted in spread of the virus to the 
CNS as measured by the induction of paralysis (43).  The 
results of the intratongue injections are significant, in that 
one could envision a scenario in the wild whereby a natural 
infection could travel to the CNS via a breach in the surface 
of the tongue, similar to one of the proposed mechanisms 
of transmission of prion diseases (142).   

 
Our laboratory recently developed a model of 

direct injection of virus into the sciatic nerve with a goal of 
using this model to study myelin repair of the peripheral 
nervous system (42).  While it has been well-described that 
the PNS is more efficient at repair than the CNS, few 
opportunities exist to directly examine the differences in 
the processes, as the lesioning methods used in the PNS 
and CNS vary.  Further development of this sciatic nerve 
model, as well as our model of direct CNS lesioning (143), 
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will permit study of these processes without the 
complication of an additional variable (that is, the method 
by which the lesion was made).    

 
7. SUMMARY AND PERSPECTIVES 
 

The study of non-human pathogens that are not of 
agricultural interest is sometimes denigrated by those 
working with human pathogens (aka, ‘my virus is better 
than your virus’).  The concept that one cannot advance the 
understanding of human disease by studying a mouse virus 
is, in our view, short-sighted.  Certainly, our understanding 
of axonal damage in multiple sclerosis would not be as 
advanced as it is without the TMEV model.  The ability to 
utilize a small animal model in concert with human 
histopathological studies provides investigators with an 
excellent opportunity to test and understand mechanisms of 
pathology, and to gain confirmatory data from human 
samples.  Furthermore other aspects of the model, such as 
the acute phase of disease or infection of the peripheral 
nervous system provide ample opportunity for further study 
of human diseases other than multiple sclerosis. 
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