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1. ABSTRACT 
 

Ischemia-reperfusion injury (IR) is a common 
and an important clinical cause of renal disease, such as 
renal transplantation, renal artery stenosis and following 
shock from any cause.  Inflammatory reaction after IR is 
regulated by various kinds of mediators.  Chemokines are 
major mediators of the inflammation, and regulate pro-
inflammatory cytokine and adhesion molecule expression, 
and leukocyte infiltration and activation.  Chemokines are 
the key players of inflammation, angiogenesis and fibrosis.  
These inflammatory processes mediated by chemokines 
were observed in not only experimental animal models, but 
also in human renal diseases with ischemic injury.  A 
number of challenges of chemokine targeted therapy is 
trying to prevent the ischemic injury, and will give some 
beneficial effect on the injury.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Ischemia-reperfusion injury (IR) is a common 
clinical cause of renal disease.  Unavoidable during renal 
transplantation, IR resulting in acute renal failure also occurs 
commonly in the context of renal artery stenosis and following 
shock from any cause.  Like other pathologic conditions of the 
kidney, renal ischemia may ultimately progress to chronic, 
advanced kidney disease characterized by tubule and capillary 
loss as well as interstitial fibrosis.  The underlying mechanisms 
appear to involve tubular epithelial cell necrosis and/or 
apoptosis, associated with marked leukocyte infiltration. Pro-
inflammatory mechanisms resulting from IR in kidney have 
not yet been fully defined, but may provide opportunities for 
developing novel therapeutic approaches (1-3).  This review 
focuses on the contribution of chemokines and chemokine 
receptors in coordinating inflammation in renal IR. 
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3. INDUCTION OF CHEMOKINES AFTER RENAL 
ISCHEMIA-REPERFUSION INJURY 
 

The renal tubular epithelial cell is very sensitive 
to hypoxia, and may react to ischemic stress in at least three 
ways that may foster inflammatory responses.  The first 
involves adenosine triphosphate (ATP) depression, which 
is an early event following oxygen deprivation due to 
ischemia.  ATP depletion leads to inhibition of ATP-
dependent transport pumps with loss of ion gradients that 
are normally maintained across intracellular organelles or 
cell membranes, resulting in mitochondrial swelling.  
Because the mitochondrial inner membrane has a larger 
surface area than its outer membrane, mitochondrial 
swelling results in outer membrane rupture, with release of 
mitochondrial intermembrane proteins.  One of these, 
cytochrome c (4), activates an intracellular apoptotic 
signaling cascade involving cleavage of caspases 1 and 9.  
Caspase 1, or ICE (Interleukin-1 Converting Enzyme) 
enzymatically cleaves interleukin (IL)-1beta.  Treatment 
with the caspase inhibitor, Z-Val-Ala-Asp (OMe)-CH2F, 
effectively prevents ischemia-induced renal tubular 
epithelial cell apoptosis, as well as ischemia-induced 
expression and release of the neutrophil-targeted 
chemokines KC (keratinocyte-induced chemoattractant) 
and MIP (macrophage inflammatory protein)-2 in the 
kidney.  Accordingly, this agent inhibits neutrophil influx 
and functional impairment after renal IR (5).   
 

A second factor that mediates ischemia-induced 
inflammation in the kidney is hypoxia inducible factor 
(HIF)-1.  HIF-1 is a basic-helix-loop-helix heterodimeric 
transcription factor activated, as the name implies, by 
reduction in the partial pressure of oxygen.  A conserved 28 
bp hypoxia response element (HRE) can be found upstream 
of the transcription initiation site of HIF-1-dependent genes 
(6).  HIF-1 is unstable under normoxic conditions because 
HIF-1 has a pO2-dependent degradation domain that serves 
as a target for ubiquitination (7, 8).  A study has shown that 
both IL-1 and tumor necrosis factor (TNF)-alpha increase 
HIF-1 DNA binding in hypoxic tubular epithelial cells in 
vitro (9), implying that the HIF-1 system may be enhanced 
under inflammatory conditions.  As has been well-
described, transactivation of HIF-1 transmits a hypoxic 
signal into pathophysiological responses, such as 
angiogenesis, erythropoiesis, vasomotor control, altered 
energy metabolism, as well as cell survival decisions by 
regulating a large cassette of target genes.  In particular, 
many cytokines and growth factors use the HIF-1 signaling 
system for gene expression (10).   

 
A third molecular switch linking ischemia to 

inflammation involves oxygen-derived free radicals, which 
have been implicated in cell signaling.  In particular, 
hydrogen peroxide, which is a source of oxygen-derived 
free radicals after IR injury, has been reported to induce 
TNF-alpha production by activating p38 mitogen-activated 
protein kinase (MAPK) (11).  Activation involves enhanced 
tyrosine phosphorylation, which can be blocked by 
dimethyl thiourea, a free radical scavenger (12).  This 
pathway may also be relevant to chemokine expression 
since p38MAPK is in general a key pro-inflammatory 

mediator, acting in part by inducing chemokine/cytokine 
gene expression.   
 
4. PRO-INFLAMMATORY CYTOKINES AUGMENT 
INFLAMMATION AFTER RENAL ISCHEMIA-
REPERFUSION INJURY 
 

Renal parenchymal cells, such as tubular 
epithelial cells, mesangial cells and endothelial cells, have 
the potential to produce various kinds of chemokines (e.g. 
CCL2/monocyte chemoattractant protein (MCP)-1, 
CCL5/regulated upon activation normal T cells expressed 
and secreted (RANTES), CXCL8/IL-8, CXCL1/growth-
regulated oncogene (GRO), CXCL10/interferon-gamma 
Inducible Protein (IP)-10, CXCL2/3/MIP-2, etc) in 
response to stimulation with pro-inflammatory cytokines 
such as IL-1β, TNF-α, and interferon (IFN)-γ, immune 
complexes, and growth factors including platelet-derived 
growth factor and basic fibroblast growth factor (13).  
Midkine also enhances migration of inflammatory cells 
upon ischemic injury into the kidney, and may induce 
chemokine production and ischemic tissue damage (14, 
15).  Among chemokine/cytokine-producing cells in the 
kidney, the tubular epithelial cell appears to be the most 
sensitive to hypoxic conditions; moreover, tubular cell-
derived cytokines/chemokines are thought to augment 
inflammatory processes in renal ischemia-reperfusion 
injury.  
 

In addition to direct effects on tubule cells, 
pro-inflammatory cytokines and chemokines might amplify 
tubulo-interstitial inflammation after IR by inducing 
leukocyte infiltration.  Moreover, leukocytes infiltrating the 
interstitium may also express chemokines in response to 
pro-inflammatory cytokine stimulation.  For example, 
purified human blood monocytes have been reported to 
respond to oxidant stress mimicking IR with augmented 
production of CXCL8/IL-8 (16).  Similarly, murine 
macrophages have been reported to upregulate expression 
of both TNF and CCL3/MIP-1alpha under anoxic 
conditions (16).  These positive feedback loops involving 
cytokines/chemokines and inflammatory cells are key to 
augmenting inflammatory processes after IR. 
 
5. INTRACELLULAR SIGNALING PATHWAYS 
LINKING ISCHEMIC INJURY TO CHEMOKINE 
PRODUCTION 
 

Most pro-inflammatory chemokines, such as 
CXCL8/IL-8, CCL2/MCP-1 or CCL5/RANTES, are not 
expressed constitutively and require transcriptional 
activation by a variety of factors including nuclear factor 
(NF)-kappaB and activating protein (AP)-1 (17-19).  
Activation of these transcription factors requires 
phosphorylation by various kinases.  In a positive feedback 
autocrine loop, inflammatory chemokines activate 
phosphorylation of p38 MAPK that contributes to 
activation of NF-kappaB and AP-1, which induce 
chemokine gene expression.  Consistent with this, we found 
that pharmacologic inhibition of p38 MAPK significantly 
reduced inflammatory cytokine and chemokine production 
and prevented tissue destruction in a mouse model of renal 
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IR injury (20).  Moreover, NF-kappaB decoy 
oligodeoxynucleotide treatment attenuated serum creatinine 
and BUN elevations as well as tubular necrosis with 
reduction of CCL2/MCP-1 expression in a rat model of 
renal IR injury (21).  Thus, these intracellular mediators 
and the pathways they control may be good targets for 
therapeutic intervention in renal IR injury.  However, 
further studies will be needed to clarify the importance and 
significance of each intracellular signaling cascade on 
cytokine and chemokine expression in renal IR injury. 
 
6. CHEMOKINE EXPRESSION IN THE INJURED 
KIDNEY 
 

Chemokines are able to activate many different 
cell types, including leukocytes and renal parenchymal 
cells.  In addition to their chemotactic activity, chemokines 
have been implicated in the modulation of cell adhesion, 
phagocytosis, cytokine secretion, cell activation, cell 
proliferation, apoptosis, angiogenesis, proliferation and 
viral pathogenesis.  They have been divided into four 
subfamilies according to the number and spacing of 
conserved cysteine residues in their sequences, and are 
classified into four main groups--CXC, CC, C, and 
CX3C—according to these cysteine patterns.   
 

The CXC group contains the most important 
neutrophil-targeted chemokines, such as CXCL2/3/MIP-2 
and KC in the mouse, and CXCL8/IL-8 in man, rabbit and 
other mammals.  In the kidney these chemokines are 
upregulated in tubular epithelial cells after ischemic injury, 
and this results in marked neutrophil infiltration (5, 22-25).  
Antibodies to KC and MIP-2 inhibit neutrophil infiltration 
and restore renal function, limit tissue destruction and 
increase survival (25).  CXCR2 is a specific receptor for 
KC and CXCL2/3MIP-2 in mouse and for CXCL8/IL-8 
and related CXC chemokines in man and other mammals.  
CXCR2 was expressed in various organs, including kidney, 
after ischemic injury (24, 26-28).  Injection with a novel 
low molecular weight inhibitor of human CXCR2 named 
repertaxin is effective in preventing neutrophil infiltration 
and renal dysfunction in a mouse model of renal IR injury 
(24).  Repertaxin is now in clinical trial for lung 
transplantation, and would have potential for renal ischemic 
injury, including renal transplantation.  Although CXCR2 
on endothelial cells acts as an angiogenic factor, CXCR2 
on leukocytes acts as an inflammatory mediator (29).  
Another CXC chemokine, stromal cell-derived factor 
(SDF)-1 (also known as CXCL12), is expressed 
constitutively in normal mouse kidney and is increased 
after IR injury, acting to recruit CD34-positive bone 
marrow-derived stem cells into the injured kidney (30).  
CXCL12/SDF-1 has also been reported to be expressed on 
endothelial cells in direct proportion to the local oxygen 
tension (31).  The Th1 T lymphocyte-targeted chemokines 
CXCL10/IP-10 and monokine induced by IFN-gamma 
(Mig, CXCL9) have been detected, along with their shared 
receptor CXCR3, in the renal interstitium after mouse IR 
injury.  After injury CXCR3-deficient mice show 
significantly lower serum creatinine levels, enhanced 
survival, and significantly less acute tubular necrosis and 
cellular infiltration than wild type controls (32).  These data 

indicate that CXCL10/IP-10, CXCL9/Mig and CXCR3 
may regulate inflammation after renal IR injury. 

 
CC chemokines also participate in the 

pathogenesis of ischemic injury of the kidney.  Expression 
of the monocyte-targeted CC chemokine CCL2/MCP-1 is 
induced in ischemic kidney, and this is associated with 
activation of NF-kappaB and monocyte infiltration (33).  
Both genetic deletion and pharmacological blockade of 
CCR2, the specific receptor for CCL2/MCP-1, have been 
reported to significantly reduce monocyte infiltration and 
tissue destruction after ischemic injury (20, 34, 35).  As for 
KC and CXCL2/3/MIP-2, p-38 MAPK also plays a key 
role in CCL2/MCP-1 production.  Moreover, expression of 
CCL2/MCP-1 is significantly and consistently enhanced in 
the absence of heme oxygenase (HO)-1 (36).  
Immunohistological studies indicate that the main resident 
cell producing CCL2/MCP-1 in the kidney after ischemic 
injury is located in the distal tubule (37).  Macrophages are 
also a major source for MCP-1, and for the inflammatory 
cytokines TNF-alpha, IL-1 and IL-6 (38).  IR injury also 
induces expression of the CC chemokines CCL3/MIP-
1alpha and CCL5/RANTES (20, 39).  The cognate 
receptors for these chemokines, CCR1 and CCR5, are also 
expressed in the ischemic kidney, and genetic deficiency of 
these receptors in mice significantly diminishes the number 
of leukocytes infiltrating the interstitium after IR injury 
(40). 

 
CX3CL1/fractalkine and its unique receptor 

CX3CR1 are both upregulated after ischemic injury, and 
participate in the pathogenesis of renal fibrosis.  The 
mechanism involves selective effects in the outer medulla, 
including accumulation of macrophages and expression of 
the macrophage and platelet-derived fibrogenic protein 
platelet-derived growth factor-B (41).  

 
Together these studies reveal that 

inflammatory chemokines are expressed in the injured 
kidney and participate in inflammatory cell infiltration and 
activation, which participate in tissue destruction.  
 
7. TEMPORAL AND SPATIAL ASPECTS OF 
LEUKOCYTE INFILTRATION IN RENAL IR 
INJURY 
 
After IR injury, leukocyte subsets infiltrate the renal 
interstitium in a coordinated temporal sequence (42).  
Acute tubular necrosis occurs in the first phase of injury 
without significant cellular infiltration.  This is followed by 
marked neutrophil infiltration.  The process of tissue 
regeneration begins later and is associated with 
accumulation of macrophages and T cells and a paucity of 
neutrophils.  This sequence is probably regulated in part by 
sequential expression of cell type-specific chemokines in 
the injured renal parenchyma.  Each chemokine is thought 
to mediate key steps in the multistep mechanism of 
leukocyte trafficking, which involves three distinct 
interactions of blood leukocytes with endothelial cells on 
post-capillary venules: chemokine-independent selectin-
mediated rolling, chemokine-dependent beta2-integrin-
dependent firm arrest, and chemokine-dependent
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Figure 1. Inflammatory cascades in renal ischemia-reperfusion injury.Inflammatory cascades and feedback loops are key 
mediators of tissue destruction after renal ischemia-reperfusion injury.  Sequential expression of chemokines is thought to be 
regulated by pro-inflammatory cytokine stimulation and leukocyte infiltration leading to tissue destruction. 
 
.  transendothelial migration (13, 43-45).  Some 
chemokines, such as Growth-related oncogene (GRO) and 
fractalkine may mediate the initial firm adhesion, whereas 
CCL2/MCP-1 has been reported to be required for 
subsequent steps of leukocyte spreading and diapedesis (46, 
47).  Although precise mechanisms are unclear so far, each 
step during leukocyte transendothelial migration and 
extravasation might be regulated by unique sets of 
chemokines.   
 

Consistent with this, we have found that 
tubular epithelial cells sequentially produce chemokines in 
response to pro-inflammatory cytokine stimulation, and 
that inflammatory cell subsets, such as neutrophils and 
macrophages, infiltrate injured tissue in a chronological 
manner in response to selective local chemokine expression 
(39). 
 
8. CYTOKINES AND CHEMOKINES IN RENAL 
TRANSPLANTATION  
 
Renal transplantation is one of the most important clinical 
situations in which the kidney is exposed to IR injury.  In 
renal transplantation, immunological mechanisms leading 

to rejection are important, but non-immunological 
mechanisms such as IR are also important for long-term 
survival.  Several factors, including chemokines, are 
upregulated within the first few hours without any apparent 
immunological reaction (48).  Eventually chemokines and 
cytokines play important functional roles in acute allograft 
rejection in part by inducing mononuclear cell infiltration 
(49).  The chemokines, CXCL8/IL-8, CXCL5/ENA-78, 
CCL2/MCP-1, CCL3/MIP-1alpha, CCL4/MIP-1beta, and 
CCL5/RANTES, have all been implicated in the 
pathogenesis of rejection, and should be considered as 
targets for prevention and treatment of allograft rejection 
(see Section 8).  The study of associations of genetic 
polymorphisms in chemokine and chemokine receptor 
genes, such as those encoding CCL2/MCP-1, CCR2 and 
CCR5, with outcome after human renal transplantation 
suggests that these factors play a role in progression of 
renal destruction post-transplantation (50-52).  Moreover, 
results from a rat model of transplantation have also 
supported a role for chemokines in renal tissue destruction 
(48, 53, 54).  In addition to these chemokine receptors, a 
recent study has revealed a role for the Duffy antigen 
receptor for chemokines (DARC) in renal ischemic injury.  
DARC, which is present mainly on erythrocytes and 
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endothelial cells, is a promiscuous chemokine binding 
protein that does not appear to signal.  DARC deficient 
mice exhibited no renal dysfunction and no postischemic 
neutrophil infiltration after ischemia-reperfusion injury.  
These data indicate that DARC predominantly exerts its 
effects by regulating neutrophil recruitment and subsequent 
acute renal failure (55).  These human studies and animal 
models of transplantation together suggest that ischemia-
induced cytokines and chemokines may participate in 
progression of tissue destruction and may be useful clinical 
markers for the intensity of tissue injury after 
transplantation. 
 
9. Anti-inflammatory treatment approaches in renal IR 
injury  
 
Although some vasoactive agents, such as dopamine, atrial 
natriuretic peptide and diuretics are clinically useful for 
acute renal failure after renal IR injury, these agents do not 
directly affect inflammation, which may be a major 
determinant of disease progression.  Several experimental 
therapeutic approaches, such as leukocyte depletion, and 
anti-cytokine, anti-chemokine and anti-adhesion molecule 
therapies, have been tested with the aim of controlling renal 
inflammation after IR injury.   
 

Caspase activation is one of the early events 
in the inflammatory response, driven by ATP depression in 
the context of ischemia, and has become a target for 
therapeutic development.  Treatment with the caspase 
inhibitor, Z-Val-Ala-Asp (OMe)-CH2F, effectively 
prevents IR-induced renal apoptosis, KC and 
CXCL2/3MIP-2 up-regulation as well as neutrophil influx 
and functional impairment after renal ischemia-reperfusion 
(5).  Complement activation products are also important 
inducers of chemokine expression, and selective 
antagonism of the C3a receptor significantly attenuates 
production of CXCL2/3MIP-2 and KC (22).   

 
Intracellular signaling molecules are also 

target molecules for ischemic injury.  Pretreatment of rats 
with NF-kappaB inhibitors inhibits CCL2/MCP-1 mRNA 
expression, and prevents tissue destruction after ischemia-
reperfusion (33).  Targeting p38 MAPK, a key factor 
regulating inflammatory chemokine expression, has been 
effective in significantly reducing chemokine expression 
and in attenuating leukocyte infiltration and tissue 
destruction (20).  

 
Chemokines and chemokine receptors 

themselves are potentially important targets of anti-
inflammatory therapy.  We previously reported that 
neutralizing anti-IL-8 antibodies or anti-MCP-1 antibodies 
prevent experimental glomerulonephritis (56, 57).  
Moreover, specific inhibitors of chemokine receptors, such 
as vMIP-II, APO- or Met-RANTES, 7ND MCP-1, TAK-
779 or propagermanium have been developed and tested 
successfully in various animal models, including 
experimental renal IR injury (34, 35, 58-62).  These reports 
are encouraging, and add support for consideration of 
inflammatory chemokine receptors as targets for IR injury 
in the clinic.   

The complex cascade of events induced by IR 
injury is likely to involve a balance of pro- and anti-
inflammatory cytokines.  In this regard, certain anti-
inflammatory cytokines, working in part by blocking 
chemokine action, may be useful as therapeutic agents in 
IR injury.  For example, osteopontin inhibits inducible 
nitric oxide synthase, and alpha-melanocyte-stimulating 
hormone inhibits both chemokine production (e.g. KC and 
CXCL8/IL-8) and adhesion molecule expression (e.g. 
ICAM-1) (63, 64).  Insulin-like growth factor-1 and 
hepatocyte growth factor have also been reported to have 
beneficial effects in IR injury (53, 65, 66).   
 
10. CONCLUSION 
 

Chemokines are major mediators of inflammation 
in renal IR injury, acting at multiple levels including pro-
inflammatory cytokine and adhesion molecule expression, 
and leukocyte infiltration and activation.  Genetic 
experiments in mouse models have begun to dissect the key 
players and their specific roles at the level of inflammation, 
angiogenesis and fibrosis.  A major challenge will be to 
expand this approach and to translate emerging results to 
human diseases in which renal IR injury occurs, with the 
goal of identifying novel targets for therapeutic 
intervention.  
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