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1. ABSTRACT 
 

The Janus kinase (JAK)/signal transducer and 
activator of transcription (STAT) pathway is crucial in 
controlling cellular activities in response to extracellular 
cytokines. Dysfunctions of the JAK/STAT pathway result 
in various hematopoietic and immune disorders. The 
central events in regulating this pathway are tyrosine 
phosphorylation and dephosphorylation of the signaling 
components, which are carried out by protein tyrosine 
kinases and protein tyrosine phosphatases (PTP), 
respectively. Here, we review recent advances in the 
regulatory roles of PTPs, in particular, SHP2 phosphatase, 
in the JAK/STAT signaling pathway. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Intracellular signal transduction pathways are 
essential for connecting extracellular cytokine stimulations 
to appropriate cellular responses, such as proliferation, 
differentiation, and apoptosis. One of the most important 
pathways activated by cytokines is the Janus kinase 
(JAK)/signal transducer and activator of transcription 
(STAT) pathway, which was initially discovered in the 
studies on gene induction by interferon (IFN) (1). It is now 
clear that protein phosphorylation and dephosphorylation 
play a central role in controlling the activity of the 
JAK/STAT pathway. The majority of phosphorylation and 
dephosphorylation occur at tyrosine residues of the 
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component proteins, which are carried out by protein 
tyrosine kinases and protein tyrosine phosphatases (PTP), 
respectively (2-4). This short article summarizes latest 
insights into how PTPs, including SHP2, SHP1, CD45, 
PTP1B, T-cell PTP (TC-PTP), PTPRT, and PTPBL, 
regulate the JAK/STAT pathway. 

 
In the current model of the JAK/STAT signaling 

pathway, the engagement between a cytokine and its cell 
surface receptor results in receptor oligomerization and 
subsequent activation of receptor-associated JAK tyrosine 
kinases. Activated JAKs phosphorylate specific tyrosine 
resides in the cytoplasmic domain of the receptor which in 
turn serves as the docking sites for cytoplasmic 
transcription factors known as STATs. STATs are therefore 
recruited to the phosphorylated receptor and subsequently 
phosphorylated by JAKs. The phosphorylated STATs then 
dimerize, leave the receptor, and translocate to the nucleus 
where they activate gene transcription (5, 6). In mammalian 
cells, four JAK members (JAK1, JAK2, JAK3, and TYK2) 
have been identified. Each JAK contains a conserved 
kinase domain and a catalytically-inactive domain at the 
carboxyl (C-) terminus which might regulate the activity of 
the kinase domain. There are seven members (STAT1, 
STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6) 
in the mammalian STAT family. Each of them contains a 
DNA-binding domain, a transactivation domain located at 
the C-terminus (7, 8), and a SRC homology 2 ( SH2) 
domain. The SH2 domain is required for STAT activation 
and dimerization (9, 10) while the amino (N-) terminal 
region of STAT is involved in the formation of STAT 
tetramers (11) and tyrosine dephosphorylation (12). 
Genetic knockout studies have revealed various but specific 
functions of JAKs and STATs. One who is interested in 
details about the structures and functions of JAKs and 
STATs could look at the reviews (2, 13-15). The following 
sections of this review will discuss how PTPs regulate 
JAK/STAT signaling with a focus on the SHP2 
phosphatase, since the role of SHP2 in this context is more 
complicated than other PTPs. 
 
3. REGULATION OF THE JAK/STAT PATHWAY 
BY PTPS 
 
3.1. SHP2 
3.1.1. Structure, regulation, and function 

SHP2 is a ubiquitously expressed SH2 domain-
containing PTP. It contains two tandem SH2 domains (N-
SH2 and C-SH2), a classic tyrosine phosphatase domain at 
the C-terminus, and a C-terminal tail with two important 
tyrosine resides (Tyr542 and Tyr580) and some other 
functional motifs (16-19). The SH2 domains, in particular 
N-SH2, specifically recognize phosphorylated tyrosine 
residues on other molecules and mediate interactions 
between SHP2 and these molecules. Biochemical and 
structural studies indicate that, in the basal state, the N-SH2 
domain is wedged into the PTP domain and forms a 
“backside loop” to prevent substrate accessing. Upon 
binding of an appropriate phosphotyrosyl (p-Tyr) peptide, 
N-SH2 alters its conformation and releases the PTP domain 
from the auto-inhibitory confirmation (20-22). In addition, 
mutagenesis and protease-resistance studies suggest that 

phosphorylation of Tyr542 and Tyr580 in the C-terminal 
tail also regulates SHP2 activity. Phosphorylated Tyr542 
and Tyr580 could be engaged to the N-SH2 and C-SH2 
domains, respectively, in an intramolecular manner to 
stimulate SHP2 activity (23).  

 
SHP2 plays an essential role in hematopoiesis 

and lymphopoiesis. Homozygous deletion of Exon 3 of 
SHP2, including the N-SH2 domain-encoding region 
(amino acids 46-110) (SHP2∆/∆), resulted in embryonic 
lethality at mid-gestation with a defect in mesodermal 
patterning (24, 25). In vitro differentiation of SHP2∆/∆ 

embryonic stem (ES) cells revealed that loss of SHP2 
function caused suppression of ES cell differentiation to 
erythroid and myeloid progenitors (26). These results 
suggest a positive role of SHP2 in hematopoietic 
development. Consistent with the in vitro differentiation 
data, chimeric mouse analyses showed that no SHP2∆/∆ ES 
cell-derived progenitors for erythroid or myeloid lineages 
were detected in the fetal liver or bone marrow of the 
chimeric mice generated from SHP2∆/∆ ES cells. In addition 
to erythroid and myeloid lineages, SHP2 is also required 
for lymphoid development. The RAG-2–deficient 
blastocyst complementation assay showed that no mature T 
and B cells or even Thy-1 positive or B220 positive 
precursor lymphocytes derived from the mutant ES cells 
were detected in the chimeric mice generated from SHP2∆/∆ 

ES cells and Rag-2–deficient blastocysts (27). It appears 
that the blackage of the hematopoietic development of the 
SHP2 mutant ES cells occurred at a very early stage, since 
primitive hematopoiesis in the yolk sac of SHP2∆/∆ embryos 
was also defective (28). Notably, reintroduction of WT 
SHP2 into SHP2∆/∆ ES cells restored both primitive and 
definitive hematopoietic potential of the mutant ES cells 
(29), suggesting that the defective hematopoietic 
development is directly attributable to the loss of SHP2 
function and that the defect is cell autonomous. 

 
Consistent with the notion that SHP2 phosphatase 

plays a positive role in hematopoietic cell development, 
somatic mutations in SHP2-encoding gene PTPN11 that 
cause hyperactivation of its catalytic activity have been 
identified in various childhood leukemias, such as juvenile 
myelomonocytic leukemia (JMML), B cell acute 
lymphoblastic leukemia, and acute myeloid leukemia 
(AML) (30-32). SHP2 represents the first identified proto-
oncogene that encodes a tyrosine phosphatase (33, 34). The 
SHP2 disease mutations are located in the N-SH2 and PTP 
domains and cause changes in the amino acid residues at 
the interface formed by the two domains in the self-
inhibited SHP2 conformation. It is thus thought that the 
mutations cause a decrease in the affinity of the binding 
between the N-SH2 and the phosphatase domains, leading 
to hyperactivation of SHP2 catalytic activity by allowing 
access to the active site on the enzyme. The SHP2 
mutations appear to play a causal role in the development 
of related diseases, as SHP2 mutations and other well-
known JMML-associated Ras or Nf1 mutations are 
mutually exclusive in the patients (30, 31, 35). Moreover, 
recent studies have shown that single SHP2 activating 
mutations are sufficient to induce cytokine hypersensitivity 
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in myeloid progenitor cells and JMML-like 
myeloproliferative disease in mice (36-40). 

  
The molecular mechanisms underlying the 

positive role of SHP2 phosphatase in hematopoietic cell 
development and function are not completely understood. 
Since cytokines play an essential role in the hematopoietic 
process, SHP2 may promote hematopoiesis through the 
JAK/STAT pathway that is activated by cytokines. 
However, the SHP2 function in this pathway is rather 
complicated. Unlike the promoting role that SHP2 plays in 
the Ras/Erk and PI3/Akt signaling pathways (20), SHP2 
both enhances and inhibits signaling in the JAK/STAT 
pathway, depending on the acting sites. In addition, 
different JAK/STAT pathways initiated by different 
extracellular signals may be differentially regulated by 
SHP2 phosphatase. 

 
3.1.2. SHP2 negatively regulates JAK/STAT 

SHP2 negatively regulates the IFN-induced 
JAK1/STAT1(2) pathway. INF-γ and INF-α are known to 
suppress cell viability through the JAK/STAT pathway. In 
SHP2∆/∆ mouse fibroblasts, IFN-γ and IFN-α treatment 
resulted in elevated tyrosine phosphorylation levels of 
STAT1 and STAT2, and augmented suppression of cell 
viability. Reintroduction of WT SHP2 protein reversed 
these effects (41). Specifically, phosphorylation at the 
tyrosine residue Tyr701 of STAT1 induced by IFN-γ was 
enhanced and prolonged in SHP2∆/∆ cells (42). Moreover, 
abolishment of protein kinase C-mediated inhibition of 
IFN-α signaling was observed in the SHP2 mutant cells 
(43). Consistent with these observations, purified GST-
SHP2 dephosphorylated STAT1 at both tyrosine and serine 
residues when immunoprecipitated phospho-STAT1 or 
phosphor-peptides corresponding to the sequence 
surrounding Tyr701 or Ser727 of STAT1 were used as the 
substrates (42). These results thus indicate that SHP2 
negatively regulates the INF-induced JAK/STAT pathway 
by dephosphorylating STAT1(2). 

 
 SHP2 also interacted with STAT5a in a tyrosine 
phosphorylation-dependent manner and purified SHP2 
protein directly dephosphorylated STAT5 or tyrosine-
phosphorylated peptides derived from STAT5 in the in 
vitro tyrosine phosphatase assay (44-46). In agreement with 
these results, tyrosine-phosphorylated STAT5 associated 
with a substrate-trapping mutant of SHP2 (SHP2 
Cys459Ser) (44, 45). Moreover, overexpression of WT 
SHP2 in Ba/F3 cells and in primary bone marrow 
hematopoietic progenitor cells resulted in a decreased 
phosphorylation level of STAT5 in response to IL-3 
stimulation (46). This was largely because STAT5 
dephosphorylation was accelerated by overexpression of 
SHP2 (46), since STAT5 dephosphorylation was markedly 
delayed in SHP2∆/∆ cells (44). 
 

In addition, there is also evidence that SHP2 
negatively regulates the activity of STAT3, a crucial 
signaling protein involved in maintaining the self-renewal 
feature of ES cells and in hematopoietic cell response to the 
cytokines that function through the gp130 receptor. 
SHP2∆/∆ mutant mouse ES cells showed defective 

differentiation and more efficient self-renewal in the 
presence of leukemia inhibitory factor (LIF), which was at 
least in part due to an increased STAT3 activity in the 
absence of functional SHP2 (29, 47). Similar negative 
regulation of STAT3 by SHP2 was observed in SHP2-
deficient neural cells generated from SHP2 conditional 
knockout mice (48, 49). In addition to the LIF-induced 
gp130 signaling pathway, the IL-6-activated gp130 
pathway was also inhibited by SHP2. A mutation of the 
SHP2 binding site (Y759F) in gp130 in the knock-in mice 
resulted in lymphoadenopathy, splenomegaly, and an 
enhanced acute-phase immune response (50). Therefore, 
SHP2 appears to directly inhibit activation of STATs in 
various pathways. Intriguingly, although SHP2 normally 
dephosphorylates STAT5, IL3-induced phosphorylation of 
STAT5 was enhanced rather than decreased in 
hematopoietic cells harboring SHP2 E76K and D61G 
leukemia mutations that cause hyperactivation of the SHP2 
catalytic activity (38, 40). Further investigations revealed 
that dephosphorylation of STAT5 by SHP2 E76K was 
delayed (40). Since overexpression (5-to-6 fold) of WT 
SHP2 in hematopoietic cells accelerated dephosphorylation 
of STAT5 and attenuated hematopoietic potential (46), the 
dampened dephosphorylation activity of SHP2 E76K 
indicates that the substrate specificity of the mutant SHP2 
is altered by the E76K mutation, although the underlying 
mechanisms remain to be determined. 

 
3.1.3. SHP2 positively regulates JAK/STAT signaling 
 A large body of data also support that SHP2 
promotes JAK/STAT pathways. One of the most 
compelling evidence is that the activity of STAT5 was 
suppressed in the SHP2-/- mouse mammary gland cells in 
SHP2 conditional knockout mice (51). This result suggests 
a positive role of SHP2 in the prolactin-induced JAK2 
activation pathway. JAK2 tends to associate with 
suppressor of cytokine signaling (Socs)1, which targets 
JAK2 to a ubiquitin-dependent degradation pathway and 
serves as a negative regulator for the JAK2/STAT5 
pathway. The interaction between JAK2 and Socs1 is 
mediated by phosphorylation of Tyr1007 in JAK2. In vitro 
studies demonstrated that SHP2 was able to 
dephosphorylate this Tyr site and prevent the formation of 
the JAK2-Socs1 complex and subsequent degradation of 
Jak2 (52). Upon being released from the inhibitory effects 
of Socs1, JAK2 is recruited to the prolactin receptor (PrlR) 
and phosphorylates STAT5 (52). The physical interaction 
between SHP2 and the JAK2-PrlR complex is required for 
STAT5 activation and translocation into the nucleus to 
activate gene expression (52). In addition, it has been 
shown that SHP2 shares the same binding sites with the 
signaling suppressor Socs3, owing to similar binding 
preference of their SH2 domains (53, 54). Thus, it is also 
possible that SHP2 promotes cytokine signaling by limiting 
the negative feedback mediated by Socs3 and that this 
SHP2 function depends on its SH2 domains rather than the 
catalytic domain. Using catalytically-inactive SHP2 (SHP2 
C459S) overexpressing Ba/F3 cells and immortalized 
SHP2∆/∆ hematopoietic cells derived from SHP2 knockout 
embryos, our laboratory showed that SHP2 functioned at 
multiple sites in the IL-3-induced JAK2/STAT5 signaling 
in both catalytic-dependent and -independent fashion (55). 



Protein tyrosine phosphatases in the JAK/STAT pathway 

4928 

SHP2 acts immediately downstream of the receptor, 
facilitating IL3-induced activation of JAK2. In SHP2∆/∆ 

cells in which the truncated SHP2 was barely detectable, 
JAK2 activation was abolished (55). Consequently, 
phosphorylation of STAT5, the substrate of JAK2 kinase, 
was impaired in the SHP2 mutant cells (55). It seems that 
SHP2 functions in JAK2 activation as an adaptor protein. 
However, further studies showed that the catalytic activity 
of SHP2 was required for optimal activation of JAK2. 
JAK2 activation in SHP2 C459S overexpressing cells was 
decreased. As a result of reduced JAK2 activation, 
phosphorylation of STAT5 was also decreased (55). 
Consistent with this notion, expressing catalytically-
deficient mutant SHP2 in COS7 cells inhibited the 
induction of tyrosine phosphorylation and DNA-binding 
activity of STAT5 upon prolactin stimulation (56). 
Additionally, the positive role of SHP2 catalytic activity in 
JAK2 activation is also supported by the recent observation 
that JAK2 activation in hematopoietic cells harboring the 
SHP2 activating mutation E76K was enhanced (40). 
 

Collectively, these studies suggest that SHP2 has 
dual functions in the same JAK2/STAT5 pathway. This 
may be true, since both a decrease in STAT5 
phosphorylation and a delay in STAT5 dephosphorylation 
(sustained low-level STAT5 phosphorylation) were 
observed in catalytically-inactive mutant SHP2 
overexpressing or SHP2∆/∆ cells (44, 52, 55, 57). How 
SHP2 functions at multiple sites in the same pathway, 
however, remains to be further characterized. SHP2 may 
first act as a positive regulator for the activation of JAK2 
and then inhibits the activated pathway by 
dephosphorylating STAT5. Alternatively, different 
fractions of the cytoplasmic SHP2 act at different sites, 
simultaneously functioning in both catalytic-dependent and 
–independent fashion.  
 
3.2. Other PTPs 
3.2.1 SHP1 

SHP1 phosphatase shares a similar overall 
structure and a high homology with SHP2. However, unlike 
SHP2 which is ubiquitously expressed, SHP1 is restricted 
in hematopoietic cells (20). The functions of SHP1 in 
hematopoietic cells and lymphocytes have been revealed by 
numerous studies using motheaten mice, which are 
deficient in SHP1 expression. Motheaten mice display 
hyperproliferation and abnormal activation of granulocytes 
and macrophages, and an autoimmunity-like phenotype. 
These defects are at least in part attributable to the loss of 
SHP1 as a negative regulator for the JAK/STAT pathway 
(2, 58-61). 

   
SHP1 down regulates erythropoietin (EPO)-

induced proliferative signals by binding to the EPO 
receptor (EPOR) and dephosphorylating the JAK2 
associated with EPOR. Cells expressing a mutant EPOR 
defective in SHP1 binding displayed hypersensitivity to 
EPO stimulation and prolonged EPO-induced 
autophosphorylation of JAK2 (62, 63). SHP1 is also 
involved in the dephosphorylation of JAK1. The IFN-α-
induced tyrosine phosphorylation of JAK1 was enhanced in 
SHP1 deficient macrophages (64). In addition, expression 

of an inactive SHP1 (R459M) in Ba/F3 cell line increased 
the proliferative response to IL-3 and cell survival 
following IL-3 withdrawal (65). The overall level of IL-3-
induced tyrosine phosphorylation of STAT5 was reduced 
upon expression of WT SHP1 and increased when R459M 
SHP1 was expressed (65). 
 

Consistent with the negative role of SHP1 in the 
JAK/STAT pathway, silencing of SHP1 by promoter 
methylation is often associated with various kinds of 
leukemia and lymphomas, myeloma and acute myeloid 
leukemia, and the effect caused by SHP1 silencing is at 
least partially attributed to an increased activities in the 
JAK/STAT pathway (66). Eighty percent of myeloma 
samples showed SHP1 hypermethylation, concomitant with 
a constitutive STAT3 phosphorylation. Reintroduction of 
SHP1 resulted in barely detectable phosphorylated STAT3, 
suggesting that STAT3 may also be a substrate of SHP1 
(67-69). Recently, defective SHP1 expression has also been 
detected in most cases of ALK positive anaplastic large-cell 
lymphoma (ALK(+)ALCL) (70). Transfection of SHP1 or 
induction of SHP1 with an inhibitor of DNA 
methyltransferase (5-AZA) in ALK(+)ALCL cell line, 
Karpas 299, caused an attenuated phosphorylation level of 
JAK3 and STAT3, subsequent down-regulation of STAT3 
targets including cyclin D3, mcl-1 and bcl-2, and a 
significant G1 cell cycle arrest. Co-immunoprecipitation 
studies showed that SHP1 was physically associated with 
JAK3. These results suggest that loss of SHP1 contributes 
to the pathogenesis of ALK(+)ALCL by leaving the 
phosphorylation and activation of JAK3/STAT3 unchecked 
(71, 72). 

  
By contrast, SHP1 has been noted to have a 

positive role in promoting JAK/STAT signaling in some 
circumstances. For example, the epidermal growth factor 
(EGF)- and IFN-γ-induced STAT activation was 
suppressed by expressing a catalytically-inactive form of 
SHP1 in HeLa cells, while this pathway was essentially 
unaffected by the expression of WT SHP1 (73). The precise 
mechanism of how this molecule achieves opposing 
functions in different systems remains to be clarified. 
 
3.2.2. CD45, PTP1B, TC-PTP, PTPRT, and PTP-BL 

CD45 is a receptor tyrosine phosphatase highly 
expressed by hematopoietic cells. It plays an important role 
in controlling antigen-receptor signaling in T and B cells 
(74, 75). CD45 is shown to be able to dephosphorylate all 
JAKs in murine cells (76), and dephosphorylate JAK1 and 
JAK3 in human cells (77). CD45 deficient cells 
experienced prolonged JAK/STAT activation in response to 
IL-7 stimulation. The removal of CD45 also increased the 
erythroid colony formation and antiviral activity, which is 
consistent with the idea that CD45 negatively regulates 
EPO and IFN signaling by dephosphorylating JAKs (76, 
78). However, the physiological significance of the role of 
CD45 in controlling the JAK/STAT pathways still needs to 
be further determined. 

 
PTP1B and TC-PTP are two highly related PTPs, 

sharing great similarities in the catalytic domains. While 
PTP1B is expressed in many tissues, TC-PTP is mainly in 
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hematopoietic cells (79). PTP1B binds phosphorylated 
JAK1 upon leptin and IFN-γ treatment, and is implicated in 
the negative regulation of these signaling pathways. 
Increased phosphorylation of JAK2, STAT3, and STAT5 
has been observed in PTP1B deficient embryonic 
fibroblasts (80-83). TC-PTP can also target JAK1, JAK3, 
STAT1, STAT3 and STAT5. Phosphorylation of JAK1 and 
STAT1 is enhanced in TC-PTP knockout cells (84-86). 

 
More recently, it has been shown that PTPRT, a 

receptor-type tyrosine phosphatase, also dephosphorylates 
STAT3 at Tyr705, an essential tyrosine residue for the 
function of STAT3 (87). Accordingly, overexpression of 
PTPRT reduces the expression of STAT3 target genes. In 
addition, PTP-Basophil like (PTP-BL), a large non-
transmembrane PTP, has been shown to dephosphorylate 
STAT proteins both in vitro and in vivo, and has been 
identified as a STAT PTP. In CD4 positive T cells, PTP-BL 
deficiency led to increased and prolonged activation of 
STAT4 and STAT6, and consequently enhanced Th1 and 
Th2 cell differentiation (88). 
 

In summary, many PTPs participate in the 
regulation of the JAK/STAT signaling pathway and 
different PTPs recognize specific substrates. The role of 
PTPs in the JAK/STAT pathway has important 
implications in physiology and diseases. Nevertheless, 
many issues regarding the biochemical bases of the 
interactions of PTPs with the JAK/STAT pathway still 
remain to be resolved. Some prominent questions are:  Why 
do some phosphatases, in particular, SHP2 promote local 
signaling?  What is the direct biochemical significance of 
their phosphatase activities? Since several phosphatases 
dephosphorylate the same targets, how are functions of 
PTPs coordinated temporally and spatially?  Addressing 
these questions will lead to a better understanding of how 
JAK/STAT signaling is modulated and why malfunction of 
this pathway results in hematopoietic and immune 
disorders. The information gathered may also lead to 
rational design of new therapeutics for treatment of the 
relevant diseases. 
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