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1. ABSTRACT  
 
 The incidence of type 2 diabetes (T2D) is rapidly 
expanding. Some of the more obvious pathologies 
associated with it include: defective glucose metabolism, 
obesity, cardiovascular disease and an inability to mount an 
effective immune response to infection by certain 
pathogenic organisms, leading to sepsis and death. A 
common tie linking these seemingly disparate 
complications is chronic inflammation. Today we know 
that inflammation is regulated locally and systemically by 
numerous biochemical signals. One of the most important 
of these signals is a class of molecules called cytokines. 
Cytokines can be generally classified as proinflammatory 
or anti-inflammatory and allow an organism to respond 
rapidly to an immune challenge by coordinating an 
appropriate immune response. In T2D, the balance between 
proinflammatory and anti-inflammatory cytokines is shifted 
toward proinflammation, potentially causing or 
exacerbating the health complications found in T2D. Over-
nutrition has been shown to trigger the innate immune 
system but activation of the innate immune system, itself, 
induces hyperglycemia and insulin resistance. In all 
likelihood, diabetes and chronic inflammation are 
inseparable and act as a reciprocal feed-forward loop. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

T2D affects more than 150 million people 
worldwide (1) and is projected to increase to 300 million by 
the year 2020 (2). Unlike type 1 diabetes, which is 
characterized by an absolute lack of insulin, T2D is 
characterized by defective insulin function which 
progresses from subclinical impaired glucose intolerance 
and insulin resistance to overt diabetes over the course of 
years (3). Importantly, during this subclinical phase of the 
disease, health complications such as atherosclerosis and 
low grade chronic inflammation are already present (4). 
Inflammation is classically defined by four symptoms: 
swelling, redness, pain and heat. In 1941, Valy Menkin 
conducted a series of simple but elegant experiments 
establishing a firm link between diabetes and inflammation. 
Menkin found that pancreactomized dogs injected with an 
irritant into the pleural cavity showed a nearly 85% 
increase in blood glucose accompanied by proteolysis, 
enhanced gluconeogenesis and infiltration with vacuolized 
polymorphonuclear cells. Non-diabetic dogs showed no 
change in blood glucose and normal leukocytes after 
injection of the irritant. Importantly, Menkin was able to 
block this inflammatory reaction by administration of 
insulin (5). Menkin’s findings illustrate that inflammation 
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enhances the degree of diabetes and diabetes enhances 
inflammation. Since this initial finding, thousands of 
studies have improved our understanding of the interaction 
between diabetes and inflammation. A decade ago, Pickup 
et al. suggested that T2D was a proinflammatory disease 
involving activation of the innate immune system (6). In 
support of this concept, T2D often presents serum 
elevations of acute-phase reactants including sialic acid, a-1 
acid glycoprotein, amyloid A, IL-1beta, TNF-alpha, IL-6, 
C-reactive protein, and cortisol (7, 8). Additional studies 
have shown that altered innate immunity and chronic 
inflammation appeared strongly associated with insulin 
resistance in obesity. Uysal et al. reported that the 
proinflammatory cytokine TNF-alpha was synthesized by 
adipocytes and was a mediator of insulin resistance in 
obesity (9). Kim et al. demonstrated that inactivation of 
IKK-beta prevented fat-induced insulin resistance in 
skeletal muscle, suggesting it as a potential therapeutic 
target for T2D (10). Cai et al. demonstrated that NF-
kappaB activation and proinflammatory cytokine 
production (including IL-6, IL-1 and TNF-alpha ) were 
increased in the liver by obesity and high-fat diet, leading 
to insulin resistance and hyperglycemia (11). A study by 
Solinas and coworkers showed that inflammation but not 
obesity per se, triggered insulin resistance. In mice, high-fat 
diet-induced insulin resistance could be prevented through 
blocking an inflammatory pathway in macrophages by 
JNK1 deletion (12). These results connote that obesity-
induced inflammation decreases high-fat diet-induced 
insulin resistance as well as resultant T2D. Recent data 
have shown that increased levels of inflammatory cytokines, 
such as IL-6 and high-sensitivity C-reactive protein 
(hsCRP), were linked to an elevated risk of clinical diabetes 
(13-15). Work by our group indicated that the enhanced 
proinflammatory phenotype in T2D not only affected 
complications like cardiovascular disease (16) but also 
exacerbated other pathologies such as depression and social 
withdrawal induced by activation of the innate immune 
system with lipopolysaccharide (17) or hypoxia (18). 

 
In addition to elevation of proinflammatory 

cytokines, T2D may be associated with a less effective anti-
inflammatory response. The process of insulin resistance 
has been an area of prolific study. There are several factors 
that can lead to insulin resistance including increased 
degradation of the receptors by the proteasome, alteration 
of downstream signaling partners and phosphorylation at 
inhibitory serine and threonine residues (19). One of the 
critical regulators of this process is a class of molecules 
called suppressor of cytokine signaling (SOCS). 
Interestingly, several anti-inflammatory cytokines 
including IGF-1, IL-4 and IL-10 share key signaling 
components with the insulin receptor and are susceptible to 
similar resistance mechanisms. 
 
3. PROINFLAMMATORY CYTOKINES 
 

There are a variety of cytokines labeled as 
proinflammatory. Almost all immune cells as well as 
epithelial cells and adipocytes produce a subset of these 
cytokines. Generally, proinflammatory cytokines are 
important for initiating the innate immune response and for 

directing the subsequent adaptive immune response. The 
most studied contributors to the chronic inflammation seen 
in T2D are leptin, TNF-alpha, IL-1beta, and IL-6. 

 
3.1. Leptin 

Leptin was first discovered after a series of 
parabiosis experiments (20). Coleman infused the plasma 
of obese, hyper-leptinemic db/db mice into wild-type mice. 
Surprisingly, the mice became anorexic and died of 
starvation. Zhang et al. cloned the gene encoding the 16 
kDa leptin protein (21) while the gene encoding the 
principal leptin receptor was identified by Leiter et al. (22). 
The crystal structure of leptin revealed a four-helix bundle 
similar to that of IL-6 (23). The action of leptin is primarily 
mediated through Janus kinase-2 (JAK-2) and signal 
transducer and activator of transcription-3 (STAT-3) (24). 
Targeted disruption of STAT-3 in the central nervous 
system induces a phenotype similar to mice lacking either 
leptin or the leptin receptor ie. obesity, diabetes and 
infertility (25). Importantly, leptin has also been shown to 
act on pathways that include those containing insulin 
receptor substrate (IRS), phosphotidylinositide 3’-kinase 
(PI3K), mitogen activated protein kinase (MAPK) (26) and, 
recently, AMP-activated protein kinase (27) (for a complete 
review see (28)). 

 
Leptin is a multifunctional cytokine. It is secreted 

primarily by adipose tissue but many other tissues can 
produce it, including macrophages. Leptin is best known as 
a regulator of satiety and energy homeostasis (29). It acts as 
a permissive signal when energy levels are high, as 
represented by adequate fat stores. However, when energy 
stores are low, leptin secretion decreases and the orexigenic 
system is activated in the hypothalamus, causing feelings of 
hunger (29). Human studies that attempted to reduce food 
intake by exogenous administration of leptin have been 
disappointing (30). A number of theories were raised to 
explain this lack of appetite suppression. One theory is that 
leptin receptors are highly expressed in the satiety centers 
of the hypothalamus, but in order to bind to these receptors, 
circulating leptin must pass through the blood brain barrier 
via a saturable process (31). It is possible that the high 
circulating leptin levels observed in obese individuals do not 
result in similar increase in brain leptin. Interestingly, Faouzi et 
al. have shown that specific hypothalamic regions establish a 
direct contact with the general circulation, and thereby, display 
differential patterns of leptin uptake and responsiveness (32). 
Another mechanism potentially explaining the lack of 
therapeutic benefits of leptin is that individuals may acquire 
leptin resistance (33) in a manner similar to insulin resistance, 
including the disruption of downstream leptin receptor 
signaling by SOCS proteins (34). 

 
Leptin has a number of important functions in 

immunity. It has been shown to induce the production of 
TNF-alpha, IL-1beta, IL-1RA, IL-R2 and IL-6 as well as 
that of reactive oxygen species, and to increase 
phagocytosis in some antigen presenting cells (35-37). 
Recently, a role of leptin in the regulation of emotions and 
depression has been suggested. db/db mice lacking a 
functional long form of the leptin receptor showed delayed 
recovery from LPS- or hypoxia-induced social withdrawal 
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(17, 18). This delayed recovery was accompanied by a 
failure to upregulate the anti-inflammatory cytokines IL-
1RA and IL-1R2. Administration of exogenous leptin was 
also found to relieve anhedonia, demonstrating its potential 
to act as an antidepressant (38). Given these numerous 
functions of leptin, it is likely that its implication in T2D 
will be the subject of many new discoveries. 
 
3.2. TNF-alpha 

TNF-alpha is now recognized as an important 
modulator of immunity and metabolism, inducing loss 
of social exploration (39), production of acute phase 
proteins (40) and activation of dendritic cell migration 
(41). TNF-alpha is a 27 kDa protein that is processed 
into a 17 kDa active form. TNF-alpha has been shown to 
induce insulin resistance (6, 42) and to be implicated in 
the progression of obesity (43). Chronic exposure of 
adipocytes to TNF-alpha strongly inhibited insulin-
stimulated glucose uptake and decreased the 
phosphorylation of the insulin receptor by insulin (44, 
45). Some controversy exists as to whether TNF-alpha is 
a causative agent in T2D. In subjects suffering from 
impaired glucose tolerance (IGT), TNF-alpha levels 
were not elevated by contrast with IL-6 levels (46). 
However, TNF-alpha receptor knockout mice showed an 
improved glucose tolerance and increased insulin 
sensitivity (42). Leptin deficient ob/ob mice with an 
added p75 TNF-alpha receptor knockout exhibited 
improved glucose tolerance (47). Additionally, TNF-
alpha is strongly linked with cardiovascular 
complications which are the leading cause of death in 
diabetes (48). TNF-alpha may accelerate the 
atherosclerotic process (49) through an increase in the 
expression of endothelin-1 (50) and by an alteration of 
lipid metabolism (9).  

 
3.3. IL-1beta 

Interleukin-1beta is a 17.4.-kDa protein 
derived from the cleavage of a 33 kDa inactive 
precursor by interleukin-1-beta-converting enzyme (51). 
IL-1beta signaling occurs through the evolutionarily 
conserved MyD88 pathway and the activation of NF-
kappaB. IL-1beta is produced by a variety of tissues and 
cell types including macrophages, neurons, beta cells of 
the pancreas and adipose tissue. IL-1beta  is known to 
induce sickness behavior, fever and the secretion of 
other cytokines (52). Like TNF-alpha and leptin, IL-
1beta has important effects on metabolism. For instance, 
the activation of IL-1beta receptors in hypothalamic 
neurons caused a marked reduction in food intake (52, 
53). The functions of IL-1beta  are counter-regulated in 
part by competitive inhibition by IL-1RA and IL-1R2 
(54). Importantly, these counter-regulatory mechanisms 
were deficient in type 2 diabetic db/db mice injected 
with LPS, IL-1beta or in hypoxic conditions (17, 18), by 
contrast with type 2 diabetic humans who tend to have 
higher basal serum levels of IL-1RA. Additionally, IL-
1beta was shown to induce apoptosis in pancreatic beta 
cells. This finding was first described in type 1 diabetes 
but it was also demonstrated that beta cell loss in T2D 
was partially mediated by IL-1beta (55). 
3.4. IL-6 

IL-6 is a 27 kDa four helix-bundle cytokine with 
structural similarity to leptin (56). The IL-6 receptor is a 
heterodimer consisting of a gp130 subunit and IL-6R. IL-6 
directly affects many tissues including B cells, T cells, 
megakaryocytes, macrophages, hepatocytes, osteoclasts, 
blood vessels, heart muscle, neuronal cells and the placenta 
(57). IL-6 is produced mainly by cells of the immune 
system, skeletal muscle and the liver, but other cells types 
such as glia and endothelial cells have been reported to 
produce IL-6 (58). The effects of IL-6 differ according to 
the target tissues. IL-6 is a key regulator of the acute phase 
response by the liver following infection. It induces the 
production of C-reactive protein, haptoglobin, serum 
amyloid A and fibrinogen (59). Like leptin, IL-6 signaling 
occurs through the MAP kinase, and the JAK/STAT 
pathways (60). IL-6 is a potent endogenous pyrogen and 
augments LPS induced sickness behavior (61). 
 

The role of IL-6 in T2D is complex and appears 
to be tissue dependent. Circulating levels of IL-6 levels are 
increased in T2D (7). A chronic overexpression of IL-6 
appears to reduce the action of insulin like growth factor in 
mice displaying growth defects. This effect was partially 
neutralized by the administration of anti-IL-6 receptor 
antibodies (62). In addition, IL-6 has been shown to 
promote insulin resistance in hepatocytes through the 
activation of STAT-3 (63). This mechanism was further 
elucidated by the finding that insulin resistance in 
hepatocytes was mediated by SOCS-3 and that mTOR 
played a critical role in SOCS-3 upregulation (64). 
Additionally, Cai et al. showed that T2D could be induced 
in mice by chronic activation of NF-kappaΒ in the liver or 
a high fat diet. These chronic inflammatory conditions 
induced steatosis of the liver and an increase production of 
proinflammatory cytokines by hepatocytes, including IL-6. 
Importantly, insulin resistance could be significantly 
improved by treatment with IL-6 neutralizing antibodies or 
salicylate (11). These findings suggested a causative role 
for IL-6 in the development of T2D. However, mice with a 
targeted deletion of IL-6 developed mature-onset insulin 
resistance, obesity and leptin resistance (65). It was 
speculated that the reason for this contrary finding was that 
the action IL-6 is tissue dependent. Indeed, the local 
administration of IL-6 into the brains of IL-6 deficient mice 
partially improved the aforementioned symptoms but it had 
no effect when administered into the brain of wild type 
control animals (66). The importance of tissue specificity 
was further emphasized by the finding that IL-6 enhanced 
insulin-stimulated glucose disposal and improved glucose 
metabolism in humans through the activation of AMPK, 
likely in skeletal muscle (67). IL-6 is clearly an important 
cytokine in the regulation of immunity and metabolism and 
it may be an important player in the development and 
complications of T2D. Further research will be necessary to 
clarify the absolute impact of IL-6 in T2D. 

 
4. CYTOKINES RESISTANCE 

Counter-regulations are critical to maintain 
homeostasis. One of the most important mechanisms of 
hormone/cytokine counter-regulation is mediated by the 
SOCS family of proteins. While investigating the
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Figure 1. How obesity and diabetes may impact 
inflammation 

 
downstream signaling cascade of IL-6, Kishimoto et al. 
discovered a protein that they called STAT-induced STAT 
inhibitor or SSI-1. As the name indicates, this protein 
inhibited IL-6 mediated STAT activation and was itself 
induced by activation of STAT (68). SSI-1 was later found 
to be part of a larger family of proteins which are now 
entitled SOCS proteins. This family of proteins contains an 
SH-2 domain that can interact with several receptors at 
phosphotyrosine residues to block signal transduction. 
Some of the important signaling molecules regulated by the 
SOCS are insulin, IGF-1, leptin, IL-6, IL-4 and IL-10 (64, 
69, 70). Chronic activation of the aforementioned receptors 
can induce a state of functional resistance to the ligand 
responsible for that specific receptors activation. In a case 
of ligand-dependent chronic activation, ligand-specific 
receptor insensitivity occurs as does spillover insensitivity 
to other receptor pathways due to SOCS upregulation. This 
finding has led to the speculation that T2D was caused by 
chronic over expression of SOCS proteins (69). Work by 
our group indicated that hyperglycemia and 
hyperinsulinemia contributed to insulin resistance by 
activation of the nutrient sensing mTOR pathway (71). 
Chen et al. extended this finding by showing that inhibition 
of mTOR by rapamycin blocked IL-6 induced SOCS 
protein-mediated insulin resistance (64). Recently, it was 
demonstrated that T2D-dependent upregulation of SOCS 
proteins negatively impacted the efficacy of the anti-
inflammatory cytokine IL-4 to induce IL-1RA by (70), 
adding to the growing body of evidence that implicates the 
SOCS proteins as key immune and metabolic regulators. 
Additionally, there now appears a direct mechanistic path 
to explain how dysregulation in certain immune pathways 
can adversely impact metabolic systems and vice versa.  

 
5. ANTI-INFLAMMATORY INTERVENTIONS 
 

The treatment of diabetes was very limited until 
the discovery and purification of insulin by Banting and 
Best in 1921. However, before the discovery of insulin, 
Ebstein showed that daily consumption of high doses of 
salicylates greatly reduced glucose elimination in the urine 
(72). There were a handful of additional studies that 
explored this finding further, as reviewed by Shoelson (73) 

but these early promising results were overshadowed by the 
tremendous success of insulin in the treatment of 
hyperglycemia. Recently, the emergence of the idea that 
T2D is an inflammatory disease has led to reexamining the 
use of anti-inflammatory agents in the treatment of T2D 
complications. Interestingly, some of the medications 
currently used as anti-hyperglycemic agents, such as the 
PPARgamma  agonist rosiglitazone, may actually mediate 
at least part of their action through anti-inflammatory 
effects (74). Likewise, HMG-CoA reductase inhibitors 
(statins) have long been known to reduce cardiovascular 
disease, a serious complication of T2D, by reducing 
endogenous cholesterol production. Recently, a growing 
body of evidence suggests that statins exert potent anti-
inflammatory effects (75). Metformin, one of the most 
commonly prescribed drugs in the treatment of T2D has 
been shown to act as an anti-inflammatory agent by 
activating AMPK (76). Use of metformin is interesting 
because AMPK is a key local and systemic metabolic 
regulator. In addition, these findings underscore the 
degree of integration between metabolism and immunity. 
Finally and very recently, IL-1RA has shown promise in 
improving glycemia, beta-cell secretory function and 
reducing markers of systemic inflammation (77). By 
expanding our understanding of T2D, we have increased 
the therapeutic options available to the individual with 
diabetes, and have, in some ways, returned to Ebstein’s 
original observations with the archetypal anti-
inflammatory aspirin (73). 

 
6. CONCLUSIONS 
 
 Inflammation can be viewed as a 
homeostatic model with pro- and anti- inflammatory 
aspects. Proinflammatory cytokines are necessary in order 
to mount an initial effective immune response. However, 
this proinflammatory reaction must be balanced by an 
appropriate anti-inflammatory rejoinder in order to 
effectively direct the adaptive immune response and to 
avoid excessive damage to healthy tissues. Furthermore, 
the immune response must be in balance with the metabolic 
supplies of the organism. Immune and metabolic pathways 
are deeply intertwined (Figure 1) and require synchronicity 
in order to promote organismal survival (78). T2D is a key 
example of what happens when balance goes awry. Neither 
cytokine nor hormonal networks function in isolation so it 
is likely that many important future contributions to our 
understanding of T2D will be found by examining the 
complicated interaction and temporal variations of 
immune/metabolic balance. While tremendous strides have 
been made in understanding the nature of T2D and its 
complications, much more work needs to be done to 
improve the lives of these individuals living with the all too 
familiar quartet of swelling, redness, pain and heat. 
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