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1. ABSTRACT 
 

Ca2+ signalling in the sperm plays a key role in 
the regulation of events preceding fertilisation. Control of 
motility, including hyperactivation and chemotaxis, is 
particularly dependent upon [Ca2+]i signalling in the 
principal piece of the flagellum and the midpiece. Here we 
briefly review the processes that contribute to regulation of 
[Ca2+]i in mammalian sperm and then examine two areas: 
(i) the regulation of hyperactivation by [Ca2+]i and the 
pivotal roles played by CatSpers (sperm-specific, Ca2+-
permeable membrane channels) and intracellular Ca2+ 
stores in this process and (ii) the elevation of [Ca2+]i and 
consequent modulation of motility caused by progesterone 
including the ability of progesterone at micromolar 
concentrations to cause sperm hyperactivation and/or 
accumulation and the recent discovery that progesterone, at 
picomolar concentrations, acts as a chemoattractant for 
mammalian sperm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 The early stages of sperm-egg interaction depend 
heavily upon regulation of the activities of the male 
gamete.  Failure of a sperm to respond appropriately to 
cues from the oocyte and (in mammals) female tract will 
render it unable to fertilise. Ca2+ signalling is pivotal to 
these processes (1, 2). It has been known for more than 30 
years that the acrosome reaction, an event which is not only 
a requirement for fertilisation, but must occur at the 
appropriate place and time, is dependent (in mammalian 
and non-mammalian cells) on Ca2+ (3, 4). It is now 
believed that this process requires a combination of Ca2+ 
influx from the extracellular environment and mobilisation 
of stored Ca2+ (5-7). Much less clearly understood but also 
highly important is the role of Ca2+-signalling in 
capacitation (8). However, for the last few years the area of 
most intense interest and activity has been the role(s) of 
Ca2+-signalling in the regulation of sperm ‘behaviour’, 
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Figure 1. Regulation of [Ca2+]i in mammalian sperm – components of the toolkit. The diagram illustrates the classes and putative 
locations of pumps, channels and intracellular storage organelles that are believed to be present in mammalian sperm and 
contribute to [Ca2+]i regulation. Rectangles indicate channels, circles indicate pumps. Normal direction of Ca2+ movement is 
shown by arrows. Locations are approximate, indicating presence on the sperm head, midpiece and principal piece or on 
intracellular organelles. Where a class of pump or channel is shown in more than one location this reflects reported distribution of 
all members of that class and immunolocalisation may have shown restriction of specific gene products to only one location. 
Question mark against SERCAs indicates that the presence or functional significance has been disputed (see text). For clarity, 
mitochondria in the sperm midpiece, which accumulate Ca2+ into the matrix space via a uniporter on the inner membrane (driven 
indirectly by e- transport) and contribute significantly to Ca2+-buffering,  are not shown. 
 
changes in the characteristics and directional component of 
motility including activation, hyperactivation and 
chemotaxis (9-12).  In this review we briefly survey current 
ideas about the sperm Ca2+-signalling ‘toolkit’: how sperm 
regulate [Ca2+]i and generate appropriate Ca2+ signals in 
response to stimuli and cues from their environment. Then 
we examine what is known about the participation of the 
Ca2+ toolkit and Ca2+ signals in regulating two important 
‘behaviours’ of mammalian sperm – hyperactivation and 
the response to progesterone. Current ideas on the roles of 
Ca2+signalling in chemotactic responses of sea urchin 
sperm exposed to sperm activating peptides and 
mammalian sperm responding to olfactory stimulants are 
covered in the contributions by B Kaupp and M Spehr.  
 
3. [Ca2+]i REGULATION IN MAMMALIAN SPERM: 
THE SPERM’S Ca2+-SIGNALLING TOOLKIT 
 
3.1. Ca2+ handling at the plasma membrane – Ca2+ 
channels and pumps 

The importance of Ca2+ channels in the sperm 
plasma membrane, and their distribution and regulation, is 
well established (13, 14; Figure 1a). Similarly to Ca2+, 
cAMP is of central importance in sperm function and it is 
therefore not surprising that cyclic nucleotide-gated (CNG) 
channels have been detected in mammalian sperm. Weyand 
et al (15) cloned a novel Ca2+-permeable CNG channel (of 
the type found in vertebrate photoreceptors and olfactory 
neurons) from bovine testis that was expressed in sperm. 
Subsequently the same group showed that CNG channels 
were restricted to the flagellum (the beta subunit being 
present only in the principal piece). These observations are 
particularly exciting in the light of two recent observations: 
i) activation of olfactory receptors, apparently linked to 
adenylate cyclase, leads to Ca2+ influx and consequent 
chemotactic behaviour in human sperm and; ii) K+-
selective CNG channels cause a hyperpolarisation of the 
membrane that induces a chemotactic turn in sea urchin sperm 

(see contributions by B. Kaupp and M. Spehr). Evidence 
consistent with the presence of functional CNG channels in 
intact sperm has been reported. Liberation of cGMP caused 
elevation of [Ca2+] in the flagellum (16). Manipulation of 
cGMP or cAMP levels in mouse spermatozoa induced a 
transient elevation of [Ca2+]i lasting 20–60 s (17). This effect 
was greatly reduced in low-Ca2+ saline or in the presence of 
Ca2+-channel blockers, suggesting that Ca2+ was mobilized 
through cyclic nucleotide-regulated channels, cGMP being 
significantly more effective in elevating [Ca2+]i. However, the 
significance of CNG channels mammalian in sperm 
function is still far from clear, since no impairment of 
reproductive function has been shown in any of the mouse 
CNG channel subunit-null models (18). More specifically, 
treatment of mouse sperm with bicarbonate, which elevates 
[cAMP] by activation of soluble adenylate cyclase, does 
not induce significant Ca2+-influx unless the stimulus is 
paired with alkalinisation (10).  Furthermore, some of the 
observed effects of cyclic nucleotides may reflect actions 
on CatSpers (see below), since elevation of [Ca2+]i induced 
by treatment with membrane-permeant cAMP or cGMP is 
lost in sperm of CatSper-null mice (19).  

 
Over the past 15 years many laboratories have 

shown evidence for the expression of voltage-operated Ca2+ 
channels (VOCCs) in sperm (both mammalian and non-
mammalian) and their participation in induction of the 
acrosome reaction by biological agonists. Mouse and 
bovine sperm exposed to solubilised zona or purified zona 
protein 3 (ZP3) show an increase in [Ca2+]i and undergo an 
acrosome reaction. These responses are dependent upon 
[Ca2+]o (indicating participation of Ca2+-influx) and both 
the elevation of [Ca2+]i and induction of acrosome reaction 
are subject, with similar potencies, to inhibition by organic 
and inorganic antagonists of VOCCs (13, 20-24). 
Immunostaining and in-situ hybridisation of sperm 
preparations, western blotting of sperm protein extracts and 
PCR of spermatid cDNA libraries all indicated the presence 
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of numerous VOCCs in sperm. The types which have been 
detected by these various techniques vary widely in their 
voltage-sensitivity and kinetics of activation and 
inactivation and are apparently restricted in their 
distribution such that different parts of the sperm 
membrane might respond differently (generating different 
sorts of Ca2+ signal) in response to changes in membrane 
potential (13, 25, 26). Moreover, pharmacological 
investigation of depolarisation-induced and agonist-induced 
elevation of [Ca2+]i in mouse and human sperm has 
suggested the participation of at least two channel types in 
supporting Ca2+ influx (27, 28). 

 
However, when electrophysiological (whole cell 

patch clamp) studies were carried out on mouse and human 
spermatogenic cells (spermatocytes and spermatids) only 
transient (T-type) currents were observed upon application 
of depolarising pulses (23, 29-31), though this current may 
include two, pharmacologically separable components (28).  
More recently the presence of the cytoplasmic droplet in 
immature (epididymal) mouse sperm has been exploited to 
apply whole cell patch clamp to these cells. Again only 
low-voltage activated, transient (T-type) currents were seen 
(32). Application of cell-attached (single channel) patch 
clamp recording to map the distribution of functional ion 
channels in the head of human sperm revealed a number of 
channel types which were clearly differentially distributed, 
but provided no evidence for the presence of active VOCCs 
(33).  

 
This discrepancy between the apparent richness 

of VOCC expression detected by molecular approaches, 
and the paucity of currents detected in intact cells is yet to 
be resolved. The high-voltage activated (non-T-type) 
channels detected by molecular studies may be ‘dormant’, 
becoming available for activation only upon modulation 
occurring during capacitation or perhaps following 
activation of membrane receptors by agonists encountered 
in the female tract. Alternatively, the sensitivity of 
molecular techniques may have detected ‘vestigial’ channel 
proteins which were active in the developing male germ 
cell but are no longer functional.  

 
Transient receptor potential (TRP) channels are a 

family of Na+ and Ca2+-permeable channels that resemble 
structurally the superfamily of voltage-gated channels. 
These channels vary greatly in their mode of activation and 
are believed to participate in a wide range of processes 
involving influx of Ca2+, including mechanosensitivity, 
sensing of pain and thermosensitivity (34, 35). These 
channels have been detected in mouse sperm (36, 37) and 
TRP2 is implicated in the signal cascade that causes 
acrosome reaction in zona-bound sperm (36). However, 
several TRPs have been detected in mouse sperm flagellum 
(37) and TRPC1,3,4 and 6 have been localised to the 
flagellum of human sperm (38). SKF96365, a blocker of 
TRPC channels, significantly inhibited human sperm 
motility (38). 

 
Recently, a novel Ca2+ -selective sperm-specific 

channel has been described (39). These ‘CatSpers’ are 
unique to sperm, being localised to the principal piece of 

the flagellum (19, 40, 41). There are 4 CatSper genes 
(CatSper 1-4), all coding for proteins structurally similar to 
subunits of voltage-operated channels. The Catsper proteins 
are believed to form (probably heteromeric) tetramers and 
knockout of any one of the four genes is sufficient to 
prevent functional expression of CatSper channels, leading 
to effects on motility and fertility (42, 43; see below). To 
date most work has been done on mouse CatSpers, where 
work with CatSper null mice has shown the channel to be 
extremely important in regulation of motility, particularly 
hyperactivation (see below). However, molecular studies 
have shown that CatSpers  are expressed in human testis 
(19, 40, 44) and CatSper mutations may be significant in 
some forms of human male infertility (45, 46). 

 
All cells use ATP to extrude Ca2+ at the 

plasmalemma; either directly, by plasma membrane Ca2+-
ATPases (PMCAs), or indirectly by Na+-Ca2+ exchangers 
(NCXs). There are four isoforms of the PMCA (PMCA1–
4), PMCA1 and PMCA4 being most common (47). PMCA 
(primarily PMCA4) protein has been detected in rat 
spermatids (48) and mouse spermatozoa (49, 50). PMCA4 
is located primarily in the principal piece of the sperm 
flagellum (49-51). In PMCA4 null mice the ability to 
hyperactivate is lost, possibly due to inability to regulate 
[Ca2+]i under hyperactivating conditions (50); see below). 
The NCX exports one Ca2+ in exchange for influx of three 
Na+, using energy derived from the Na+ gradient at the cell 
membrane, and thus indirectly from activity of the Na+, K+-
ATPase (52). Using RT–PCR, two splice variants from the 
NCX1 gene (NCX1.3 and NCX1.7) were found in rat testis 
(53) and mRNA for the NCKX3 isoform was detected in 
mouse testis (54). Pharmacological evidence indicates that 
that activity of NCX is crucial for maintenance of [Ca2+]i 
and motility in human sperm (55, 56). Immunostaining 
localised NCX primarily to the acrosomal area and the 
midpiece (56).  NCX expressed in the tail of sea urchin 
sperm plays a similarily important role in regulating 
[Ca2+]i, such that blockade of the exchanger increases 
[Ca2+]i and impairs motility (57).  

 
3.2. Intracellular Ca2+ handling - Ca2+ stores 

Only in the last 5-10 years has it become 
apparent that mammalian (including human) sperm possess 
intracellular Ca2+ stores (Figure 1). Work from several 
groups has shown that the acrosome functions as a store in 
a manner analogous to the ER of somatic cells, emptying 
upon IP3R activation (7, 58-60). IP3 receptors are localised 
to the anterior sperm head and are lost upon acrosome 
reaction consistent with localisation to the outer acrosomal 
membrane (59). Ca2+ storage by the acrosome has recently 
been shown in human and mouse spermatozoa and this 
stored Ca2+ can be released by IP3 and Ca2+ ATPase 
inhibitors (5, 7, 60). It has been suggested that ‘the mouse 
sperm acrosome is a Ca2+ store that regulates its own 
exocytosis through an IP3 Ca2+ mobilization pathway’ (7). 
Similar conclusions have been drawn for human 
spermatozoa (60). The role of this store in the mature 
sperm prior to acrosome reaction is unknown. 

 
Intriguingly, it now appears that there is at least 

one other Ca2+ store, in the neck/midpiece region of 
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mammalian sperm (61-64; Figure 1). Ho and Suarez (61, 
62) have described a Ca2+ store in the neck region of mouse 
sperm. They suggest that the redundant nuclear envelope, 
which extends from the back of the nucleus, acts as a 
releasable store that regulates activity of the flagellum (see 
below). IP3 receptors have been localised to this region. In 
human sperm it has been shown that a store, apparently 
situated in the neck region, can be mobilised independently 
of IP3 signalling, apparently dependent upon activation of 
ryanodine receptors (RyRs) (65). It is possible that storage 
in this area of mammalian sperm involves more than one 
compartment. Both the redundant nuclear envelope (excess 
nuclear envelope ‘released’ during nuclear condensation) 
(61) and calreticulin-containing vesicles in the cytoplasmic 
droplet have been proposed (63). The mitochondria of 
sperm also contribute to Ca2+ buffering (49). The 
possibility that  Ca2+ signals in the midpiece of human 
sperm merely reflect a normal Ca2+ release and (e--
transport-dependent-) re-accumulation by mitochondria has 
been addressed by using high doses of uncouplers (2,4 
dinitrophenol and carbonyl cyanide m-
chlorophenylhydrazone). Ca2+ mobilisation and 
accumulation were not affected (65, Machado-Oliveira, 
unpublished data). However, SPCA has been localised to 
the giant mitochondrion in sea urchin sperm (66) and is 
expressed throughout the mitochondrial midpiece of human 
cells, not just in the anterior region where RyRs are 
normally detected. Thus this store might comprise two 
components, a small, anteriorly-placed ‘trigger’ expressing 
RyRs and a larger mitochondrial component that can 
accumulate Ca2+ by ATPase activity.  Regardless of its 
identity, the position of this Ca2+ source, and the evidence 
of physiological studies suggest that it plays a key role(s) in 
regulating flagellar activity during events leading up to 
fertilisation.  
 
4. HYPERACTIVATION 
 

Hyperactivation of mammalian sperm is a 
change in flagellar activity from activated (a high 
frequency, low-amplitude beat that causes progressive 
movement in low-viscosity, aqueous media) to a much 
more vigorous ‘hyperactivated’ pattern. Though the 
characteristics of hyperactivated motility are difficult to 
define, since they apparently vary somewhat between 
species, typically the flagellum forms deeper bends, the 
beat becomes asymmetric and the frequency of beating is 
significantly reduced (67-69).  When cells are suspended in 
low viscosity medium this results in marked lateral 
movements of the sperm head and often a circular 
swimming pattern or a non-progressive, whiplash-like, 
tumbling movement. This change in motility normally 
occurs in the female tract, simultaneously with a suite of 
biochemical and structural changes, that render the sperm 
capable of fertilisation (collectively referred to as 
capacitation; 8) and can be considered as part of this 
process. However, use of enzyme inhibitors and 
physiological manipulations suggest that hyperactivation is 
regulated by different signalling pathways to other aspects 
of capacitation and can occur separately (70). It is likely 
that hyperactivation plays a number of roles during 
progress of the sperm to the oocyte. Progressive movement 

in viscous and visco-elastic media is significantly improved 
when sperm are hyperactivated (71) such that penetration 
into and within mucus, and also penetration of the cumulus 
surrounding the oocyte will be improved in hyperactivated 
cells. Importantly, penetration of the zona is greatly 
increased in hyperactivated cells (72) and zona penetration 
may even be impossible without hyperactivation (73). Any 
or all of these effects of hyperactivation may be crucial. 
 
4.1. Ca2+ in the regulation of hyperactivation 

Both Ca2+ signalling and cAMP-mediated signals 
are believed to participate in the induction and regulation of 
hyperactivation. Treatment of sperm to elevate [Ca2+]i 
(ionophore A23187) can reversibly induce hyperactivation 
(74) and  [Ca2+]i is clearly elevated in hyperactivated sperm 
(9). Significantly, this increase in [Ca2+]i is particularly 
marked in the flagellum (75). However, exposure of 
mammalian sperm to membrane-permeant 
phosphodieterase inhibitors (a manipulation intended to 
reset the balance of cAMP synthesis/degradation, thus 
elevating [cAMP]) also causes increased levels of 
hyperactivated motility (76-78).  Thus either or possibly 
both of these second messengers regulate the transition 
from activated to hyperactivated motility. Attempts to 
determine, more precisely, the regulation of this process 
have employed detergent extracted (de-membranated) 
sperm ‘models’. When these sperm models are reactivated 
in medium containing Mg-ATP and EGTA (1-100 nM 
[Ca2+] depending on species) flagellar beating restarts and 
is typically rapid with low amplitude symmetrical bends 
(79-81). Elevation of [Ca2+] in the medium (and thus 
‘cytoplasmic’ [Ca2+] in the sperm ‘model’) causes an 
increase in flagellar curvature of the principal bend and, 
consequently, increased beat asymmetry, resulting in 
hyperactivated type motility (80). When [Ca2+] is raised to 
very high levels  (500 microM–1 mM) rodent, human and 
bovine de-membranated sperm ‘models’ can become 
immotile, with a strongly curved flagellum (79, 80, 82). In 
contrast, though addition of cAMP to de-membranated 
mammalian sperm seems to enhance flagellar reactivation 
(83), it apparently has very little effect on beat mode (79, 
80, 84). In a recent study on de-membranated macacque 
sperm, Ishijima et al (81) concluded that [Ca2+] caused a 
concentration-dependent increase in asymmetry without 
significant effects on beat frequency or wavelength. 
Asymmetry was largely due to changes in the behaviour of 
the sperm midpiece.  When cAMP (50-150 microM) was 
included with stimulating levels of Ca2+ the hyperactivated 
beat became more symmetrical and beat frequency was 
reduced.  

 
4.2. CatSpers and hyperactivation 

It appears that the primary determinant of the 
change to hyperactivated motility is increased cytoplasmic 
[Ca2+]. How is Ca2+ mobilised into the cytoplasm to induce 
hyperactivation and how is it regulated so that the Ca2+ 
signal is directed to the right part of the cell at the right 
time? Recently a series of important studies have identified 
and characterised both membrane Ca2+ channels and 
intracellular Ca2+ stores that are apparently pivotal to this 
process. The CatSpers (see section 3.1 above) play a 
particularly important role in this respect. CatSpers were 
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first described in 2001 (19, 40) as sperm-specific ion 
channel subunits with a structure resembling that of 
voltage-gated cation channels. Male mice null for CatSper1 
were shown to be infertile, their sperm having impaired 
motility and lacking a cAMP-induced Ca2+ influx that was 
present in wild type cells. Further investigation clarified the 
Catsper motility phenotype, showing that, in sperm lacking 
functional CatSper channels (CatSper 1 or CatSper 2 null), 
activated (progressive) motility was near normal but the 
cells failed to hyperactivate when incubated under 
conditions that normally induce capacitation (and 
hyperactivated motility) (85). Patterns of protein tyrosine 
phosphorylation and ability to undergo acrosome reaction 
when stimulated with zona pellucida showed that the cells 
were indeed capacitated (10, 73), indicating that the lesion 
was a specific failure of hyperactivation. Male mice with 
this defect were completely infertile and the sperm failed to 
fertilise any oocytes in vitro (73). However, removal of the 
zona pellucida resulted in normal rates of in vitro 
fertilisation, indicating that infertility was a direct result of 
failure of the sperm to penetrate the zona due to their 
failure to hyperactivate (73).   

 
Analysis of the physiology of these CatSper-null 

cells shows that, though they are in many respects normal, 
they fail to generate a rapid increase in [Ca2+]i when they 
are exposed to depolarising conditions in the presence of 15 
mM bicarbonate, whereas in control cells a robust increase 
occurs (10, 49). This increase in [Ca2+]i is rapid (half time 
≈60s), dependent on the presence of Ca2+ in the medium 
and appears to involve generation of cAMP by the 
bicarbonate-sensitive, soluble adenylate cyclase (and 
consequent activation of PKA; (49).  Interestingly, 
treatment with 15 mM bicarbonate causes a Ca2+-dependent 
increase in flagellar beat rate and reduction of flagellar 
asymmetry which is also dependent on cAMP and PKA, 
but which is not lost in cells lacking CatSper channels (10). 
Kirichok et al (41) have successfully applied whole-cell 
patch clamp to epididymal mouse sperm by using the 
cytoplasmic droplet of these cells to obtain gigaseals and 
membrane ‘breakthrough’. These authors detected a Ca2+ 
current (ICatSper) that was absent in CatSper-null cells. The 
current was weakly voltage sensitive, but this sensitivity 
showed a pronounced negative shift (to physiological 
values of membrane potential) when pHi was raised from it 
basal value of <7 to ≈7.5 or 8 (41). Recently the same 
laboratory has detected a K+ current (KSper) in murine 
sperm, also localised to the principal piece of the sperm. 
This current activates in response to intracellular 
alkalinisation, leading to hyperpolarisation and an 
increased driving force for Ca2+ entry through CatSper 
channels (86). 

 
Studies on human sperm have shown that 

elevation of pHi (intracellular alkalinisation using NH4Cl) 
causes a dose-dependent increase in [Ca2+]i and also 
enhances depolarisation-induced Ca2+ influx (87), effects 
which may relate to expression of CatSpers in human 
sperm. This response to intracellular alkalinisation is 
apparently enhanced by capacitation (87, 88). In bovine 
sperm exposure to NH4Cl also raises [Ca2+]i, an effect that 
has a longer latency than the NH4Cl-induced rise in pH, 

consistent with a causative link between these two 
responses in which elevation of pH is required for 
mobilisation of Ca2+ (70). Hyperactivation accompanied 
the NH4Cl-induced rise in [Ca2+]i. Both this hyperactivation 
and the increase in [Ca2+]i were sensitive to removal of 
Ca2+ from the extracellular medium, though this did not 
reduce the alkalinising effect of NH4Cl (70).  Interestingly, 
in the whole cell patch clamp experiments carried out by 
Kirichok et al (41) cyclic nucleotides did not potentiate 
ICatSper, suggesting that ‘the (previously) observed 
CatSper1-dependent rise in [Ca2+]i induced by cyclic 
nucleotides did not result from direct modulation of the 
CatSper channel’ (41). This is consistent with the 
requirement for PKA activation in the enhancement of 
voltage-induced Ca2+ influx caused by bicarbonate, but 
how activation of PKA regulates the channel (through 
alkalinisation or though another more direct mechanism) is 
not yet clear.  

 
4.3. Ca2+ stores and hyperactivation 

Another potentially important regulator of Ca2+ 
in the control of hyperactivated motility is the liberation of 
Ca2+ from intracellular stores.  Suarez and colleagues 
reported that the redundant nuclear envelope may act as a 
Ca2+ store (61). IP3 receptors (IP3Rs) and calreticulin were 
localised, at histological and electron microscope levels, to 
these intracellular membranes (61, 62). Treatment with 
thimerosal or high concentrations of thapsigargin elevated 
Ca2+ in the neck region in bovine sperm, in the absence of 
extracellular Ca2+ (indicating that Ca2+ was being mobilised 
from intracellular stores) and induced hyperactivation (61, 
62). Mouse sperm were similarly able to undergo 
hyperactivation by mobilisation of stored Ca2+ when flux at 
the membrane had been abolished by extracellular Ca2+-
buffering, though Ca2+ influx across the membrane is 
probably necessary to maintain this type of motility for a 
prolonged period (89). When sperm from CatSper 1 and 
CatSper 2 null mice were stimulated in this way they 
responded similarly, despite the absence of CatSper 
channels, confirming that mobilisation of stored Ca2+ in the 
neck region is capable of supporting hyperactivation 
independently of influx through CatSpers (89). Recently it 
has been shown that upon activation of Ca2+ influx into the 
principal piece of the mouse sperm flagellum, (evoked by 
cell-permeant cyclic nucleotide analogues or by 
alkalinisation) there is not only an elevation of flagellar 
[Ca2+] (and thus hyperactivation) but also (with a delay of 
≈3 s) a propagation of the signal into the midpiece and 
sperm head. [Ca2+]i elevation in the head persisted much 
longer than the flagellar signal, possibly reflecting 
relatively poor Ca2+ buffering in the head. Both the initial 
Ca2+ elevation and the forward propagation were lost in 
CatSper-null cells (90). The authors considered that this 
was likely to be an active process rather than passive spread 
by diffusion, thus it may be that activation of CatSpers 
recruits mobilisation of Ca2+ stored in the sperm neck 
region, possibly by Ca2+-induced Ca2+ release (see below).  
Interestingly, spread of the Ca2+ signal into the midpiece 
leads to elevated NADH fluorescence suggesting that the 
mitochondria accumulate Ca2+ under these conditions, 
possibly having significant effects on mitochondrial 
metabolism (90). The occurrence of these signals under 
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Figure 2. [Ca2+]o elevation in a suspension of human sperm upon stimulation with 3 microM progesterone. A rapid increase in 
[Ca2+] occurs upon application of progesterone (arrow), followed by a plateau (blue trace). When cells are pre-incubated for 2-3 
min in medium supplemented with EGTA (arrow; [Ca2+]o <5*10-7 M; pale blue trace),  both components are abolished. 
Calibration shows delta [Ca2+]i  (200 nM) and time (200 seconds). Resting [Ca2+]I is 120-150 nM but this decreases rapidly upon 
exposure to EGTA. 

 
physiological conditions, rather than in response to 
artificially imposed, direct, strong activation of CatSpers, is 
yet to be established. However, these data suggest that 
mechanisms for integration of energy usage and generation 
might exist in mature sperm. 

 
5. PROGESTERONE AND GUIDANCE OF HUMAN 
SPERM 
 
5.1. Sensitivity of sperm to progesterone 

The steroid hormone progesterone (4-pregnene-
3,20-dione), which is synthesised by granulosa cells of the 
follicle, plays an important role in maturation of the oocyte 
in mammals and other vertebrates (91).  After ovulation 
these cells still surround the oocyte (the cumulus oophorus) 
and continue to manufacture the hormone. Thus sperm in 
the mammalian female tract not only are exposed to 
progesterone which ‘leaks’ from the circulation, but must 
approach and penetrate a layer of progesterone secreting 
cells before they contact the egg. The ‘classical’ mode of 
action of steroids is to enter the cell (steroids are 
hydrophobic and cross the cell membrane) and interact with 
a cytoplasmic receptor, leading to regulation of gene 
transcription. However, it is now known that in many cell 
types steroids have effects that are exerted by mechanisms 
other than regulation of gene transcription (91-94). A 
particularly striking and well-documented example of this 
is the action of progesterone on human spermatozoa. Upon 
exposure to micromolar concentrations of progesterone, 
human sperm immediately (<3 s) generate a rapid increase 
in [Ca2+]i which peaks within <15 s (at 37oC), followed by 
a prolonged plateau phase (95; Figure 2).  This effect is far 
too rapid to be dependent upon gene transcription and is 
still observed when progesterone is conjugated to BSA (95, 
96). Though use of BSA-conjugated progesterone does not 
absolutely preclude interaction with an intracellular 
receptor, there seems little doubt that the rapid action 
reflects a non-genomic effect. There is considerable and 

ongoing controversy regarding the nature of this action, 
which may involve ‘classical’ progesterone receptors (or 
truncated versions thereof) having non-transcriptional 
effects, novel membrane-associated receptors or even 
actions of the steroid on other membrane proteins not 
normally classified as receptors. Correia et al, (97) provides 
a good summary of the current situation. 
 
5.2. Biological effects of progesterone on human sperm 

The sensitivity of sperm to progesterone is well 
established, as is the rapid, Ca2+-mobilising action of this 
steroid, but an understanding of the biological significance 
of this sensitivity has proved elusive. The best-
characterised and most-studied effect of progesterone on 
human sperm is the induction of the acrosome reaction, an 
action that almost certainly underlies the acrosome 
reaction-inducing effect of follicular fluid (98). Stimulation 
of the acrosome reaction by progesterone in vitro is dose-
dependent, with a potency which closely parallels induction 
of [Ca2+]i elevation (95, 99, 100). On the basis of these and 
many other observations, it has been suggested that, in vivo, 
progesterone acts on mammalian sperm as an inducer or 
co-inducer of acrosome reaction (with the zona pellucida). 
A problem with this model is that ‘premature’ acrosome 
reaction (before zona binding) may well compromise the 
sperm’s fertilising ability (101). However, another 
possibility is that stimulation by microM-mM doses of 
progesterone does not, under physiological conditions, 
induce acrosome reaction in healthy cells, but ‘primes’ 
the cell, preparing it to respond strongly upon binding 
the zona, enabling exocytosis of the acrosome (102, 
103).  In vivo, the spermatozoon is likely to encounter 
the progesterone stimulus in increasing concentration as 
it approaches the cumulus-oocyte complex. When human 
spermatozoa are exposed to such a progesterone 
concentration gradient priming of ionophore-induced 
acrosome reaction is observed at pM concentrations of the 
steroid (104).  
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An alternative function for the sensitivity of 
sperm to cumulus-synthesised progesterone is a role in 
guidance of sperm to the oocyte. The steroid may form a 
gradient, at least in the immediate vicinity of the cumulus-
oocyte complex, or even within it (105, 106).  Several 
groups have investigated the chemotactic activity of 
follicular fluid, which typically contains between 5 and 50 
microM progesterone (107), though recently levels as low 
as 54 nM have been reported (108).  That follicular fluid 
acts as a chemoattractant for human spermatozoa seems 
beyond dispute (107, 109, 110). However, the question of 
whether progesterone is the (or a) chemoattractant present 
in follicular fluid has proved difficult to resolve. Vadillo 
Ortega et al (111), Silwa (112), Villanueva-Diaz et al 
(113); Wang et al (114) and Jeon et al (110) all reported 
detecting chemotactic activity of progesterone at 
micromolar concentrations. In contrast Jaiswal et al (109) 
reported that the chemotactic activity of follicular fluid was 
not affected by removal of steroids using dextran-coated 
charcoal, though the ability of follicular fluid to induce 
hyperactivation was lost. They further reported that 
progesterone, at micromolar concentrations, was not a 
potent chemoattractant and did not cause turning of sperm 
up gradient, but induced hyperactivation in a significant 
proportion of cells. They concluded that the ability of 
progesterone to cause accumulation of sperm in chemotaxis 
assays might actually be because the excitatory action of 
the steroid caused sperm ‘trapping’. Any hyperactivating 
effect of progesterone would reduce the progressive 
component of motility, such that sperm, having arrived 
randomly in an area of high progesterone concentration 
would not readily leave it (109). Most recently a study by 
Teves et al (106) has shown that at very low concentrations 
(1-100 pM) progesterone acts as a true chemoattractant for 
mammalian sperm. A one dimensional concentration 
gradient, generated by pM progesterone, is able to induce a 
chemotactic response, causing orientation of motility up-
gradient in 5-10% of cells. This is believed to reflect activity of 
the capacitated sub-population (106). The ability of 
progesterone to have two quite different effects, at different 
concentrations, is consistent with the report of Luconi et al 
(115) that human sperm possess two receptors for 
progesterone. One is poorly-specific and the other (which has a 
higher affinity) shows specificity for progesterone over other 
steroids. Estimated Kds for the two receptors (derived from 
analysis of displacement assays) were 600 pM and 26 microM. 
However, analysis of [Ca2+]i responses gave EC50 values of 55 
nM and 40 microM. It is thus not clear how these data relate to 
the responses to stimulation with  pM and microM doses of 
progesterone used in chemotactic assays.  

 
5.3. Role of [Ca2+]i in the  biological effects of 
progesterone 

Due, at least in part, to the practical difficulties 
of obtaining human zona pellucida, progesterone is the 
most-studied and best-characterised Ca2+-mobilising agonist 
of human sperm. It has been shown by many laboratories that 
buffering of [Ca2+]o to sub-micromolar levels with EGTA 
abolishes progesterone-induced elevation of [Ca2+]i, consistent 
with the effect being mediated entirely by influx of Ca2+ 
through plasma membrane channels (95; Figure 2). The 
nature of these channels or their mechanism of activation is far 

from clear, but it seems unlikely that progesterone stimulation 
results in activation of VOCCs (87, 116-118). More recently 
we have shown that the response to progesterone in human 
(and therefore probably other mammalian) sperm is complex, 
involving at least two components (65, 100, 119, 120). 
Furthermore, when progesterone is applied as a slowly rising 
concentration ramp, to represent more closely the stimulus that 
a sperm might encounter in vivo, a very different response is 
observed. No initial transient occurs but instead there is a slow, 
tonic rise in [Ca2+] upon which, in a proportion of cells, [Ca2+] 
oscillations are superimposed (65; Figure 3).  These 
oscillations reflect cyclic mobilisation of stored Ca2+ and are 
apparently mediated by Ca2+-induced Ca2+ release upon 
activation of a ryanodine receptor or ryanodine receptor-like 
protein (64, 65, 120). The oscillations are resistant to the 
specific sarcoplasmic-endoplasmic reticulum blocker 
thapsigargin but are inhibited by bis-phenol at doses that 
inhibit secretory pathway Ca2+ ATPases (SPCAs; 121, 122). 
The nature of the store that is mobilised by stimulation with 
progesterone is yet to be clearly elucidated but the [Ca2+]i 
transient, ryanodine receptors (visualised in live cells by 
BODIPY-ryanodine or in fixed cells by antibodies against 
ryanodine receptors) and secretory pathway Ca2+-ATPases are 
all localised to the sperm neck and midpiece region (64, 65, 
122). Thus the store mobilised by progesterone might well be 
the same as that previously identified in human sperm by the 
presence of calreticulin and IP3Rs (63) and equivalent to the 
store that contributes to hyperactivation in bovine sperm (61, 
62).   

 
When sperm are stimulated by a progesterone gradient 
(such that store mobilisation occurs but in the absence of 
major, phasic Ca2+ influx, (65; Figure 3), there is no 
measurable induction of acrosome reaction. Instead, 
associated with each [Ca2+]i peak there is a modulation of 
flagellar beat. Flagellar excursion increases (65) and in 
many cells there is a clear flexure of the proximal 
flagellum, always in the same direction (Figure 3). This 
might be viewed as a brief, modest activation of the 
processes that occur when mobilisation of stored Ca2+ 
induces hyperactivation (89). We have speculated that this 
effect might facilitate penetration of the zona pellucida 
(64). However, another possibility is that regular turns, 
associated with each [Ca2+]i elevation, contribute to sperm 
trapping. Ultimately this response must be investigated in 
free-swimming cells or cells penetrating cumulus. 
Furthermore, the effects on orientation of free-swimming 
cells must be investigated in media of viscosity equivalent 
to the environment within the female tract.  

 
All studies on chemotaxis of sperm from 

mammals (including humans), other vertebrates and marine 
invertebrates indicate that [Ca2+]i signalling is pivotal to the 
process (see contributions by B. Kaupp and M. Spehr). 
Thus it is pertinent to ask whether progesterone-induced 
[Ca2+]i signals in human sperm play a role in the recently 
reported chemotactic action of the steroid, or whether this 
might be achieved through a Ca2+-independent mechanism? 
Initial observations indicate that buffering of extracellular 
Ca2+ and blockade of Ca2+-permeable channels impair 
chemotactic responses, indicating that Ca2+ influx may be 
required. Intriguingly, pre-treatment with the adenylate
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Figure 3. [Ca2+]i signals induced by exposure to a rising gradient of progesterone. a: Six individual cell records, each shown by a 
different colour, from immobilised cells stimulated with a progesterone gradient (indicated by shaded bar above traces) such that 
concentration of the hormone rises from 0-3 microM over a period of approximately 20 min. Markers above the bar show 
estimated progesterone concentrations (from calibration of gradient maker and ELISA analysis of outflow from incubation 
chamber. Responses are detectable at concentrations below 3 nM. In many cells a gradual increase in [Ca2+]i occurs (blue, red and 
pink traces) but in up to 50% of cells [Ca2+]i oscillations are superimposed on this rise (yellow green and pale blue traces) which 
continue for the duration of recording. Axes show time in minutes and normalised (%) change in fluorescence of the Ca2+-
indicator Oregon Green BAPTA 1. b: Pseudocolour images showing two extracts from an image series. ‘Warm’ colours show 
high [Ca2+]i.  Images are at 1.5s intervals and each series shows a cycle of [Ca2+]i oscillation but the intervening period is not 
shown in full. The cell in which [Ca2+]i oscillations are occurring, which is attached to the coverslip by the head and distal 
flagellum, clearly moves during each [Ca2+]i elevation due to asymmetric bending of the proximal flagellum. Reproduced with 
permission from (65).  

 
cyclase inhibitor by 2’,5’ dideoxyadenosine 

(123, 124) abolishes the chemotactic response to 
progesterone (125), but there is, as yet, no indication of 
how cAMP might act in the control of chemotactic 
behaviour. From the available evidence it is not possible to 
draw any conclusions about the role of Ca2+, but two points 
may be considered. Firstly, do sperm mobilise Ca2+ in 
response to pM doses of progesterone? Previous work on 
progesterone-induced Ca2+-signalling in mammalian sperm 
has used concentrations of nM-microM, primarily on the 
basis that follicular fluid and the cumulus matrix appear to 
contain progesterone at microM or near-microM 
concentrations. However, a number of studies have 
addressed the dose-dependence of progesterone-induced 
Ca2+ signalling. Luconi et al (115) reported a threshold of 
approximately 10 nM, Blackmore et al, (126), Schaefer et 
al, (127) and ourselves (100) observed a threshold at or just 
below 1 nM. However, all of these assays were carried out 

using a fluorimetric approach in which the detected signal 
is averaged across the full cytoplasmic volume of the entire 
population. Thus, if only 5-10% of cells respond, and if the 
response occurs in only a proportion of the cytoplasmic 
volume, these estimates of threshold may be considerably 
exaggerated. In this respect it is of interest that in cells 
exposed to 100 pM progesterone (applied as a step 
stimulus) a small sustained rise in [Ca2+]i is detectable in a 
subset of cells. Interestingly, in the majority of cells the 
Ca2+ signal induced by NO is enhanced by pretreament 
with 100 pM progesterone (10 min), confirming that this is 
sufficient to modify the Ca2+ signalling apparatus of the 
cell (128), Thus it is possible that sperm do show 
physiological responses involving [Ca2+]i signalling upon 
exposure to pM doses of progesterone.  

 
Secondly, are receptor-mediated mechanisms of 

Ca2+ mobilisation induced by nM-microM doses of 
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progesterone, of which we have relatively detailed 
knowledge (if not understanding), relevant to physiological 
responses that occur at pM ‘chemotactic’ doses? Though 
the nature of the receptor(s) for progesterone is still far 
from clear, dose-dependence and binding studies have 
suggested that two binding sites may contribute to the 
known, Ca2+-dependent, effects of progesterone on 
mammalian sperm (123; see above)  However, picomolar 
doses of progesterone will not act at the low affinity 
(micromolar) steroid receptor on human sperm (115) and 
even the reported higher affinity progesterone-specific 
receptor (which has a Kd of 600 pM by displacement assay 
[115]) should be only weakly activated by the 10 pM dose 
that shows the strongest chemotactic activity (106). Thus if 
Ca2+ signalling is involved in the chemotactic activity of 
progesterone, it may well require that we re-examine the 
cellular response, using high sensitivity imaging 
techniques, in order to begin to understand the processes 
involved. This should be a high priority. 

 
6. PERSPECTIVE 

 
The last 5 years have seen considerable progress 

in our understanding of Ca2+ signalling in sperm and 
particularly its contribution to the regulation of motility and 
chemotactic behaviour. However, it is fair to say that 
different models or ‘stories’ have emerged from the 
activities and interests of different laboratories. The central 
role of CatSper in hyperactivation is beyond dispute and it 
is possible to generate a coherent model for hyperactivation 
involving regulation of the channel by pH (and pH-
regulated hyperpolarisation of membrane potential) leading 
to Ca2+ influx, tonic elevation of [Ca2+]i and 
hyperactivation. Similarly, mobilisation of stored Ca2+ in 
the neck region of rodent and bovine sperm clearly 
promotes hyperactivation, at least for a period. But how do 
these two processes interact? - are they employed 
simultaneously or separately in response to different 
stimuli? Xia et al, (90) observed that activation of CatSpers 
in the principal piece of mouse sperm results in a [Ca2+]i 
signal that propagates to the sperm head. A contribution of 
calcium-induced calcium release in the neck region to this 
process appears likely, but can this interaction work in the 
opposite direction, mobilisation of stored Ca2+ leading to 
activation of CatSpers? Ca2+ influx downstream of 
olfactory receptor activation is believed to be mediated by 
generation of cAMP and consequent gating of Ca2+-
permeable membrane channels (129). The [Ca2+]i signal 
generated by this process leads to chemotactic turns and 
orientation of cells up a chemotactic gradient. This [Ca2+]i 
signal occurs in the midpiece and flagellum (129) and yet 
it’s effect is apparently quite separate and discrete from 
those that induce hyperactivation. How is this achieved? 
Potential mechanisms include the ability of the Ca2+-
regulated elements in the flagellum to differentiate between 
signals on the basis of their temporal characteristics and 
also the possibility of selective regulation of the Ca2+-
sensitivity of target proteins by other signalling cascades? 
Is asymmetry in hyperactivation and during a chemotactic 
turn achieved differently? The recent suggestion by Xia et 
al, (90) that Ca2+ mobilisation in the midpiece regulates 
mitochondrial activity, providing an increase in ATP-

generation during hyperactivation, provides yet more 
complexity and subtlety to the story. 

 
 
The activities carried out by sperm in traversing 

the female tract, finding the cumulus-oocyte complex and 
undergoing key processes such as  hyperactivation and 
acrosome reaction at the appropriate time and place are, in 
such a simple cell, amazingly  complex (1). Compared to 
ten years ago, we now have a wealth of data relating the 
various types of spatiotemporal signal that occur in sperm 
to the activities that they regulate. The simplicity of the 
sperm’s structure is such that the development of a model 
for sperm Ca2+ signalling (quite possibly with significant 
differences between the sperm of different organisms), 
which incorporates our observations and predicts the 
sperm’s ability to select and regulate its behaviour is a 
realisable goal. 
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