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1. ABSTRACT 
 

While natural killer (NK) cells received their 
name from their ability to mediate spontaneous 
cytotoxicity, it has recently become clear that they require 
activation to target most transformed and infected cells. 
Dendritic cells (DCs) have been shown to mediate NK cell 
activation during innate immune responses. Surprisingly, 
this interaction was recently reported to be required to 
restrict infections by NK cells, and to take place in 
secondary lymphoid organs. Here we review these recent 
studies on NK cell interactions with DCs, discuss the 
molecular mechanisms underlying the cross-talk between 
these two innate lymphocyte populations, and out-line how 
DCs and NK cells synergize to enhance innate immunity 
against microbes and tumors as well as shape the adaptive 
immune system. Based on this better understanding, we 
propose that NK cells should be targeted for their 
protective functions and as an adjuvant during 
immunotherapy development. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

NK cells were originally identified as 
lymphocytes that could readily lyse cells, in sharp contrast 
to T cells that need to be primed to become cytotoxic (1, 2). 
However, NK cells are now recognized to require prior 
activation to efficiently kill infected or transformed cells. It 
was first reported by Laurence Zitvogel and colleagues (3) 
that DCs could affect NK cell function in immune 
surveillance of tumors. Since then, it has been shown that 
also human DCs can activate NK cells (4, 5, 6) and that NK 
cell activation by DCs is required for protective innate 
immunity mediated by these lymphocytes in mice (7, 8). 
Furthermore, it was shown in mice and humans that NK 
cells can polarize T cell responses. Therefore, the 
interaction between DCs and NK cells is not only important 
during innate immune responses, but also shapes adaptive 
immunity, and thereby extends the influence of this 
interaction far beyond the initial response of the immune 
system to infections.  
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Based largely on human in vitro studies, several 
types of NK cell interactions with DCs have been observed, 
in which the activation stage of the cells involved 
determines the outcome of the encounter. Activated NK 
cells have been described to be able to mature immature 
DCs or, under certain conditions, to lyse them. These 
interactions might be essential in editing or suppressing 
immune responses. Alternatively, mature DCs have been 
shown to activate resting NK cells to produce cytokines, 
proliferate, and increase their cytotoxicity via both cell-
contact dependent and independent signals (9, 10). 
 

Here we review recent studies shedding light on 
the different facets of DC/NK cell interactions and discuss 
the implications for both immunotherapy and innate 
immune responses  

 
3. NATURAL KILLER CELLS 
 

NK cells are lymphocytes, which have originally 
been characterized by their ability to kill target cells (11). 
This original definition has been extended, and in humans 
two main subsets that strongly differ in their functions have 
been characterized. The major subset in human peripheral 
blood, CD56dimCD16+ NK cells, readily lyses target cells 
after activation, but secretes low level of cytokines (12, 13). 
In contrast, CD56brightCD16- NK cells produce large 
amounts of cytokines, such as IFN-gamma, upon 
stimulation, but acquire cytotoxicity only after prolonged 
activation (13, 14). Significant differences have also been 
found between these subsets with respect to expression of 
inhibitory and activating receptors as well as chemokine 
receptors, which regulate target cell recognition and 
homing of NK cells, respectively (15, 12). In addition, 
these NK cell subsets differ with regard to their organ 
distribution. 90% of human peripheral blood NK cells are 
CD56dimCD16+, whereas CD56brightCD16- NK cells 
constitute less than 10%. However, in secondary lymphoid 
organs, the CD56brightCD16- NK cells are markedly 
enriched (16, 14), and this subset constitutes 75% of NK 
cells present in lymph nodes and tonsils. As lymph nodes 
are suggested to harbor 40% of all human lymphocytes, 
whereas probably only 2% of all lymphocyte circulate 
through peripheral blood at any given moment, 
CD56brightCD16- NK cells in secondary lymphoid organs 
constitute a remarkable pool of innate effector cells (17). 
Similar, functionally different NK cell subsets have not 
been identified in the mouse so far. However, some 
features of human CD56brightCD16- NK cells are shared by 
mouse CD127+GATA-3+ NK cells of thymic origin, which 
are enriched in lymph nodes, have lower expression of 
inhibitory as well as cytolytic molecules and primarily 
respond by cytokine secretion to cytokine activation (18). 
In contrast, Mac1highCD27+ mouse NK cells seem to be 
superior to Mac1highCD27- mouse NK cells in both 
cytokine production and cytotoxicity (19). Future studies 
will show if these NK cell subsets are indeed the functional 
counterparts of human CD56brightCD16- NK cells in mice. 
 

The developmental relationship between the two 
main human NK cell subsets is still debated. In this regard, 
it has been observed that NK cells from secondary 

lymphoid organs can acquire cytotoxic ability and the 
expression of inhibitory and activating NK cell receptors 
upon stimulation with cytokines such as IL-2, IL-12 and 
IL-15 (14) (20). Moreover, several independent research 
teams have recently demonstrated that CD56brightCD16- NK 
cells can convert into cytotoxic CD56dimCD16+ NK cells 
with all phenotypical and functional features (21-22). This 
linear differentiation has also been shown in vivo upon 
transfer of CD56brightCD16- NK cells into NOD-SCID mice 
(23). Therefore, CD56brightCD16- NK cells might home to 
secondary lymphoid tissues after leaving the bone marrow, 
and might mature in lymph nodes and tonsils to cytolytic 
CD56dimCD16+ NK cells with the full repertoire of 
inhibitory and activating NK cell receptors. Taken together, 
these results support the idea of a linear differentiation 
model of human NK cells development and the concept 
that lymphoid organs are sites of NK cell maturation.  
 

Cytolytic activity of fully matured NK cells is 
controlled by the balance between inhibitory and activating 
signaling pathways (24). To prevent killing of normal cells, 
most NK cells express an array of inhibitory receptors, 
many of which recognize major histocompatibility complex 
(MHC) Class I molecules, expressed by almost all 
nucleated cells (25, 26). This observation led to the 
missing-self hypothesis, whereby the postulated role of NK 
cells is to destroy cells that express decreased levels of 
MHC Class I molecules (27). Indeed, MHC class I 
molecules are often down-regulated in virally infected and 
cancer cells, supposedly a trait selected for avoiding 
cytotoxic T-lymphocyte (CTL) recognition (28). In 
humans, there are three types of major MHC Class I 
specific inhibitory receptors expressed by NK cells. KIRs 
and immunoglobulin-like transcripts (ILTs) bind classical 
and non-classical HLA class I molecules, whereas the C-
type-lectin heterodimer CD94/NKG2A, and its 
alternatively spliced form NKG2B, bind to the non-
classical MHC class I molecule HLA-E (29, 30). 
Interestingly, KIRs are encoded in a gene cluster, are 
extremely polymorphic, and each one is expressed in a 
different pattern creating a heterogeneous population of NK 
cell clones in every individual (31). KIRs are able to 
distinguish HLA class I allotypes, and HLA-C haplotype 
recognition by KIR2DL1 and KIR2DL2 is determined by 
amino acids in the C-terminal portion of the MHC class I 
α1 helix (32). The binding of MHC class I complexes to 
KIRs or to the heterodimeric CD94/NKG2A receptor 
initiates inhibitory pathways that can override activation 
signals (33). On the other hand, reduced expression of 
MHC Class I is not the only requirement for NK cell 
activation, and overexpression of activating ligands on 
target cells can also trigger NK cell function. Moreover, 
absence of MHC class I only translates into NK cell 
recognition if activating NK cell receptors are also engaged 
by activating structures on the MHC class I low target cell. 

  
NK cells express a number of activating and co-

activating receptors (24). The main activating NK cell 
receptors are the C-type lectin homodimer NKG2D, the 
immunoglobulin natural cytotoxicity receptors (NCRs), 
NKp30, NKp44, and NKp46, and CD16, mediating 
antibody dependent cellular cytotoxicity (ADCC) of 
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antibody opsonized targets. In addition, NK cells express a 
variety of activating co-receptors, including 2B4 (CD244), 
NTB-A, NKp80, and DNAM-1 (CD226), which contribute, 
but are not required for NK cell activation (34). Ligands for 
several but not all of those receptors are known. In the 
specific case of NKG2D, an array of cellular stress-induced 
molecules has been identified. They include non-classical 
MHC class I molecules (MHC class I polypeptide-related 
sequence A or B, MICA and MICB in humans), and the 
MHC class I-related UL-16 binding proteins (ULBP) 1-4 
which are induced in viral infections, during 
transformation, and by DNA-damaging agents (35, 36). 
While the NCR ligands on tumor cells are still unknown, 
viral hemagglutinins have been suggested as ligands for 
NKp44 and NKp46 (37, 38). In addition, poliovirus 
receptor (PVR; CD155) and nectin-2 (CD112) have been 
identified as DNAM-1 ligands (39), whereas CD48 engages 
2B4 (40, 41). These studies indicate that as for inhibitory 
NK cell receptors, NK cells receive activating signals from 
a panel of receptors, recognizing often multiple ligands, in 
order to detect a variety of transformation- and infection-
induced changes during innate immune responses (42).  

 
Our knowledge of the receptors and ligands that 

are essential for target cell recognition by activated NK 
cells has increased dramatically over the last years, but a 
number of experimental systems have also demonstrated 
that NK cells need to receive additional signals to protect 
the host during infection or immune surveillance.  We will 
discuss these signals that are initially necessary to heighten 
NK cell responsiveness below. 
 
4. DENDRITIC CELLS 
 

DCs are generally regarded as sentinels of the 
immune system. They reside in all tissues in a immature or 
resting form, and get activated upon pathogen encounter, in 
inflammatory environments, and by other cells of the 
immune system (43, 44). Upon maturation or activation, 
they migrate at enhanced frequency to secondary lymphoid 
tissues, preferentially to the perifollicular T cell zones, in 
order to prime T cell responses, but also activate other 
innate lymphocytes residing in these areas (45, 46). With 
their migration two types of information are transmitted 
from the site of DC activation. First, DCs carry antigens 
that they have endocytosed at these sites, and present them 
on their cell surface after processing. The second signal is 
imprinted by the inflammatory environment leading to DC 
maturation. It is reflected by changes in costimulatory 
molecule expression, cytokine production, and chemokine 
receptor expression, enabling the activated DC to initiate 
the most effective immune response against the particular 
threat at the site of DC activation. In order to optimally 
transmit these two signals, DCs are equipped with a variety 
of receptors for antigen uptake and for sensing their 
environment. For example, microbial stimuli of invading 
pathogens are often sensed by toll-like receptors (TLRs) 
(43). TLRs are able to recognize a variety of pathogen 
constituents, ranging from DNA motifs, such as CpG 
oligonucleotides, double-, and single-stranded RNAs, to 
protein components of viruses and bacteria. This variety of 
sensors enables DCs to react to different pathogenic 

challenges, and, similar to NK cells, DCs are able to 
integrate signals from several receptors, and enhance their 
response accordingly (47). Intriguingly, it has been shown 
recently that antigens that engage simultaneously endocytic 
receptors and TLRs are more efficiently processed for 
MHC display than antigens that are just endocytosed (48). 
Therefore, both DCs and NK cells use a large repertoire of 
receptors to sense their environment, and, as we will 
discuss below, they do so not independently from each 
other, but feed back the information to each other via DC 
maturation by activated NK cells and NK cell activation by 
mature DCs.  
 
5. INTERACTION BETWEEN NK CELLS AND DCS 
 

Although DCs were mainly considered to be the 
classic antigen-presenting cells (APC) initiating and 
activating the adaptive immune response, they have been 
found to interact with other innate immune cells such as 
NK cells. These observations have highlighted, firstly, the 
importance and complexity of the interplay between innate 
lymphocytes under various conditions, and, secondly, the 
strong context-dependence of the outcome of this 
interaction. Indeed, nowadays it is recognized that the 
DC/NK cell crosstalk varies with the activation status of 
the cells involved, and that the outcome of this interaction 
shapes the following adaptive immune response and APC 
function. Here we want to discuss the location, underlying 
mechanisms, and functional relevance of DC/NK cell 
interactions. 

 
5.1. Where does it take place? 
  The sites of DC encounter with NK cells had 
been postulated to be inflamed tissues and secondary 
lymphoid organs, but the main body of evidence that 
DC/NK cell interactions indeed take place in these organs 
has only been recently provided. The two different 
interaction sites might favor DC encounter with 
CD56dimCD16+ and CD56brightCD16- NK cells differently. 
With respect to homing to inflamed tissues, colocalization 
of NK cells and DCs has been observed in atopic skin 
lesions (49). Based on the chemokine receptors expression 
at their surface (CXCR1, CX3CR1 and ChemR23), the 
major blood subset CD56dimCD16+ is thought to home 
towards inflammatory chemokines, and could interact with 
DCs at peripheral sites of inflammation (15, 50). 
Interestingly, both plasmacytoid and myeloid DCs have 
also been reported to rely on ChemR23 to home to 
inflammation sites (51). However, the minor subset of 
CD56brightCD16- NK cells might also reach inflamed areas 
because they express CXCR3 (52), and these cells indeed 
have been found to predominate in autoimmune inflamed 
and some tumor tissues (53, 54). Interestingly, DCs have 
been shown to preferentially induce the proliferation and 
IFN-gamma production of the later subset (10, 52, 13). 
With respect to DC/NK cell interactions in secondary 
lymphoid organs, both in humans and in mice, a close 
association of NK cells and DCs could be observed in 
perifollicular T cell zones of lymph nodes (10, 55, 56). 
Extending these previous findings, Lucas and colleagues 
have found that selective ablation of DCs prevents NK cell 
recruitment to local lymph nodes after TLR stimulation, 
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and that their interaction with DCs at these sites is crucial 
for the emergence of effector NK cells in the periphery (8). 
These studies in mouse and human document that DC/NK 
cell interactions take place at peripheral inflamed sites and 
in secondary lymphoid tissues. However, the difference 
between the two species seems to be that humans 
constitutively harbor a substantial amount of NK cells in 
secondary lymphoid tissues, which are enriched in the NK 
cell subset that preferentially responds to DC activation. On 
the other hand, NK cells are rare in murine secondary 
lymphoid tissue, but get recruited to these sites upon 
mature DC migration into secondary lymphoid tissues (8, 
57). 

 
5.2. How do NK cells and DCs cross-talk? 
5.2.1. NK cell activation by DCs  

Depending on the DC maturation conditions, 
several soluble factors have been suggested as essential for 
the activation of NK cells by DCs. Among the soluble 
factors, IL-12 has been repeatedly observed to induce IFN-
gamma secretion and proliferation, and is probably the 
most pivotal signal that enhances NK cell effector function 
in humans and in mice (10, 58). In addition, IL-18, type I 
IFNs, and IL-15 have also been suggested to mediate NK 
cell activation by DCs (8-10, 59-61). In these studies it has 
become apparent that different cytokines mediate different 
aspects of DC-induced NK cell activation and steer the 
innate immune response to distinct NK cell effector 
functions. While IL-12 primarily triggers IFN-gamma 
secretion by NK cells, type I IFNs enhance NK cell 
cytotoxicity, and IL-15 has the capacity to trigger NK cell 
proliferation and survival (9-10). Some of these cytokines, 
such as IL-12 and IL-15, can trigger all of these NK cell 
effector functions, when they are present at high enough 
concentrations. Therefore, DC maturation stimuli might 
preferentially rely on one or several cytokines to enhance 
NK cell activity (9). Along the same line, different DC 
subsets are also known to differ in their capacity to produce 
these cytokines. Accordingly, it was found that 
plasmacytoid DCs with their exquisite ability to secrete 
large amounts of type I interferons mainly enhance NK cell 
cytotoxicity, whereas myeloid DCs are superior in 
stimulating IFN-gamma secretion and proliferation by NK 
cells (9, 10, 62). Furthermore, IL-2 might also play a role in 
NK cell activation by DCs under certain DC activation 
conditions (63), even though most DC maturation stimuli 
enhance NK cell activity in an IL-2-independent fashion 
(10, 64). Some of the very same cytokines involved in NK 
cell activation by DCs have been shown to differentiate 
CD56brightCD26- NK cells into CD56dimCD16+ NK cells 
(14, 20). Therefore, it is feasible that DCs might assist NK 
cell differentiation. Since IL-15 and IL-15Ralpha have been 
described to be essential for NK cell development in mice 
(65, 66), especially, the superior ability of DCs to present 
IL-15 on their surface (8, 10) could facilitate NK cell 
differentiation. These studies suggest that DC subsets 
exposed to different maturation stimuli enhance NK cell 
activation and possibly NK cell differentiation by various 
means. These distinct pathways of NK cell stimulation 
activate different arms of NK cell effector functions, and 
thereby tailor the NK cell response to the needs of the 
particular immune response. However, common themes in 

NK cell activation by DCs are that activating NK cell 
receptors rarely play a dominant role and that this 
interaction is mainly mediated by cytokines that either 
work only over short distances and make this interaction 
transwell-dependent, or are secreted by DCs in abundance 
and appear transwell-independent. 

   
 Although NK cell activation by DCs is thought to 
be primarily cytokine-dependent, direct cell-to-cell contact 
enhances it (8, 10, 55, 56). Several studies have 
characterized the immunological synapse underlying the 
cross-talk between NK cells and myeloid cells in general 
(67-70). These studies started out from the substantial body 
of literature on synapses between activated NK cells and 
tumor cells which were either susceptible or resistant to NK 
cell lysis (71, 72). However, conjugates between mature 
DCs and resting NK cells do not seem to fit into the 
classical distinction between activating and inhibitory NK 
cell synapses, as mature DCs provide both activating and 
inhibiting signals to NK cells either through cytokine 
secretion into the synaptic cleft or MHC class I expression, 
respectively. Therefore, we suggested calling the DC/NK 
cell synapse regulatory as it transmits both inhibitory and 
activating signals simultaneously across the interaction site 
(70). With respect to activating signals mediated through 
the DC/NK cell synapse, Borg and colleagues showed that 
human NK cell activation by LPS-matured DCs required 
cellular contact and IL-12 was released towards the 
interface of the DC/NK cell conjugates in a polarized 
fashion (67). In addition, Semino and colleagues 
investigated aggregate formation between immature DCs 
and resting NK cells. They observed a lysosome-mediated 
secretion of IL-18 by DCs at the DC/NK cell interface, 
followed by secretion of high mobility group B1 (HMGB1) 
by NK cells, which in turn matured DCs (68). While these 
previous studies characterized DC/NK cell conjugates at 
late timepoints of 25min and 3h, we reported recently the 
rapid formation of a functional and long-lasting 
immunological synapse between resting NK cells and 
mature DCs already after 1min of incubation. Although 
inhibitory NK cell receptors were polarized to this synapse, 
and are known to protect mature DCs from NK cell lysis 
(6), activation signals, such as mobilization of intracellular 
calcium and CD69 up-regulation, were transmitted in 
parallel. As activating receptors, we found IL-15R, both its 
alpha- and beta-chain localized to the interface of the 
DC/NK cell conjugates. Three-dimensional reconstruction 
of the DC/NK cell synapse revealed that these inhibitory 
and activating signals seem to be transmitted by spatially 
separated domains at the synapse center providing the 
physical environment for NK cell activation without 
triggering DC cytolysis (70). Indeed blocking of synapse 
formation or IL-15Ralpha abolished NK cell survival 
mediated through DC/NK cell conjugates. Therefore, cell-
contact dependency of NK cell activation by mature DCs 
might primarily result from optimal cytokine mediated NK 
cell stimulation via this synapse (67, 70). These studies 
suggest that mature DCs rapidly establish a regulatory 
synapse with NK cells through which they channel 
sequential signals for NK cell activation with early 
polarization of IL-15 and later IL-12 release, while at the 
same time protecting themselves from NK cell lysis, in 
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order to enter successively additional interactions with 
other NK cells or T cells.  
 
5.2.2. DC maturation by NK cells  

In addition to NK cell activation by mature DCs, 
activated NK cells can also trigger DC maturation. DC 
maturation has been reported after NK cell recognition of 
MHC Class Ilow tumor cells and NK cell activation with IL-
2 (4, 5, 73). NK cells mature DCs via TNF-alpha and IFN-
gamma production, and cell-to-cell contact-dependent 
signals (4, 5). NK-matured DCs display up-regulation of 
CD86 and secrete IL-12. Because DC maturation might be 
confined to the site of innate lymphocyte activation, it is 
potentially a local and very early event (44). However, this 
interaction in turn expands and activates innate 
lymphocytes and initiates T cell immunity. Indeed, the 
interplay between DCs and NK cells can completely 
replace CD4+ T cell help in the induction of anti-tumor 
CD8+ T cell responses (74). Taken together, the DC/NK 
cell cross-talk enables the immune system to use the entire 
repertoire of germline-encoded receptors on DCs and NK 
cells for the initiation of immune responses. If DC 
receptors sense invaders or cellular transformation, they 
will activate NK cells, and vice versa if activating NK cell 
receptors are engaged efficiently, this will translate into DC 
maturation. The superior ability of NK cells to recognize 
virus-infected or transformed cells via NKp46 and 
NKG2D, especially after virus-induced MHC class I down-
regulation, might make NK cells important accessory cells 
for DC-initiated immune responses. 

    
5.3. What are the functional consequences of DC/NK 
interactions in the regulation of immune responses?  
5.3.1. DC editing by NK cells to avoid graft-versus-host 
(GVHD) disease 

Because they express normal levels of MHC 
Class I, autologous cells are usually spared from NK cell-
mediated lysis. However, immature DCs are an exception 
and can be lysed by activated NK cells even in an 
autologous setting (75, 76). Up-regulation of MHC class I 
molecules protects mature DCs from NK cell lysis (6). A 
major component of this MHC class I- mediated protection 
of DCs from NK cell lysis is the expression level of the 
non-classical MHC class I molecule HLA-E, the ligand for 
the inhibitory receptor CD94/NKG2A on NK cells. Indeed, 
CD94/NKG2A positive NK cells have been identified as 
the main NK cell subset targeting immature DCs (77). 
Interestingly, CD94/NKG2A is the only inhibitory receptor 
found so far on the surface of NK cells in secondary 
lymphoid organs (14). As activating NK cell receptors, 
NCRs have been identified to mediate NK cell lysis of 
immature DCs with the help of DNAM-1 (6, 78-80), 
whereas NKG2D might be involved in macrophage killing 
by NK cells (69) and targeting of influenza-infected DCs 
(81). Depending on the myeloid DC subset, NKp30 alone 
or with the contribution of NKp46 seem to mediate NK cell 
lysis of immature myeloid DCs (6, 78, 79). Therefore, 
activated NK cells can both mature or kill DCs, depending 
of the ratio between these two cell types (4). Low amounts 
of activated NK cell primarily mature DCs, but activated 
NK cells can also kill immature DCs rapidly when they 
outnumber them. This could reflect different stages of NK 

cell homing to inflamed tissues. At the beginning of an 
immune response, few NK cells, homing to sites of 
inflammation, might assist in DC maturation, while later 
on, when large numbers of NK cells have accumulated, 
they could eliminate immature DCs to avoid tolerance 
induction by incompletely matured DCs. 

 
Although the killing of DCs is quite intriguing 

per se, and the editing of DCs by NK cell lysis might 
ensure that only matured DCs are involved in antigen 
presentation and T cell priming during activation of 
adaptive immunity (17, 82-85), recognition of DCs by NK 
cells might also have direct therapeutic implications. Along 
these lines, NK cell-mediated killing of immature DCs and 
other myeloid cells might be of relevance in patients 
suffering from acute myeloid leukemia (AML), and could 
be exploited for their treatment. In this disease, NK cells of 
AML patients were found to express decreased levels of 
NKp30, and displayed poor cytolytic activity against 
immature DCs or leukemic blasts (86, 87). One way to 
restore NK cell activity is repopulation of these innate 
lymphocytes after bone marrow transplantation. However, 
recipients of foreign bone marrow are threatened by the 
development of graft-versus-host disease (GVHD). Indeed, 
GVHD is a common and life-threatening complication of 
allogeneic hematopoietic stem cell transplantation (HSCT), 
used currently to cure malignant disorders such as AML 
Generally the risk for developing GVHD decreases with the 
degree of HLA-matching between donor and recipient; the 
greater the match, the smaller the risk (88). Although HLA-
matching is crucial, 75% of patients do not have an HLA-
identical sibling, and haploidentical (that is, matched for 
one haplotype and unmatched for the second one) 
transplantation becomes a viable option. In haploidentical 
bone marrow transplantation, reconstituting NK cells of 
donor origin might develop with a mismatch between their 
inhibitory receptors and the MHC Class I molecules at the 
surface of recipient cells, especially when the HLA 
mismatch occurs in HLA-C alleles, which can be 
distinguished by KIR2DL inhibitory NK cell receptors. In 
AML, these alloreactive NK cells might prevent leukemia 
relapse and, at the same time, GVHD. After analyzing 112 
patients, Ruggeri and colleagues published recently that 
transplantation of alloreactive NK cells is associated with 
significant lower relapse rates (3% vs 47%), a better event-
free survival (34% vs 6%), and remission (67% vs 18%) 
(89, 90). These promising results have now been repeatedly 
observed by other groups, refining the model with respect 
to the importance of a donor KIR – recipient HLA-C allele 
mismatch (91, 92). As alloreactive donor-derived T cells 
activated by recipient APCs cause GVHD, it has been 
suggested that donor-derived alloreactive NK cells kill not 
only tumor cells but also recipient DCs preventing them to 
activate the T cell response involved in GVHD (88). These 
studies might suggest a therapeutic benefit of DC editing 
by activated NK cells. 

 
5.3.2. Polarization of T cell responses after DC/NK cell 
interaction 

Maturation not only protects DCs from NK-
mediated lysis, but also enables DCs to migrate to 
secondary lymphoid tissues, where they efficiently present 
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antigens to T-lymphocytes (93). Notably, CD56brightCD16- 
NK cells are preferentially found in T cell zones of 
secondary lymphoid organs in close proximity to DCs (10, 
55, 56). Both, NK cells and DCs probably reach these sites 
by virtue of their CCR7 expression (17). Recently, we 
reported that CD56brightCD16- NK cells from secondary 
lymphoid tissues enhanced the priming of IFN-
gamma producing alloreactive CD4+ Th1 cells. NK cells in 
secondary lymphoid tissues supported Th1 polarization 
more efficiently than blood NK cells by their superior 
ability to produce IFN-gamma after stimulation with DCs, 
matured with the double-stranded RNA mimic poly (I:C) 
(94). Similarly, mouse NK cells were shown to support Th1 
polarization after interaction with DCs in vivo (55, 57, 95). 
As already discussed above, T cell polarization was 
mediated by a NK cell subset constitutively present in 
human secondary lymphoid tissues, whereas it required NK 
cell recruitment to secondary lymphoid organs in mice. 
These results suggest that NK cell activation by DCs and its 
polarizing effect on adaptive immune responses should be 
harnessed for vaccine development. Namely, adjuvants that 
enable DCs to activate NK cells might preferentially 
achieve Th1 polarization. 

 
5.3.3. Enhanced innate immunity to microbial infection 
after DC/NK cell interaction 

NK cells have been implicated in the innate 
resistance to numerous pathogens (96). In this review we 
will, however, focus on their importance for the immune 
control of herpesvirus infections. Indeed, lack of immune 
control of this virus family is a hallmark of NK cell 
deficiency (97, 98). 

  
 The most prominent example of innate immune 
control of a herpesvirus by NK cells is the murine 
cytomegalovirus (MCMV), a β-herpesvirus. Innate 
resistance to this virus is mediated by NK cells that carry 
the Ly49H activating NK cell receptor (99, 100). Mouse 
strains susceptible to fatal MCMV infection lack Ly49H, 
and Ly49H transgene expression confers resistance to 
MCMV in these mice (101). Not unlike NKp46, this 
receptor selectively recognizes a viral surface protein on 
infected cells called m157 (102, 103). However, as 
discussed above, activation of innate immune control of 
MCMV requires CD8+ DCs (104). DCs sense MCMV 
infection at least in part via TLR9 stimulation, and then 
activate NK cell after maturation (105, 106). These studies 
demonstrate that NK cell activation by DCs leads to an 
essential innate immune response in mice that is crucial for 
surviving MCMV infection. 
 

With respect to human herpesviruses, there is 
evidence to support the role of innate lymphocytes in 
limiting the early infection of Epstein Barr virus (EBV), a 
γ-herpesvirus (107). Male patients with X-linked 
lymphoproliferative disease (XLP), who frequently 
succumb to primary EBV infection by developing EBV-
associated lymphomas, have a mutation in the SAP gene 
leading to defective recognition of EBV-transformed B 
cells by NK cells (108-110). Lack of NK cell function is 
not the only immune deficiency in XLP patients, but most 
likely contributes to loss of EBV specific immune control. 

Furthermore, EBV-induced B cell transformation is 
restricted by IL-2-activated peripheral blood NK cells in 
vitro (111-113). Moreover, NK cell-depleted PBMCs were 
less efficient in controlling tumor development after 
transfer of EBV-transformed B cells in SCID mice (114). 
In addition, lytically EBV replicating B cells were found to 
be more susceptible to activated NK cell lysis (115). 
Finally, EBV-driven lymphoproliferative disease was found 
to be associated with a novel primary immunodeficiency 
affecting NK cell function (98). These studies indicate that 
innate immune control of EBV is at least in part mediated 
by NK cells. We could recently demonstrate that this innate 
immunity mediated by NK cells causes restriction of EBV 
infection in vitro, and requires NK cell activation by 
myeloid DCs. Human myeloid DCs mature in response to 
EBV particles and are then able to efficiently activate NK 
cells. Transformation of B cells by EBV in culture was 
inhibited by NK cells after activation by mature DCs. 
Tonsilar NK cells, purified from the primary site of EBV 
infection, were most efficient in limiting B cell 
transformation by EBV due to their superior ability to 
secrete high levels of IFN-gamma after activation by DCs. 
IFN-gamma by DC activated NK cells was able to inhibit 
the establishment of EBV transformation program (116). In 
addition to myeloid DCs, EBV has been found to activate 
plasmacytoid DCs in a TLR9-dependent manner, and these 
cells limit outgrowth of EBV-transformed B cells in vivo 
(117). Therefore, both myeloid and plasmacytoid DCs 
sense EBV infection and probably contribute to NK cell 
activation for innate immune control of EBV. 
 
6. PERSPECTIVE 
 

Due to the studies discussed above, a new 
understanding of NK cell biology has emerged in recent 
years. This has revised our previous concept of NK cell 
function. From solitary killers, they have become team 
players interacting early with the main antigen-presenting 
cells, DCs, to reach their full functional potential. DC-
induced NK cell activation should be harnessed in 
immunotherapies against viruses and tumors, both for 
direct innate immunity and for polarization of adaptive 
immune responses. Along these lines, adjuvants for 
immunotherapy via DC activation should be chosen to 
allow NK cell activation in addition to efficient T cell 
priming by DCs. Vaccine formulations that stimulate NK 
cells in addition to T cells could ensure maintenance of 
MHC class I restriction elements on the targeted tissues and 
benefit from direct anti-viral and anti-tumor effects of NK 
cells responses as well as the assistance of NK cells in T 
cell priming. Such comprehensive immunotherapies, 
harnessing both innate and adaptive lymphocyte 
compartments, would mimic much better successful 
immune responses in humans (Figure 1). 
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