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1. ABSTRACT 
 

Macrophage recruitment and proliferation of both 
small vessels (endothelium and pericytes) and fibroblast-
myofibroblasts are the fundamental and provisional cellular 
findings in repair through granulation tissue 
(RTGT).Endothelium and pericytes of preexisting 
microvasculature may act as progenitor cells of new 
endothelial cells and new pericyte-fibroblast-
myofibroblasts, respectively.Likewise, fibroblasts may be 
progenitors of themselves, and of myofibroblasts and 
pericytes. Moreover, all these cells may originate from 
circulating progenitor cells or other progenitor 
cells..According to this extensive cellular plasticity, this 
work reviews the adult stem cells (ASC) and transit-

 
 
 
 
 

amplifying cells (TAC) related to the principal cellular 
components of RTGT.Moreover, we hypothesize that the 
perivascular region, with a heterogeneous pericyte-like cellular 
population, including pericytes, perivascular fibroblasts and 
homing cells from the bone marrow (fibrocytes and bone 
marrow mesenchymal cells), is the niche of progenitor cells in 
RTGT and the substrate of regulatory mechanisms 
(perivascular niche hypothesis).We also highlight RTGT as a 
“paracrine transitional organ” during involutive phenomena 
and cellular differentiation.Furthermore, we consider the 
combined role of both systems (ASC-TAC and RTGT) in 
tissue engineering and in pathological processes, such as 
fibrosis, organization, atherosclerosis, and tumor stroma. 
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2.INTRODUCTION 
 
2.1. ASC and TAC 
 Under normal physiologic conditions, the lost 
cells are replaced by means of a system comprising adult 
stem cells (ASC) and transit-amplifying cells (TAC), as 
well as the ASC niches, with their intrinsic and extrinsic 
regulatory mechanisms.ASC, able to self renew and to 
intervene in maintaining the structural and functional 
integrity of their original tissue, can express greater 
plasticity than traditionally attributed to them (1-5), 
adopting functional phenotypes and expression profiles of 
cells from other tissues (3, 4, 6-22).TAC are committed 
progenitors among the ASC and their terminally 
differentiated daughter cells.TAC, with more rapid though 
limited proliferation, low self-renewal and restricted 
differentiation, increase the number of differentiated cells 
produced by one ASC division.The ASC and TAC are 
located in one place, or structural unit (structural 
proliferative unit, for instance, the intestinal crypt).The 
ASC, in particular reside in a specialised physical location 
(for instance, between and immediately above Paneth cells 
in the small intestine crypt - 23), named niche (24-29), 
which constitutes a three-dimensional microenvironment 
where they are protected and controlled in their self-
renewing capacity and differentiation.Cell contacts with 
neighbouring cells (adherens junctions – cadherins and 
catenins) and with extracellular matrix (basal membrane – 
integrins), and the balance of stimulatory and inhibitory 
signals that regulate cell quiescence (epidermal and basic 
fibroblast growth factors, mytogenic cytokines and WNTS 
signaling, BMP/TGFβ) participate in this regulatory 
mechanism (30-36). 
 
2.2. Repair through granulation tissue 

After injury, ASC intervene in the replacement of 
damaged or dead cells with new healthy cells using 
reparative mechanisms.Classically, from a broad 
perspective, repair includes two types of processes: 
regeneration and repair through granulation tissue 
(RTGT).Both types of repair processes use similar 
mechanisms and, to a greater or lesser extent, appear 
combined.Regeneration occurs when dead, degenerated or 
damaged cells are replaced by other cells of the same 
type.Related to this form of repair are metaplasia (replaced 
by another different adult cell type) and dysplasia (replaced 
by cells that undergo atypical cytologic changes in their 
organisation, shape and size).By means of this procedure, 
the parenchymal cells of the tissues may be replaced in 
normal or pathological conditions.RTGT occurs by 
definition through granulation tissue: a provisional tissue 
with macrophage recruitment and proliferation of small 
blood vessels and fibroblasts-myofibroblasts.During 
RTGT, the following findings may occur: a) perfect 
reconstruction of the original tissue stroma, parallel to the 
regeneration of parenchymal elements; b) stroma formation 
of proliferative elements different to the original 
parenchyma, such as tumor stroma; c) total or partial 
replacement of the specialized parenchymal elements by 
permanent nonspecialized fibrous tissue (scarring); d) 
creation of new masses of fibrous tissue in blood clots or 
inflammatory exudates with fibrin deposits, by a process 

referred to as organization; and e) formation of other 
tissues, such as bone, cartilage and adipose. 
 
2.3. ASC and TAC in RTGT 
 The role of ASC and TAC in regeneration has 
been widely treated in several excellent original and review 
articles, while the role of these cells in RTGT has 
principally been considered separately in the various events 
of the latter.Since the formation of supporting stroma 
and/or of some tissues (bone, cartilage, adipose) from ASC 
can require similar mechanisms in tissue engineering to 
those in RTGT, an overall correlation of both systems, with 
a comprehensive review in this field (ASC in RTGT), is of 
interest.Furthermore, this would help to understand several 
RTGT-related pathological processes, such as thrombus 
organization, neoplasm growth and atherosclerosis.Given 
the above, the object of this article is to review the role, 
nature, location (niches) and regulatory systems of ASC 
and TAC that intervene in RTGT, and in its derived 
pathological processes. 
 
3.REGIONS WITH RTGT CAPACITY  
 
 The regions with RTGT capacity are the most 
ubiquitous in all repair.However, they have a common 
characteristic: the presence, in or near, of an active 
preexisting pericytic microvasculature, where the repair 
phenomena initiate.The latter originate above all in the 
venous side of the circulation, specifically in the 
postcapillary venules (37, 38).Therefore, this 
microvasculature forms part of a substrate of a general 
inflammatory-reparative system in which the vessels not 
only intervene in recruitment of inflammatory cells and in 
new capillary formation (angiogenesis), but they may also 
contribute matrix-forming cells (fibroblasts-myofibroblasts, 
osteoblasts, chondroblasts), and contractile and adipose 
cells.Vessels of greater caliber in the circulation, such as 
the rat femoral vein, with a discontinuous internal elastic 
lamina and smooth muscle cells in their media layer, are 
also capable of contributing to RTGT (39-42). 
 

The RTGT capacity of the regions has biological 
and clinical implications.In avascular tissues (e.g.cartilage 
and cornea), there is capacity of regeneration, but RTGT 
may only originate from neighbouring vascularized 
tissues.In this case, the intensity of RTGT component 
penetration into an avascular tissue depends on the 
properties of the latter (e.g.inhibitory action of 
antiangiogenic substances, as occurs in cartilage).In 
addition, the RTGT characteristics of a region may be 
conditioned by its regenerative capacity (interactions 
between regeneration and RTGT).For instance, in the 
central nervous system and cardiac muscle, where the 
regeneration is limited, the RTGT local precursor cells are 
generally involved in scar tissue replacement. 
 
4. EVENTS IN RTGT 
 

RTGT is a complex biological process that 
involves coagulation, inflammation, angiogenesis, 
proliferation of mesenchymal cells, vascular involution and 
remodelling.Despite the continuous and ordered nature of 
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the process, these findings occur in several overlapping 
phases, according to predominant mechanisms. 
 
5. INFLAMMATORY PHENOMENA ASSOCIATED 
WITH RTGT, WITH PARTICULAR REFERENCE 
TO RECRUITMENT OF CELLS AND RELEASE 
AND MOBILIZATION OF GROWTH FACTORS 

 
An inflammatory response, with vascular dilatation, 

increased vascular permeability, and diapedesis of 
leukocytes may precede and accompany the RTGT.Indeed, 
the association of several inflammatory cells of 
hematopoietic origin (hematopoietic stem cells) with the 
RTGT is a well-known fact (43-48).The cells that 
accumulate within the lesion compartment include 
neutrophils, lymphocytes, mast cells and 
macrophages.Between 1 and 6 h, the PMNs 
predominate.Thereafter, the number of monocytes/ 
macrophages increases, while the number of PMNs 
decreases dramatically.Several inflammatory mediators, 
such as vasoactive mediators and chemotactic factors, 
participate in these phenomena (49).Indeed, the signaling 
factors that begin the repair process, with intervention in 
inflammation and recruitment, migration, proliferation and 
differentiation of progenitor cells, include granulocyte 
colony-stimulating factor (G-CSF), granulocyte-monocyte 
colony-stimulating factor (GM-CSF), stem cell factor 
(SCF) 06), stromal cell-derival factor-1 (SDF-1), tumor 
necrosis factor-α (TNF-α), interleukin-8 (IL-8), 
erythropoietin (EPO), interleukin-10 (IL-10) and vascular 
endothelial cell growth factor (VEGF).Therefore, numerous 
intercellular signaling pathways mediated by surface 
adhesion molecules and cytokines intervene in the initial 
phases of the RTGT.To this is added mobilization, by 
proteinases secreted by inflammatory cells, of factors 
stored in the heparin-like glycosaminoglycans of 
extracellular matrix, such as TGF-β, FGF2 and VEGF (50, 
51). 
 
6.STEM CELLS AND RTGT  
 
 Overlapping with the inflammatory phenomena 
and cell recruitment, the formation of granulation tissue is 
initiated, and macrophages, vascular sprouts and fibroblasts 
progressively appear in the interstitium and move at the 
same time (52) between a provisional matrix, including 
fibrin, fibronectin and hyaluronic acid (53-55).Thereafter, 
concomitant proliferation of fibroblast/myofibroblasts and 
capillaries originates a highly vascularized granulation 
tissue, in which many different types of mesodermal stem 
cells, including endothelial precursor cells and multipotent 
adult precursor cells, may participate, which may even 
originate other cell lineages, such as chondroblasts, 
osteoblasts and preadipocytes.Bearing in mind the above, 
recruited inflammatory cells (macrophages, mastocytes, 
neutrophils and eosinophils), endothelial cells and 
mesenchymal cells, including, among others, matrix-
forming cells (fibroblasts-myofibroblasts, chondroblasts 
and osteoblasts), preadipocytes and precursor of arterial 
myointimal cells intervene in tissue undergoing repair and 
in maintenance of injured tissues during postnatal life.The 
mesenchymal cells can be tissue-derived stem cells and/or 

peripheral blood pluripotent stem cells (circulating 
progenitor cells), which form part of a system (for review, 
29) comprising adult stem cells (ASC) and transit-
amplifying cells (TAC), as well as the ASC niches, with 
their intrinsic and extrinsic regulatory 
mechanisms.Following, we will consider the progenitor 
cells related to the principal cellular components of this 
initial tissue: macrophages, vascular cells (endothelium and 
pericytes) and fibroblast-myofibroblasts. 
 
6.1. Macrophages and progenitor cells 
 Macrophages that help remove damaged cellular 
and extracellular debris, with the capacity to release 
numerous cytokines (vascular endothelial growth factor, 
platelet derived growth factor, α and β transforming growth 
factors, basic and acidic fibroblast growth factors, heparin-
binding epidermal growth factor) play a pivotal role in 
inflammation and repair (56).The origin of macrophages 
from bone marrow-derived peripheral blood monocytes has 
been accepted traditionally (57, 58).Admittedly, along with 
the bone marrow progenitors and blood monocytes, they 
form part of the mononuclear phagocyte system (59, 
60).Thus, predominantly in the initial phase of RTGT, 
monocytes are observed adhering to the endothelium of the 
parent vessels (Figure 1A and 1B), as well as passing 
through the endothelial junctions (Figure 1C and 1D) and 
the pericyte-endothelial space (Figure 2A, 2B and 
2C).Frequently, the monocytes/macrophages, either 
individually or in small clusters of two or three, 
simultaneously appear trapped between the EC and the 
pericytes, within the basal lamina (Figure 2A, 2B and 
2C).Although the hematopoietic cell lineage derived from 
progenitor cells in the bone marrow (committed myeloid 
progenitor cells) is evident, several issues are currently in 
question, such as: a) renewal and/or local proliferation, b) 
functional association and interactions with other cells, c) 
similarities between stem cells/progenitors and 
macrophages, and d) contribution of other cellular 
components to regeneration and RTGT via 
transdifferentiation and/or fusion. 
 
 The replacement and renewal of macrophages 
principally occur from monocyte recruitment.Recently, it 
has been found that a significant local proliferation (59, 60) 
and presence of tissue proliferating monocyte-like cells 
(61) are also involved in the replacement and renewal of 
macrophages. 
 
 Association between macrophages and other 
cells, such as endothelial cells, pericytes and 
fibroblast/myofibroblasts, is morphologically evident 
during RTGT (Figure 2D), suggesting interactive 
cooperation in migration, differentiation and functional 
activity. 
 
 Certain similarities between stem 
cells/progenitors and macrophages have been pointed 
out.Indeed, stem and progenitor cells share some 
characteristics of macrophages (62).For instance, adipocyte 
progenitors have certain phagocytic activity, and they can 
phagocytize microbes and apoptotic bodies (63, 
64).Likewise, preadipocytes and macrophage phenotypes 
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Figure 1. Recruitment of bone marrow-derived peripheral blood monocytes during RTGT.Monocytes (M) are observed adhering 
(arrows) to the endothelial cells (EC) of a capillary (Fig.1A) and of a postcapillary venule (Fig.1B), as well as passing through 
the endothelial junctions (Fig.1C and 1D.arrows). (Uranyl acetate and lead citrate, x15000).In Fig.1A a detail of the adherence is 
shown in the lower insert.The upper inserts correspond to semithin sections (Toluidine Blue, x1150) 
 
are very similar, and conversion of preadipocytes to 
macrophages has been described (65). 
 
 Regarding their contribution of other cellular 
components to RTGT, certain subpopulations of monocytes 
/macrophages may acquire endothelial properties in 

angiogenic conditions (66-74), and they have been 
observed organizing cell columns (tunneling) in vitro (75) 
and in vivo (75-78), suggesting that these cords could 
evolve into capillary-like structures (79, 80).In this way, 
monocytes / macrophages may also contribute to the 
control and regulation of neovascularization (75), enabling 
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Figure 2. Transmission electron photomicrographs showing association between macrophages (M) and pericytes (P) (Figs.2A, 
2B and 2C) and with a fibroblast/myofibroblast (MF) (Fig.2D) L: microvascular lumen.E: endothelium.The macrophages appear 
contributing to the detachment of the activated pericytes in parent vessels previous to vascular sprouts, during the initial phases of 
RTGT (Figs.2A, 2B and 2C).Later the perivascular cells associated with macrophages acquire fibroblast/myofibroblast 
characteristics (Fig.2D). (Uranyl acetate and lead citrate, x15000). 
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the penetration of vascular progenitor cells via their 
tunneling activity (75, 81).Similarly, cells with both 
endothelial and monocyte markers have been demonstrated 
in tumors (82).In the inflamed cornea, CD11b+ 
macrophages contribute to lymphangiogenesis, originating 
tube-like structures that express markers of lymphatic 
endothelium (83).Therefore, monocyte/macrophages 
express greater plasticity than traditionally attributed and 
they may contribute to other differentiated adult 
lineages.Whether this plasticity of bone marrow cells 
occurs by transdifferentiation, fusion or functional 
adaptation is a controversial issue.Numerous works suggest 
cell fusion between bone marrow and tissue-specific cells 
resulting in one mechanism, which gives rise to bone 
marrow-derived nonhematopoietic cells (84-88), after 
forming polyploid cells—heterokaryons—and, 
subsequently, 2 euploid cells by means of cytoreductive 
division (87-89).On the contrary, other works propose a 
transdifferentiation of bone marrow cells into tissue-
specific stem cells or intermediate progenitor cells (6, 90-
95).Along these lines, some authors indicate the possibility 
that the bone marrow-derived cells improve the function of 
different organs (6, 90, 92, 96), expressing the specific 
function of the tissue of residence.Furthermore, peripheral 
blood mononuclear cells may contribute to granulation 
tissue acquiring myofibroblast-like characteristics (74, 
97).The latter possibility will be addressed in other 
sections. 
 
6.2. Endothelium and pericytes (preexisting 
microvasculature and new capillaries), ASC and TAC 

Endothelium and pericytes of preexisting 
microvasculature have been described as progenitor cells of 
the granulation tissue cellular components (endothelium, 
new pericytes and fibroblasts/myofibroblasts).For their 
part, other ASC and TAC may be involved in the origin of 
endothelium and pericytes of new capillaries.Consequently, 
the endothelium and pericytes may be considered both as 
progenitors and/or as descendents. 
 
6.2.1. Endothelium, ASC and TAC 
6.2.1.1. Preexisting endothelium as progenitor cells  

Preexisting endothelium has been considered as 
the principal progenitor of new endothelium in 
angiogenesis.The latter is the neovascularization or 
formation of new blood vessels from the established 
microcirculation by a process of sprouting from preexisting 
vessels.The growth factors that activate endothelial cells 
(EC) include vascular endothelial growth factor and basic 
fibroblast growth factor, produced by macrophages and 
fibroblasts, among others.The events classically described 
during capillary growth in vivo include (38): a) EC and 
pericyte activation; b) degradation of the basal lamina of 
preexisting vessels by EC (proteolytic destruction of the 
extracellular matrix); c) EC migration from preexisting 
vessels towards the angiogenic stimulus; d) EC 
proliferation; e) migration and proliferation of pericytes 
from preexisting vessels; f) formation of a new capillary 
vessel lumen (vascular tube formation); g) appearance of 
pericytes around the new capillaries; h) changes in 
extracellular matrix with development of a new basal 

lamina; i) capillary loop formation; j) early changes in the 
newly-formed vessels (persistence, involution and 
differentiation); and k) capillary network formation and 
eventually organization of larger 
microvessels.Traditionally, it has been considered that 
blood vessels grow by means of a movement of EC 
(98).This fact of EC migration is currently considered an 
important step during angiogenesis (99) and is directionally 
regulated by chemotactic, haptotactic and mechanotactic 
stimuli.In the initial phase of neo-vascularization, the EC 
degrade the vascular basement membrane of the parent 
vessel, protrude through its wall and begin to migrate into 
the interstitial space towards the angiogenic stimulus 
(Figure 3A).This mechanism involves macrophage 
angiogenic factors, which stimulate plasminogen activator 
and procollagenase release by the endothelial cells, with 
basement membrane degradation by proteases (plasmin and 
collagenase).Most researchers agree that these changes 
precede endothelial replication in such a way that migration 
and mitoses are independent phenomena (100-102).In other 
words, angiogenesis begins with pseudopodia of migrating 
EC (Figure 3A) and progresses to the proliferation of these 
cells (103-107).Therefore, angiogenic stimuli may operate 
through chemotaxis, and EC mitosis may be a secondary 
event (100, 101,108).When the entire EC migrates into the 
interstitium, other EC follow and loose EC sprouts or cords 
are formed in the perivascular stroma (Figure 3B and 
3C).Mature endothelial cells, normally in a resting state, 
show an extremely slow turnover rate (109-112) of 2 
months or more.Thus, using 3HThymidine, the labeling 
index is lower than 1% in normal capillary and venular EC 
of the retina, liver (113), myocardium, stomach (113), 
striated muscle (113) and skin (113-116).For example, it is 
0.0.1 % in capillary EC in the adult rat retina.Since the 
turnover rates of EC are extremely low, angiogenesis is 
generally a quiescent process in the healthy adult organism 
(117).Nevertheless, the EC can quickly convert to a 
proliferative state during angiogenesis and in several 
related processes, such as endothelium repopulation in 
organ transplants, repair of large vessel defects and thrombi 
recanalization (115, 118).However, EC proliferation is not 
essential, since angiogenesis has been shown to take place 
even in the absence of EC replication (119).During 
angiogenesis, endothelial DNA synthesis occurs in parent 
vessels before sprouting and according to some authors as 
early as 6 to 8 hours after an angiogenic stimulus is applied 
(115).The increase of the turnover rate of EC can be 
considerable (Figure 3D).For example, the 3H-Thymidine 
labeling index of EC increases to 9% in tumors (120).The 
time and the exact site of EC division are controversial.For 
some investigators, EC mitosis appear concomitant with 
sprouting (119), while most authors are of the opinion that 
EC begin in mitosis after they start to migrate.The EC 
mitosis appears in both the parent vessels (Figure 3E) and 
the newly formed vessels.In the latter, it has been pointed 
out that they occur at the tip (43, 121), but it is accepted 
that when capillary sprout budding begins, endothelial 
proliferation takes place in cells following the "leader EC" 
(Figure 3E), but not usually at their tips.In other words, the 
zone of replication is closer to the parent vessel (99, 108, 
122-124).The ability of angiogenic stimuli to induce 
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Figure 3. Postcapillary venule and capillary preexisting endothelium as progenitor cells.Initial phase of neovascularization 
during RTGT.Activated endothelial cells (EC) degrade the vascular basement membrane of parent vessels (L: lumen of vessel) 
and begin to migrate into interstitial space (Fig.3A, arrow) and when the entire EC migrates into the interstitium other EC follow, 
originating loose sprouts or cords in the perivascular stroma (Fig.3B and 3C - arrows).A considerable increase of 3H-thymidine 
labeling is observed in EC (Fig.3D - arrows) and in perivascular cells (Fig.3D - arrowheads).Fig.3E shows a mitosis (M) in an 
EC of a parent vessel following the “leader” migrating ECs, which originate a cord in the perivascular stroma (arrow).Fig.A, B 
and D: Semithin sections (Toluidine Blue, x1150).Fig.C and E: Transmission electron photomicrographs (Uranyl acetate and lead 
citrate, x15000). 
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replication in confluent EC is associated with disruption of 
cell-cell contacts (125).The replicative state and its ability 
to respond to endogenous mitogens may depend on 
cytoskeletal organization, such as microtubule 
destabilization or changes in the cell shape (126).Finally, 
the collagen in the interstitium seems to have an influence 
on EC proliferation (127, 128). 

 
 On the other hand, transdifferentiation of 
endothelial cells into smooth muscle-like cells has been 
suggested (129, 130).Similarly, transformation of 
microvascular endothelial cells into myofibroblasts has 
been described in different circumstances (129, 131-136). 
 
6.2.1.2. Other endothelial cell precursors (Endothelium 
as descendent cells) 
 Postnatal neovascularization may also originate 
by a similar mechanism to vasculogenesis.The latter is the 
process by which some vessels develop in the 
embryo.Histogenically, vasculogenesis is defined as “in 
situ” capillary development from differentiating endothelial 
progenitor cells known as angioblasts.Until recently, blood 
vessel formation in postnatal life was only considered to be 
angiogenesis, which, though quiescent in the adult 
organism, may develop rapidly in several 
circumstances.Recently, numerous studies have contributed 
findings suggesting that endothelial stem cells may persist 
in postnatal life and may participate in neovascularization 
by means of a mechanism similar to vasculogenesis.In 
other words, the recruitment of cells during 
endothelialization or formation of new blood vessels in 
postnatal life may occur by migration of preexisting 
endothelial cells or by the incorporation of angioblast-like 
endothelial precursor cells from the circulation (Circulating 
angioblasts-CD-34+) (137). 
 
 Precursors of endothelial cells or endothelial 
progenitor cells (EPCs) have been described in bone 
marrow and peripheral blood (138, 139), with the 
possibility of homing to sites, differentiating into ECs in 
situ and contributing to new blood vessel formation (137, 
140-145).Growth factors, such as VEGF and macrophage-
colony stimulating factor, intervene in the recruitment of 
these cells (146, 147).In fact, multipotent adult progenitor 
cells cultured with VEGF differentiate into angioblasts 
CD34+, VE-cadherin+ and Flk1+ cells and subsequently 
into cells that express endothelial markers and that have in 
vitro functional characteristics indistinguishable from those 
of mature endothelial cells, able to form tubes and express 
markers of endothelial cells (148).Likewise, these cells can 
contribute to neoangiogenesis in vivo during RTGT and 
tumorigenesis (146, 148, 149).Thus, a higher population of 
endothelial precursor cells is associated with inflammatory 
breast tumors (150).Therefore, endothelial progenitor cells 
may contribute to support the integrity of the vascular 
endothelium by means of neoangiogenesis and rejuvenation 
of the endothelial monolayer (137, 151, 152).For instance, 
undifferentiated progenitor cells may participate in vascular 
remodeling from the recipient to the graft in heart 
transplants (153-155), although this concept is currently a 
matter of intense debate, since there are discrepancies in the 
rates of chimerism in damaged vessels and hearts (153, 

154, 156-159).Indeed, some authors indicate that the 
majority of the cells in the vessel wall are recipient-derived 
after aortic allografts (154, 160-162), cardiac 
transplantation (155, 160) or vein grafting (163).On the 
contrary, other authors have described minimal 
contribution from recipient cells.Thus, endothelial 
repopulation by bone marrow-derived recipient cells is 
found to be an early event in transplanted allograft hearts, 
which decreases in frequency over time (164). 
 
 Two types of endothelial progenitor cells in the 
peripheral blood have recently been described: the early 
EPCs (137, 165-167) or monocyte-derived circulating 
angiogenic cells (71, 168), and the late EPCs (166, 167, 
169) or outgrowth endothelial cells (OECs) (165, 170).The 
early EPCs are a heterogenous population, show early 
growth, express CD34, CD31, Flk-1, Tie-2, Ve-cadherin, 
KDR, CD14, CD105, vWF, CD45, CD11c, CD163, 
VEGFR-2 (71, 137, 165, 171, 172) and are incapable of 
tube formation (137, 165).They produce VEGF, IL-8, HGF, 
G-CSF (137, 173) and low level nitric oxide, and have a 
good angiogenic potential (137), although proliferative 
capacity is limited (173).The late EPCs or OECs are a 
homogenous population (137), show late outgrowth (137, 
165, 170), express Flk-1, vWF, CD36, Ve-Cadherin, CD31, 
VEGFR-2, Tie-2 (165, 170), and are capable of tube 
formation (137, 165).They have low level cytokine 
secretion (137) and high level nitric oxide production (137, 
165), and also have a good angiogenic potential (137) with 
highly proliferative capacity (143).The early EPCs 
predominantly originate from CD14+ precursors, while the 
OECs come from a CD14- population of cells 
(165).Recently, it has been pointed out that the level of 
circulating CD34+KDR+ endothelial progenitor cells 
predicts the occurrence of cardiovascular events and death 
from cardiovascular causes (174).Likewise, there may be a 
higher presence of restenosis when the circulating 
endothelial progenitor cells decrease (175).Furthermore, 
the numbers of circulating CD34+ and CD133+KDR+ 
endothelial progenitor cells increase after acute myocardial 
infarction (176), and there is impaired function of 
progenitor cells in patients with congestive heart failure 
(177).Mobilized peripheral blood mononuclear cells (easily 
non invasively obtained from the peripheral blood, with 
CD-34+ cells increased, and rich in angiogenic factors and 
cytokines), obtained from peripheral blood mononuclear 
cells after granulocyte colony stimulating factor 
intervention, have been effective in clinical application for 
severe arteriosclerosis obliterans of lower extremities and 
for severe diabetic foot ischemia (178-180). 
 
6.2.2. Pericytes, ASC and TAC 
6.2.2.1.Preexisting pericytes as precursor cells 

In addition to participating in the maintenance of 
blood vessel wall integrity, perivascular cells (pericytes, 
adventitial or Rouget cells, pericyte-like cells) (181, 182) 
retain considerable mesenchymal potentiality and may have 
the capacity to differentiate into other cell types (183-190), 
such as fibroblasts (47, 191), chondroblasts (192), 
osteoblasts (193-196), preadipocytes (191, 197), vascular 
smooth muscle cells and myointimal cells (198, 199).In the 
initial phases of RTGT, the pericytic microvasculature 
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undergoes a sudden, brief and intense pericyte proliferation 
(37).In this way, autoradiographic studies show an 
increased amount of label in pericytes of postcapillary 
venules and capillaries (Figure 3D) (37, 101, 114, 115, 200, 
201).Besides, sequential morphologic findings in the 
pericytes during the initial phase of granulation tissue 
formation agree with the hypothesis that pericytes may be 
an important source of new fibroblasts (129, 183).These 
sequential morphologic findings include: a) the pericytes, 
bulging from preexisting vessels, shorten their processes 
and increase their somatic volume (Figure 2B and 2C and 
4B); b) the nuclei contain prominent nucleoli and their 
cytoplasms show numerous ribosomes, either singly or in 
aggregates (Figure 2B and 2C); c) multiple profiles of 
rough endoplasmic reticulum are observed (Figure 2B and 
2C); d) the pericyte basal lamina is frequently disrupted 
and fragmented; and e) numerous pericytes project into the 
extravascular space, appear detached from the vessel walls 
and adopt transitional cell forms between themselves and 
fibroblast-like cells (Figure 2D) (37).As mentioned above, 
the migrating monocytes contribute to the detachment and 
mobilization of the activated pericytes in the pre-existing 
pericytic microvasculature (Figure 2A, 2B and 2C). 

 
 Using Monastral Blue as a tracer for labeling 
cells in the walls of pericytic microvasculature, the marker 
was first observed in pericytes (Figure 4A) and 
subsequently in pericytes bulging from preexisting vessels 
(Figure 4B, 4C and 4D), and in fibroblast-myofibroblasts 
(Figure 4E and F) during granulation tissue formation (37), 
as well as in chondroblasts (202) (Figure 4G), osteoblasts 
(Figure 4H) (195) and myointimal cells after specific 
induction (203, 204). 
 
 Moreover, cells specifically expressing known 
markers of pericytes also express markers characteristic of 
stem cell population (205).Endosialin, which may be a 
marker of mesenchymal stem cells, has been identified in 
activated myofibroblasts and pericytes (206, 
207).Mesenchymal stem cell populations have been 
described residing in the microvasculature of the tissue 
origin (perivascular niche) (29, 37, 183, 189, 192, 199, 
208-211).Thus, the majority of dental pulp stem cells 
express pericyte associated antigen (208) and co-express 
Notch 3 (regulating stem cell fate specification) and RgsT 
(marker for pericytes) (209), suggesting a perivascular 
niche of postnatal mesenchymal stem cells.Likewise, a 
population of multipotent CD34-positive, adipose stromal 
cells shares pericyte (chondroitin sulfate proteoglycan, 
CD140a and CD140b) and mesenchymal (CD10; CD13 
and CD90) surface markers (212).Although the 
mechanisms controlling pericyte differentiation are poorly 
defined, Wnt/beta-catenin signaling stimulates 
chondrogenic and inhibits adipogenic differentiation of the 
pericytes (213). 
 
 In soft tissue lesions, some authors consider 
pericytes as the progenitor cells of several 
pseudosarcomatous processes (214, 215), malignant fibrous 
histiocytoma (216) and mixoid liposarcoma (217).Pericytes 
and endothelial precursor cells are also important 

participants among the many cells that give rise to 
progressing malignant disease (218). 
 
6.2.2.2. Other pericyte precursors (pericytes as 
descendent cells) 
 Recruitment of pericytes to newly formed vessels 
from fibroblast and bone marrow progenitor cells has been 
described (these progenitors will be considered in sections 
6.3.1. and 6.3.2.Here we present the controversy about the 
participation of the bone marrow in pericyte and 
endothelial cell origin). 
 
 Although bone marrow progenitor cells can be 
recruited during the formation of new vessels and 
vasculature, remodelling (219-221), there is controversy 
about their participation in pericyte and endothelial cell 
origin.As mentioned above, using neovascularization 
models, several authors point out those BM-derived 
precursors give rise to endothelial cells (146, 150, 222-
224); while others have proposed that bone marrow, 
precursor cells only develop pericytes but not endothelial 
cells (219-221).Recently, it has been indicated (221) that 
new corneal vessels have a dual source: bone marrow-
derived precursor cells (53% of all neovascular pericytes) 
and pre-existing limbal capillaries (47% of all neovascular 
pericytes).Of the bone marrow-derived pericytes, 96% 
expressed CD45 and 92% CD11b, which suggested their 
hematopoietic origin.Using mouse chimera in brain repair 
after ischemia (225), two populations of bone marrow-
derived cells were observed: one in the brain parenchyma 
(predominantly microglia) and another associated with 
remodeling blood vessels in perivascular location.The latter 
were negative for endothelial cell markers, but expressed 
desmin and were immunoreactive for angiogenic factors, 
endothelial growth factor and transforming growth factor 
beta, suggesting pericytes.Mobilization and recruitment of 
bone marrow-derived pericyte progenitor cells have also 
been described in tumors (219, 226, 227).Evidence that 
mature vessels develop from pericyte/macrophages 
networks and that almost all macrophages and more than 
half of the pericytes derived from the bone marrow have 
been shown using subcutaneous matrigel plugs (81).By 
contrast, only 10% of endothelial cells exhibit a bone 
marrow origin (81). 
 

Pericyte progenitor cells have been described 
from non-endothelial mesenchymal cells isolated from the 
rat aorta.The latter, cultured in a serum-free medium with 
fibroblast growth factor, proliferated slowly and formed 
spheroidal colonies, expressing CD34, Tie-2, NG2, nestin 
and PDGF α and β receptors.When cocultured in collagen 
with isolated endothelial cells, they transformed into 
pericytes (228). 
 
6.3. Fibroblast/myofibroblasts, ASC and TAC 

The origin of the heterogeneous population of 
fibroblast/myofibroblasts, which respond to mediators of 
inflammation and intervene in the integrity of the tissues, 
and in the production (matrix-synthesizing cells), 
deposition and degradation (matrix-degrading cells) of 
extracellular matrix proteins, in contraction 
(myofibroblasts) to reduce the size of the wound, in growth 
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Figure 4. Pericytes as progenitor cells.Monastral Blue (arrows) labeled pericytes (P) in preexisting postcapillary venules (L: 
Lumen; EC: endothelial cells) are observed (Figs.4A, 4B, 4C and 4D).Bulging pericytes shorten their processes, increase their 
somatic volume and appear detached from the vessel wall (Fig.4B, 4C and 4D).Subsequently, the marker is observed in 
fibroblast-myofibroblasts during granulation tissue formation (Figs.4E and 4F), and in chondroblasts (C) (Fig.4G) and osteoblasts 
(O) (Fig.4H - OST: osteoid) after specific induction.Fig.4A, 4B, 4C, 4E, 4G and 4H correspond to semithin sections (Toluidine 
Blue, x1150) and Figs 4D and 4F to ultrathin sections (Uranyl acetate and lead citrate, x12000). 

 
factor secretion and in the proliferation and differentiation 
of other cells (229-232), may be from tissue-derived stem 
cells and/or peripheral blood pluripotent stem cells 

(circulating progenitor cells).Among the principal putative 
progenitor tissue cells are the fibroblasts themselves and 
the pericytes.According to the outline of this work, below 
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we will consider the fibroblasts as precursor or descendent 
cells. 
 
6.3.1. Preexisting fibroblasts as precursor cells 

A conventional hypothesis is that local relatively 
quiescent fibroblasts around the injured tissue migrate, 
proliferate and originate the new activated fibroblasts and 
myofibroblasts, with extracellular matrix protein production 
and wound contraction (233-235).Therefore, fibroblasts, 
normally involved in their quiescent state in slow turnover of 
the extracellular matrix (primary producers of type I, III and V 
collagen and fibronectin, contributors of the basement 
membrane by secretion of laminine and type IV collagen, and 
with remodelling capacity by means of fibroblast-derived 
matrix metalloproteinases) undergo a change in phenotype to a 
proliferative, synthetic (Figure 5A) and contractile state 
(myofibroblasts) (Figure 5B) (236).Indeed, in the margin of 
lesions, the resting fibroblasts proliferate, express integrin 
receptors (that bind fibronectin and fibrin on fibroblasts - 55, 
237), migrate (by means of an active fibroblast-derived 
proteolytic system, including collagenases, gelatinase A, 
plasminogen activator and stromelysin - 238, 239) and 
differentiate into myofibroblasts, with extracellular matrix 
protein production (240, 241), secretion of growth factors and 
chemotactic factors, migration, contraction (production of 
alpha smooth muscle actin) (235) and parenchyma interactions 
(dynamic cross-talk between fibroblasts and parenchyma 
cells).The myofibroblasts temporarily acquire their expression 
of α-smooth muscle actin, which disappears progressively 
(between 15 and 30 days).It is generally accepted that 
collagen deposition continues long after myofibroblasts 
decline.Therefore, myofibroblasts are temporarily activated 
before collagen producing fibroblasts (232).Growth factors, 
such as transforming growth factor β1 (242) and platelet 
derived growth factor (243), contribute to activate the local 
fibroblasts.In this way, other cells may influence their 
proliferation, differentiation, extracellular matrix synthesis and 
survival.For instance, adipose-derived stem cells have the 
capacity to promote human dermal fibroblast migration, 
proliferation, and secretion by cell-to-cell direct contact and by 
paracrine activation through secretory factors, such as PDGF, 
insulin-like growth factor, bFGF, TGF-β, HGF and VEGF 
(244).As mentioned above, endosialin, a marker of 
mesenchymal stem cells, is expressed by myofibroblasts and 
pericytes (206). 

 
Induced pluripotent stem cells (IP cells) can be 

generated from adult human fibroblasts (245).Indeed, cells 
similar to human embryonic stem cells in morphology, 
proliferation, surface markers, gene expression, promoter 
activities, in vitro differentiation, telomerase activity and 
teratoma formation were generated from adult human 
fibroblasts by retrovirus-mediated transfection of four 
transcription factors: Oct3/4, Sox2, c-Myc and Klf4 
(245).Therefore, IPS cells can be derived from somatic 
cells and may thus lead to important drug discoveries and 
advances in regenerative medicine (246). 
 
6.3.2. Other fibroblasts/myofibroblasts precursors 
(fibroblasts/myofibroblasts as descendent cells) 

Although RTGT fibroblast/myofibroblasts 
originally derive from resident tissue fibroblasts in the 

proximity of the RTGT (55, 237), this possibility does not 
preclude that pericyte, bone marrow derived cells or other 
transdifferentiated cells contribute to their heterogenous 
fibroblast/myofibroblast population (247).The origin from 
pericytes has been previously considered (section 
6.2.2.1.).The bone marrow precursors, bone marrow 
mesenchymal cells and fibrocytes, will be discussed below. 

 
 Since 1970, fibroblast colony formation from 
monolayer cultures of bone marrow and blood cells 
(fibroblast colony-forming units) has been demonstrated 
(248-251), evidencing a bone marrow origin for 
fibroblasts.A rare cell within human bone marrow 
mesenchymal stem cell culture (multipotent adult 
progenitor cells or MAPCs) has been identified (148, 251-
253) and immature mesenchymal cells derived from the 
bone marrow appear to be constantly repopulating normal 
and injured connective tissues (254-255).In general, bone 
marrow mesenchymal AS cells are located in the complex 
system of the bone marrow stroma (bone marrow stromal 
cells), and they can be isolated by means of Stro-1+ 
antibody recognition (256, 257).These cells have the 
capacity to differentiate into mesenchymal lineage cells 
and, with appropriate environmental conditions into cells of 
different embryonic origin, such as cells with visceral 
mesoderm, neuroectoderm and endoderm characteristics.In 
other words, these cells have high capacity of 
transdifferentiation and plasticity (20, 258-260).Indeed, the 
bone marrow mesenchymal cells may differentiate 
phenotypically into adipose, cartilage, bone, vascular 
smooth muscle, skeletal and cardiac muscle, hepatocytes, 
neural elements and hematopoietic-supportive stromal cells 
(6, 9, 15, 17, 147, 260-268).Epidermal growth factor is 
considered as a candidate for ex vivo expansion of bone 
marrow-derived mesenchymal ASC (269).Transcription 
factors, which regulate the expression of the differentiation 
genes of the aforementioned cells, participate in this 
differentiation process.For example, C/EBP and PPARγ 
families and other transcription factors intervene in 
adipocyte (270, 271) and Cbfa1/Runx2 in osteocyte (272, 
273) differentiation.Besides, there are regulation control 
mechanisms such as hormones and growth factors.Using 
bone marrow mesenchymal ASC, alveolar bone cells and 
periosteal cells for tissue-engineered bone formation, it has 
been demonstrated that the periosteal cells originate 
approximately double the amount of newly formed bone 
than bone marrow mesenchymal cells (274).Other sections 
of this work describe the role of transplanted bone marrow 
cells in organ and solid tissue regeneration. 
 

A bone marrow-derived circulating population of 
mesenchymal progenitors, termed “fibrocytes” (275-279) 
or “fibrocyte precursors”, which rapidly enter sites of tissue 
injury, was identified a decade ago (275).Subsequent 
studies have demonstrated that these cells express markers 
of leukocytes (CD45, LSP1), monocyte lineage (CD11a, 
CD11b, CD13, CD32, CD64), as well as hematopoietic 
stem cell/progenitor antigens (CD34, CD105) and 
fibroblast products (collagen I and III, fibronectin, vimentin 
MMP9) (275-288).Adherent cultured fibrocytes develop a 
spindle-shaped morphology (275) and express MHC, class 
II and co-stimulatory molecules (CD80 and CD 
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Figure 5. Activated fibroblasts (Fig 5A) and myofibroblasts (Fig 5B) during granulation tissue formation.The rough endoplasmic 
reticulum is well developed in both.A bundle of cytoplasmic microfilaments (arrow) with dense bodies is observed in a 
myofibroblast.Transmission electron photomicrographs (Uranyl acetate and lead citrate, x15000). 

 
86).Recently, it has been pointed out that CD34+ 
fibrocytes, which are present in the connective tissue of 
virtually all human organs, derive from circulating CD14+ 
monocytes (289).These cells secrete numerous cytokines 
and have the property of expressing smooth muscle actin, 
while retaining CD34 expression, when they acquire 
myofibroblast-like differentiation (277).These cells have 
the ability to present antigen in vitro and in vivo (276, 
280, 290), and cultured fibrocytes in vitro and in vivo 
facilitate angiogenesis by means of proteolysis of the 
basal lamina (secretion of active matrix 
metalloproteinase 9-MMP-9) and by secretion of growth 
factors, such as VEGF, β FGF and PDGF (291).As we 
shall see below, fibrocytes intervene in development of 
fibrotic lesions, connective tissue disease, 
atherosclerosis and in tumor stroma formation.On the 
other hand, the use of marrow-derived stem cells as a 
therapeutic procedure has been considered, for instance, 
to accelerate healing in chronic ulcers (292). 
 
 An immunosuppressive effect on adult dendritic 
cells differentiated from CD 34+ hemopoietic progenitor 
cells has been contributed, suggesting that mesenchymal 
stem cells license adult CD34+ hemopoietic progenitor 
cells to differentiate into regulatory dendritic cells through 
activation of the Notch pathway (293). 

Another postulated origin is that epithelial cells 
undergo epithelial to mesenchymal transdifferentiation (see 
below). 
 
7. INVOLUTIVE PHENOMENA.RTGT AS A 
“PARACRINE TRANSITIONAL ORGAN” 
 

Several components of the granulation tissue 
undergo involution, which is highly evident in the newly 
formed vessels.Indeed, angiogenesis ceases and most of the 
endothelial cells disintegrate drastically because of 
apoptosis, only persisting the preferential vasculature.In 
this mechanism intervene antiangiogenesis factors 
(angioprotein, angiostatin and endostatin) (294) and 
thrombospondins 1 and 2, among other matrix molecules 
(295).At first, the numerous disintegrating vessels show 
marked intravascular accumulation of factor-releasing 
platelets (platelet thrombus) (Figure 6A, 6B, 6C, 6D and 
6E), and the granulation tissue becomes a “paracrine 
transitional organ”.Subsequently, homogenized platelets, 
endothelial cell debris and basal membrane residues are 
observed (Figure 6F, 6G and 6H).The fibroblasts acquire 
myofibroblast phenotype, with cytoplasmic actin-
containing filaments and cell-matrix and cell-cell linkages 
(296), intervening in tissue contraction, collagen synthesis 
and catabolism of collagen in combination with matrix 
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Figure 6. Involution phenomena in most of the newly-formed vessels during RTGT, with intravascular accumulation of factor-
releasing platelets.RTGT as a “paracrine transitional organ”.In semithin sections, platelet thrombus (P) and accumulates of red 
cells (R) are present in numerous disintegrating vessels during the involution of several components of the granulation tissue 
(Figs.6A, 6B, 6C and 6D, x1500).Figs.6E, 6F, 6G and 6H show ultrastructural images of different stages of the involutive vessels 
(E: Endothelial cells, P: Platelets).Fig.E: Recently aggregated platelets.Fig.F: Homogenized platelets in the vascular lumen, Figs 
6G and 6H: disintegrating endothelial cells with cellular debris (membrane body - arrow), basal membrane aggregate and 
persistent pericytic cells (PC) are observed.Transmission electron photomicrographs (Uranyl acetate and lead citrate, x15000). 

 
metalloproteinases and inhibitors of metalloproteinases 
(297). 
 
8. RTGT AND CELLULAR DIFFERENTIATION, 
DEDIFFERENTIATION, 
TRANSDIFFERENTIATION AND FUSION  
 

As mentioned above, the putative cells with the 
capacity to originate myofibroblasts during RTGT, such as 

fibroblasts, pericytes and marrow stromal cells, can give 
rise to other cell lineages and differentiate “in vitro” and 
“in vivo” into osteoblasts (Figure 4H), chondroblasts 
(Figure 4G), preadipocytes (Figure 7), or smooth muscle 
cells by means of growth factors and specialized induction 
(183, 195, 202, 204, 298-307).This generalized system may 
complete the repair from locally resident mesenchymal 
cells that provide tissue-specific progeny, such as adipose, 
muscle, periostium, trabecular bone, synovium and dermis-
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Figure 7. In semithin and ultrathin sections, adipoblasts (AD), with lipidic vacuoles (LP), are observed around newly-formed 
vessels (V) near endothelial cells.In Fig.7C, the adipoblast appears enveloped by a long thin process of a pericyte (P).In Fig.7D, 
different stages of adipoblast developments, suggesting a pericytic origin, are observed with transitional cells (TC) between 
both.Figs.A and B: Semithin sections, (Toluidine Blue, x1500).Figs C and D: Transmission electron photomicrographs (Uranyl 
acetate and lead citrate, x15000). 

 
derived mesenchymal cells (195, 303).Furthermore, these 
mesenchymal cells are highly plastic and they may also 

produce progeny of endodermal and ectodermal lines (20, 
258, 271, 308, 309).Cell contacts with neighbouring cells 
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and cell environment interactions intervene in the cellular 
differentiation (see above).On the other hand, 
differentiation may not entirely be a unidirectional process 
during RTGT and dedifferentiation leads to the reversion 
towards a more immature phenotype.For instance, by 
means of reversine, myotubes may undergo 
dedifferentiation back into progenitor cells, which may 
originate osteoblasts or adipocytes (310).Likewise, without 
reverting to a more primitive phenotype, mesenchymal 
stem cells may be capable of transdifferentiating into 
various phenotypes including astrocytes and neurons (12, 
16, 311-315).Finally, cell fusion may occur, although it 
seems to be biologically irrelevant for its extreme rarity 
(316), except for macrophages, which are able to fuse 
among themselves and with other cell types (317). 
 
9.  ASC, RTGT AND TISSUE ENGINEERING 
 

Future directions of research in tissue engineering 
include the development of multi-tissue organs, imitating 
what occurs during embryonic development and in adult-
life repair processes.Indeed, in embryonic development, a 
bidirectional molecular dialog between parenchymal cells 
and stromal cells is necessary for normal organ 
development and function (318-321).In adult life, the repair 
process reproduces these interactions between regenerative 
elements (parenchyma) and RTGT components (stroma).In 
this way, RTGT lend the regenerative parenchyma 
morphofunctional support and facilitate a multistep 
mechanism, involving angiogenesis and organization by 
recruitment of fibroblast-myofibroblasts and by producing 
and remodeling extracellular matrix components.For 
instance, in skin wounds, fibrin clot forms a provisional 
scaffold for cell migration, proliferation and 
differentiation.In tissue engineering, parenchyma-stroma 
interactions similar to RTGT appear to be essential and 
they may play an active and instructive role in 
programming the final tissue structure and function.In other 
words, it is necessary to develop prototype tissue 
engineered matrices to support the simultaneous growth of 
different cell types (322) and a rapid induction of angiogenesis 
(322-327).The strategies in tissue engineering may utilize: a) 
cell suspensions or cell-sheets, b) biomolecules, c) matrices in 
combination with cells and/or biomolecules, and d) 3-D 
environments or scaffolds with seeding and culturing specific 
cell types (328).The scaffolds for tissue engineering should 
have several properties, such as degradability, 
biocompatibility, non-immunogenicity, easy reproduction and 
the possibility to incorporate and deliver bioactive molecules 
(growth factors, peptides, lyophilized cell fractions, 
etc.).Among these conditions are the mechanical properties, 
since stiff or soft scaffolds may be used.For instance, the latter 
are more suitable for adipose tissue engineering (329, 330).In 
addition, in these strategies, it is fundamental to promote 
regeneration and repair.Indeed, optimum procedures, 
combining scaffolds, cells and/or biomolecules, should be 
capable of inducing adhesion, migration, proliferation, 
differentiation, angiogenesis and production of new 
extracellular matrix, in a manner similar to that which 
occurs during regeneration and RTGT, in which the process 
results in the formation of new structures that reproduce the 
original morphology and function. 

10.  ASC AND RTGT IN PATHOLOGY 
 
10.1. ASC, Organization, abnormal RTGT and Fibrosis 
 Examples of organization are the creation of new 
masses of fibrous tissue in blood clots or inflammatory 
exudates with fibrin deposits through granulation tissue 
(331).Thus, organization of thrombus initiates with leukocyte 
and macrophage infiltration (inflammatory stage), followed by 
neovascularization, and fibroblast/myofibroblast proliferation 
(proliferative stage) and progressive collagen deposition and 
contraction, while myofibroblasts decline (contraction stage) 
(332).To this can be added microvascular involution, 
persistence of preferential vessels and 
recanalization.Monocytes/macrophages play a central role 
in thrombus organization (333).For example, the gene for a 
chemokine link to macrophage activation CXCL14 is 
upregulated (332). 
 
 Abnormal RTGT may occur by defect or 
excess.An example of deficient RTGT are diabetic ulcers, 
in which ASC descendents are modified in their 
proliferation, differentiation and functional activity, with 
impaired neovascularization, increasing levels of 
proteinases and decreasing synthesis of collagen.Several 
factors are involved in these modifications, such as 
vascular disease with subsequent ischemia (anoxia and 
reducing nutrients), impaired granulocytic chemotaxis and 
function with infections and prolonged inflammation, 
associated neuropathy and defective macrophage function 
(334, 335). 
 
 Examples of excessive RTGT are hypertrophic 
scars and keloids with higher collagen production in which 
several factors intervene, such as increased and exaggerated 
responses to fibrogenic cytokines (enhanced expression of 
TGF-β, mRNA (336), mutations in regulatory genes and 
abnormal epidermal mesenchymal interactions - 337, 338-
).Fibrocytes also contribute to the fibroblast population in 
these lesions (281, 339). 
 
 Examples of fibrotic lesions are idiopathic 
pulmonary fibrosis and systemic fibroses in which an 
important contribution of bone marrow-derived cells in the 
early stages has been pointed out (276, 287, 288, 340-
343).Evasion of myofibroblasts from immune surveillance 
has been proposed as a mechanism for tissue 
fibrosis.Indeed, this mechanism may occur since 
myofibroblasts possess Fas/Fasl-pathway-dependent 
characteristics that allow them to escape from immune 
surveillance and resulting organ fibrosis (345).Recently, 
transformation of microvascular endothelial cells into 
myofibroblasts has been considered as having a potential 
role in the etiology and pathology of fibrotic disease (136, 
346). 
 
10.2. ASC, RTGT and atherosclerosis 
 In atherosclerosis, as in RTGT, inflammatory 
phenomena precede and accompany the process, quiescent 
cells are induced to proliferate rapidly, new blood vessels 
are formed, stromal cells migrate, the extracellular matrix is 
invaded, the new tissue is remodeled and the same factors 
initiate and regulate the process.In this way, the cellular 
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events in the formation of atherosclerotic lesions after 
injury include regeneration of endothelial monolayer, 
infiltration of monocyte cells and myointimal cell 
proliferation (347).The regeneration of the endothelial 
monolayer may have the same sources as those previously 
described for neovascularization, namely, by migrating and 
proliferating preexisting neighbouring endothelial cells or 
by circulating progenitor endothelial cells  (bone marrow-
derived cells expressing CD133 or CD34 - 137, 139, 142-
)(see above). 
 
 The traditional hypothesis is that myointimal cells 
in atherosclerotic lesions are derived from the medial 
smooth muscle cells (348-351), which migrate from the 
media into the intima, acquiring a synthetic phenotype with 
matrix synthesis.This hypothesis is now shrouded in doubt 
and the myointimal cell origin remains the subject of 
ongoing debate, since myointimal cells may be considered 
from a variety of sources (352).Indeed, the following 
possibilities may be considered: arterial media layer origin 
(SMCs and SMC related cells), adventitial progenitor cells 
and bone-marrow-derived circulating cells. 
 
 The hypothesis of arterial media layer SMC 
origin (348, 349, 351, 353-365) is based on the following: 
a) the cells present in the intimal thickening (myointimal 
cells - neointimal SMC cells) correspond in appearance to 
smooth muscle cells (348, 354, 355, 357-360, 362-364, 
366), b) these myointimal cells show the same early 
enzymatic reaction as cells of the innermost third part of 
the media layer (356, 361), c) muscle cells from the media 
layer have been observed crossing the “gaps” of the 
internal elastic lamina, suggesting a capacity to move 
through this membrane (354, 357, 363, 366), and d) 
tritiated thymidine incorporates in the internal zone of the 
media layer, prior to appearing in the intimal layer (353, 
367).Nevertheless, differences between media and 
neointimal SMC cytoskeletal features, growth pattern, 
responses to growth factors /cytokines and matrix 
synthesis/degradation have been described (368).An origin 
of myointimal cell from a preexisting and distinct 
subpopulation of the media layer SMC has also been 
pointed out (369). 
 
 The hypothesis of adventitial progenitor cells 
(199, 203, 204, 370-376) is based on the following: a) In 
autoradiographic studies on the incorporation of 3H-
thymidine, during intimal thickening developing in 
occluded arterial segments, DNA synthesis was first seen in 
the adventitia, fundamentally in the vasa-vasorum 
pericytes, later in the adjacent media and subsequently in 
the intimal thickening (Figure 8A, 8B and 8D) (199), with 
contribution of myofibroblasts to neointimal formation 
(377).Coronary adventitial fibroblasts display proliferation, 
collagen synthesis and phenotypic heterogeneity in 
response to stimulation, whereas medial SMCs maintain a 
highly differentiated phenotype (371).Abundant progenitor 
cells expressing stem cell markers (Sca-1; C-kit; CD-34 
and FlK-1) are present in the adventitia (372, 374) and can 
differentiate into myofibroblasts, migrate to arterial media 
or intima layers and differentiate into SMCs (372, 374, 
376).Sca-1+ cells obtained from explanted cultures of 

adventitial tissues and transferred to the adventitial side of 
vein grafts were found in atherosclerotic lesions of the 
intima (372).The adventitia may contribute progenitor cells 
from the interstitium (fibroblasts) or from the vasa-
vasorum.When human vascular adventitial fibroblasts were 
cultured in appropriate media, they showed myogenic 
differentiation, with increased expression of smooth muscle 
actin and calponin (378).Regarding vasa-vasorum, 
microvessel penetration into the arterial wall from the 
adventitial layer has been observed in atherosclerosis, not 
only in its later stages, but also in the earliest stages of its 
precursor lesions, such as intimal thickening (Figure 8C, 
8E, 8F, 8G, 8H, 8I and 8J) (41, 199).This initial response 
may be considered as a particular form of granulation tissue 
formation and is followed by a rapid microvascular 
involution.In this way, it has been postulated that arterial 
intimal thickening results from a similar mechanism to that 
of the organization of thrombus, with subsequent events 
depending on whether or not the arterial circulation has 
been interrupted.On interruption, there is both a penetration 
of the vasa-vasorum and a myointimal differentiation from 
the adventitial recruited cells (pericytes, fibroblasts or 
circulating progenitor cells), whereas when the arterial 
circulation has remained unchanged there is no vasa-
vasorum penetration and the intimal thickening originates 
from recruited cells migrating from the arterial vasa-
vasorum and adventitia (199, 204).Using a technique that 
specifically labels venules, predominantly postcapillary 
venules, in addition to recruited macrophages, newly 
formed endothelial cells and a supplementary population of 
fibroblast- myofibroblasts and myointimal cells were 
contributed from the periarterial microvascularization 
during arterial intimal thickening formation (204).The 
fibroblasts and the vasa-vasorum pericytes are the principal 
candidates in adventitial participation in the arterial 
myointimal cells (199, 372, 374, 376).The aberrant 
differentiation of pericytes may contribute to the 
development and progression of atherosclerosis and calcific 
vasculopathies (213). 
 
 The hypothesis of bone-marrow-derived 
circulating cells is based on the presence of marrow stromal 
cells as stem cells for non-hematopoietic tissues (379) and 
on the discovery of circulating fibrocytes as collagen-
producing cells of the peripheral blood (287, 380), which 
appear in the fibrous cup and in lipid-rich areas of human 
and experimentally-induced atherosclerotic plaques (381-
384).Indeed, bone marrow provides inflammatory cells 
(lymphocytes and monocytes that become foam cells) and 
myofibroblast/myointimal cells, whose balance affects 
plaque stability (385, 386).These precursor cells have been 
considered in other sections of this paper.In this order, 
bone-marrow-derived mesenchymal cells can serve as a 
new cell source of smooth muscle cells in vessel 
engineering (387).Likewise, repopulation of endothelium 
and medial smooth muscle cells from both circulating and 
adjacent ends of non-affected artery cells has been 
demonstrated in rat patent arterial segments devoid of 
mural cells (adventitial, smooth muscle and endothelial 
cells) by local application of glycerol (Figure 9A) (42).The 
morphologic events in the early stages of cellular 
recruitment is reminiscent of those occurring in granulation 
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Figure 8. Adventitia contribution to intimal thickening (IT) formation.In autoradiographic studies with 3H-thymidine, expression 
of DNA synthesis (arrows) is first seen in the adventitia (AD) (Fig.8A, HE, x120) and subsequently in the media layer (ML) and 
in the intimal thickening (IT). (Fig.8B, HE, x120) L: Arterial lumen.Microscopic image of microvessel penetration from 
adventitial microcirculation crossing the arterial medial layer (arrows) and reaching the intimal thickening (Fig.8C, HE, x160).In 
Fig.8D (HE, x160) 3H-labelled cells are observed in a microvessel penetrating the media layer and in cells of the intimal 
thickening.Using a contrast technique, microvessels penetrating arterial media layer are clearly observed (arrows) in stereoscopic 
images (Figs.8E-8F, x60) in transillumination images (Figs.8G and 8H, x120) and in series of microscopic images (Figs.8I and 
8J, HE x160). 
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tissue, with the following steps: a) reendothelialization 
(Figure 9A), apparently from adjacent ends of non-affected 
artery; b) presence of monocytes between endothelium and 
internal elastic lamina (Figure 9B); c) migration towards 
the media layer of monocytes and endothelial cells, 
crossing the elastic internal lamina fenestrations (Figure 
9C); d) formation of vascular channels with endothelial and 
mural cells in the innermost area of the media layer with 
continuity between arterial lumen endothelial cells and 
those in tunnelized structures (Figure 9D); e) involution of 
the newly-formed vascular channels, presenting platelets 
and red cells in their lumens (Figure 9E) and, 
simultaneously, proliferation of spindle cells, which finally 
repopulate the arterial media layer acquiring smooth 
muscle cell phenotype (Figure 9F). 
 
10.3. ASC, RTGT and tumor stroma  
 The tumor stroma is a major factor influencing 
the growth and progression of cancer (388), including 
survival, migration, proliferation, invasion and 
metastasis.This tissue microenvironment is a complex and 
dynamic structure with similar characteristics, biological 
markers and components to RTGT, as well as with the 
same origin.These similarities also include induction of 
angiogenesis and stromal acquisition of the myofibroblast 
phenotype.Indeed, as occurs with RTGT, the tumor stroma 
population of cells consists of vascular elements 
(endothelium and pericytes), fibroblast-myofibroblasts and 
macrophages, with variable association of other 
inflammatory cells, arranged in a modified extracellular 
matrix (388-395). 
 

As with RTGT, in tumor stroma growth intervene 
interactions between parenchymal (tumoral) cells and 
activated stromal cells, as well as several cellular and 
extracellular matrix molecules.Unlike normal connective 
tissue, which behaves as an antiprogressive environment of 
the neoplasia, the tumor stroma after tumor-like genetic 
lesions (396-398) acquires an active role in cancer 
progression with paracrine-acting factors.Thus, the tumor 
stroma provides physical architecture and blood supply 
(oxygen and nutrients), removes metabolic and biological 
waste and contributes growth factors, cytokines and 
extracellular matrix proteins, including adhesion proteins 
and proteases (394, 399-403).For instance, macrophages, 
fibroblasts and endothelial cells express and secrete 
metalloproteinases (404), which hydrolyze collagen, 
laminin, fibronectin and vitronectin (402, 405).Actively 
recruited tumor-associated macrophages release V-G factor 
stimulators of angiogenesis (VEGF, HGF, MMP2, IL-8) as 
well as hypoxia-induced transcription factors.An enhancing 
role of tumor-associated myofibroblasts, facilitating the 
invasiveness of colon tumors, has been demonstrated by 
means of co-injection of activated fibroblasts and tumor 
cells (406).The difference between tumor fibroblast-
myofibroblasts and activated fibroblasts in RTGT is that 
tumor fibroblast-myofibroblasts change their phenotype 
and do not undergo apoptosis and elimination, remaining 
perpetually activated.The origin of tumor fibroblasts may 
be tissue-resident pericytes and fibroblasts (407), bone 
marrow-derived mesenchymal cells (394, 408-411), 
fibrocytes (289, 410) or parenchymal and local cancer cell 

transdifferentiation (412).Endosialin, a marker of 
mesenchymal stem cells, is expressed by tumor-associated 
myofibroblasts and pericytes (206, 207) (See 
above).CD34+ fibrocytes, which act as antigen presenting 
cells during carcinoma invasion, lose CD34 positivity 
expression for a gain of alpha-SMA expression 
(myofibroblast characteristic), contributing to the stroma 
tumor and to tumor escape from host immune control 
(289).Mesenchymal stem cells from post-natal bone 
marrow are considered as an emerging tool for cell-
mediated gene therapy in several pathologic processes, 
including cancer therapy.Indeed, the homing of 
mesenchymal cells is favored in sites of active 
tumorigenesis, and these cells may be used as cell carriers 
for delivering anticancer factors (cytokines, interferons, 
replicable adenovirus, pro-drugs, among others) (413). 
 
12.OVERVIEW AND CLINICAL PROMISE 
 
 The extensive cellular plasticity of the principal 
cellular components in RTGT (local and circulating bone 
marrow derived progenitor cells), supported by so many 
different lines of evidence (Table 1), is reasonably based, 
but relatively recent and some of the different capabilities 
of being precursor or descendent cells are not very 
defined.Therefore, further research is needed to confirm 
which of these proposed precursor cells are genuine 
pluripotential stem cells or which are only capable of 
expressing different properties and functional roles. 
 
 In all likelihood, these precursor cells reside in 
virtually all postnatal tissues and organs (414) and, in our 
opinion, the perivascular niche, with pericyte-like cells, 
including pericytes, homing cells from the bone marrow 
(fibrocytes and MSC) and perivascular fibroblasts, is the 
most solid hypothesis, now emerging (29, 37, 183-205, 
208-215, 370, 415-421).In this hypothesis (Figure 10), the 
perivascular region (with pericyte-like cells) is the niche of 
progenitor cells and the substrate of regulatory 
mechanisms.Indeed, pericyte-like cells, originate new-
pericytes, fibroblast-myofibroblasts (and related cells) and 
some subsets of macrophages.The regulatory mechanisms 
include: a) regulation of quiescent and angiogenic stages of 
blood vessels (cell-cell contacts and soluble factors 
produced by pericytes and EC), b) mesenchymal cell 
proliferation and differentiation control, and c) interactions 
between transmigrating cells (e.g.monocytes) and 
perivascular niche resident cells. 
 
 This hypothesis is difficult to confirm owing to 
the following: a) the heterogenous cellular population in a 
perivascular location with like-morphology (416); b) the 
need to identify the descendent cells in a location far from 
the niche (415, 422); c) the cells in the putative niche 
express several molecular markers, none of which is 
general or specific; and d) the markers are not continually 
expressed in the pericytic niche and descendent cells.This 
variable expression depends on species, location, diverse 
characteristics, functional state (422), distinct overlapping 
populations, and the quiescent or angiogenic stage of blood 
vessels (423).There is even controversy among 
laboratories.Other procedures may be required in addition 
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Table 1.The local and bone marrow derived circulating progenitor cells in RTGT  
Circulating progenitors Local progenitors, Ref Principal cell components in rtgt (descendent cells) 

Monocytes 57-61 Some pericyte-like cells 416 Macrophages 
Fibrocytes 275-289 
Bone marrow mesenchymal (stromal) cells 212, 219-
221, 247-251 

Pericytes 29, 37, 129, 183-215, 370 
Fibroblasts 52, 233-241, 245, 370-376 

Pericytes 
Fibroblat-myofibroblasts and related cells 
Smooth muscle cells 
Myointimal cells 
Chondroblasts 
Osteoblasts 
Adipocytes 

EC progenitor cells  137-155, 165-180 Endothelial cells 98-128 Endothelial cells 
 

 
 
Figure 9. Cellular repopulation of arterial wall previously devoid of cells after periarterial glycerol application.Fig.9A, 
Endothelial cells (arrows) migrating on the intima surface of affected segment.The adventitia (AD) and media layer (ML) are 
devoid of cells.Fig.9B, Activated new endothelial cells (E) and monocytes (arrows) adhered to the elastic internal lamina 
(IL).Fig.9C, a cell crossing a fenestration of the IL (arrow).Fig.9D, Vascular channels (VC), some with red cells in their lumens, 
in continuation with luminal neoendothelium (arrow), observed in the innermost part of the media layer.Fig.9E, Ultrastructural 
image of one of the newly-formed channels, with platelet aggregates (PA) and red cells (RC), and with a pericytic cell (P) on its 
surface.E: Endothelial cell.Fig.9F, the arterial wall repopulated by cells with smooth muscle phenotype (SC).Figs.9A, 9B, 9C, 9D 
and Fig.9F correspond to semithin sections (Toluidine Blue, x1150) and Fig.4E to ultrathin section (Uranyl acetate and lead 
citrate, x15000). 
 
to the morphology, gene expression and phenotypic criteria 
for specific location of MSC niches.In this way, we have 

selectively labeled cells in the wall of the pericytic 
microvasculature of adipose tissue (a putative vascular 
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Figure 10. Diagram of the perivascular niche hypothesis.The perivascular region (with pericyte-like cells) is the niche of 
progenitor cells and the substrate of regulatory mechanisms: 1) the pericyte-like cells, a heterogeneous population of mural cells, 
such as pericytes, homing cells from the bone marrow (fibrocytes and BMMSCs) and perivascular fibroblasts, originate new 
pericytes, fibroblast-myofibroblasts (and related cells) and some subsets of macrophages, 2) the regulatory mechanisms include: 
a) regulation of quiescent and angiogenic stages of blood vessels (cell-cell contacts and soluble factors produced by pericytes and 
EC), b) mesenchymal cell proliferation and differentiation control, and c) interactions between transmigrating cells 
(e.g.monocytes) and perivascular niche resident cells. 
 
niche of MSC), using an exogenous marker, which has 
been subsequently observed in culture cells of adherent 
MSC obtained from this tissue (nonpublished 
observations). 
 

The mesenchymal stem cells isolated from 
various tissues and involved in RTGT (with innate ability 
to home to sites of tissue repair) are a therapeutic promise, 
which will increase when their lineage, full functional 
differentiation capacity and requirements for favoring cell 
renewal over differentiation during expansio in cultures is 
better understand (paradox between “in vitro” promise and 
“in vivo” efficacy -424).Clinical applications could involve 
the following (394, 395, 424): 1) to engineer different 
tissues both “ex vivo” and “in vivo”, such us cartilage 
(e.g.joint, nose, ear and trachea), bone (e.g.craneofacial and 
long bone defects) and myocardium (acute myocardial 

infarction), 2) to produce growth factors (e.g.member of the 
BMP family), proteins (e.g.protein deficiency disorders-
hemophilias), collagen and trophic factors, 3) to induce 
angiogenesis and inhibit apoptosis, 4) to form “guiding 
strands” to promote direct growth of new axons during 
central nervous system or spinal cord injury, 5) to provide 
stromal support for transplanted cells (e.g.bone marrow 
transplants), and 6) to modify the tumor associated stroma 
and/or use as delivery vehicles for anti-cancer therapies.In 
this way, the future strategies include (394, 395): a) 
modification of the genetically altered tumor stroma 
mesenchymal stem and descendent cells (unlike 
homeostatic RTGT cells, they might initiate and/or enhance 
tumor growth); b) use of mesenchymal stem cells as 
cellular delivery vehicles of antitumor agents (specific 
tropism of mesenchymal stem cells that survive and 
proliferate inside the tumor and that may act as a “mini 
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pump”, e.g., active and passive immunotherapy, therapeutic 
gene products, interferon β (394) (See above); c) actions to 
alter the expression of some cell surface receptors and to 
inhibit tumor promoting interactions, targeting one or 
multiple molecules (growth factors, growth factor 
receptors, adhesion molecules and enzymes - e.g., 
recombinant humanized anti-VEGF mab Bevacizumab and 
anti-CD105 antibody-); d) modulation of the tumor 
microenvironment by eliminating the stromal cells; and e) 
interference with the remodelling of the extracellular 
matrix (e.g.inhibitors of proteases - MMPS-). 
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