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1. ABSTRACT 
 

Why should a microbe manufacture extracellular 
enzymes if its competitors can free-ride on these enzymes?  
Similarly, why should an animal place seeds into storage 
when others can exploit this stored resource?  A solution to 
this general class of problems becomes apparent if one 
assumes that investors directly benefit from a proportion of 
the investments they make.  Thus, when individuals benefit 
from a proportion p of their investments, but share the rest 
with other individuals in the system, then an evolutionarily 
stable level of investment can evolve which is higher the 
higher the value of p. These evolutionarily stable 
investment points mark the junction at which several 
classical games meet, so that changes in investment can 
move interactions from one game type to another.  Non-
zero optimal levels of investment also arise under 
conditions when investments are only shared locally, and 
even when producers lose more product to competitors than 
they save for themselves.  Overall, this “personal gain” 
approach offers a simple yet robust explanation for why 
individuals engage in activities which may concomitantly 
benefit others. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Microorganisms are known to invest in a wide 
range of compounds that are released and/or leaked into 
their local environment.  These extra-cellular compounds 
typically confer a direct benefit to the individuals that 
produce them.  To the extent that these compounds also 
provide a benefit to other, often nearby, cells, then extra-
cellular compounds may be considered to be “public 
goods”.  As with all public goods, those that invest in their 
production may potentially be undermined by cheats, 
individuals that reap the benefit of the good itself but 
contribute nothing to its production. The fact that the 
production of public goods is often energetically expensive 
makes the persistence of the phenomenon difficult to 
understand in evolutionary terms: why should an individual 
invest time and energy in the production of a compound 
that may benefit conspecifics who do not themselves 
engage in its production?    
 

Evidence that microbial public goods systems can 
be undermined by cheats on evolutionary time scales has 
been experimentally demonstrated in a number of cases 
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including biofilm formation (1), the degradation of 
penicillin by β-lactamase (2), the production of iron-
scavenging siderophores (3), bacteria-killing compounds 
such as colicins (4), and extracellular enzyme production in 
yeasts (5). Yet examples of potential public goods in the 
microbial world abound, many of which have been 
summarized by West et al (6).  Additional examples not 
included in their tally are the production of the precursors 
of dimethyl sulfide by marine plankton, which some 
workers have argued may incidentally benefit the 
population as a whole (7), and the formation of nitrogen-
fixing heterocysts in cyanobacteria (8).   
 

Analogous social dilemmas are also known in 
metazoans, and it is especially evident in the act of food 
storage by birds and mammals.  For instance, acorn 
woodpeckers drill acorns into oak trees for future 
consumption, but why is this strategy not undermined by 
“freeloaders” who put less effort into storing food 
themselves and simply exploit the actions of others (9, 10)?  
The well-known producer-scrounger (11, 12) and more 
general snowdrift games (13, 14) capture the essence of 
interactions in which individuals face the temptation to sit 
back and let others do the work.  Such temptations are 
familiar to us in the human world, forming the basis of 
moralistic folk tales such as the ‘Little Red Hen” and the 
Aesop fable “The Ant and the Grasshopper”.   
 

A solution to this diverse set of problems 
becomes apparent when one recognizes that: (i) a 
proportion of any given investment in food resource 
gathering or storage directly benefits the investor, a 
scenario termed “weak altruism” by Wilson (15; see also 
16, 17), and (ii) the returns from any investment are rarely 
shared out equally among all individuals in a population.  
In this way, it may pay an individual to incur a cost to 
gather resources simply because, while conspecifics may 
incidentally benefit from the behavior, the individual stands 
to gain even more.  
 

Several mechanisms may facilitate an unequal 
sharing of investment returns.  For example, the importance 
of spatial asymmetry for the production of extracellular 
enzymes was recently recognized by Allison (18) who 
noted that lower rates of enzyme diffusion tended to favor 
microbes that produced these enzymes compared to cheats 
that did not.  Similarly, Anderson & Krebs (19) proposed 
that for hoarders to persist, a necessary (but not sufficient) 
condition is that a hoarder has a greater probability of 
recovering its own stored items (through territory use or 
memory) than another member of the group. 
 

The usual practice in modeling social dilemmas 
is to assume the existence of distinct strategies. Thus 
Allison’s (18) detailed model assumed the discrete 
strategies of “produce” or “cheat”, the food-hoarding 
models of Anderson & Krebs (19) and Smulders (9) 
considered “hoarders” and “non-hoarders”, and Barnard & 
Sibly (11) considered “producers and scroungers”.  Here 
we take a more general approach by allowing individuals to 
vary continuously in the amount of investments they make 
in obtaining/storing food resources (20).  These 

investments might be thought of as the quantity of 
extracellular enzymes, or the energy required to procure 
and to store seeds, both of which are liable to vary 
continuously.   It is important to develop models in this 
way not only because it improves their realism, but also 
because it allows for quantitative (21-23).  The models 
presented here are therefore designed to understand the 
optimal level of investment, rather than the equilibrium 
proportion of extreme strategies such as “cheat” and 
“cooperate”. 
 

As our main motivation is to understand 
investment in public goods from a microbial perspective, 
our approach considers large populations of potential 
contributors.  However, we allow such populations to be 
well mixed or spatially structured.  We identify analytical 
solutions using mathematically convenient functions, but 
we also explore general properties of more realistic 
relationships using numerical simulations.  In what follows, 
we introduce the basic model and its derivatives.  We then 
highlight a general feature of these systems, showing that 
they can reflect a range of different game-theoretical 
structures and that their solution arises where classical 
game structures meet. 
 
3. BASIC MODEL 
 

As we are attempting to represent a variety of 
systems, our model is of general form.  In a recent paper, 
Doebeli et al. (24) developed and explored a continuous 
investment game in which the payoff P(x, y) to an 
individual investing x interacting with an individual (or 
group of individuals) investing y could be represented: 
 

P(x, y) = B(x + y) – C(x)  (1) 
 
where B(x + y) represents the benefit function to the 
recipient for the combined investment x + y and C is the 
cost function to the x strategist for its own investment.   
The authors concluded that the evolutionary dynamics of 
investment levels in this system would often lead to a 
surprising outcome in which some individuals invest 
nothing, while others make significant investments.   
 

To allow for the very real possibility of 
asymmetries in the proportion of benefits each individual 
receives from a given investment, one can modify the 
above formulation.   Thus, let only a proportion p of the 
investments of an individual be available to provide a direct 
return to that individual.  In the simplest case, let us assume 
that a fixed proportion (1-p) of investments that are not 
directly available to an individual, are shared equally 
between all other individuals in the system.  The payoff to a 
rare mutant individual which invests y when interacting 
with members of a large population which each invest x 
then becomes: 
 
P(y, x) = B( y p + x (1-p) ) – C(y) (2) 
 
while  
 
P(x, x) =  B(x) – C(x)  (3)
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Figure 1. Investment level as a function of the fraction of 
enzymes retained by the producer. As the proportion of 
enzymes (p) that are retained by the producer cell 
increases, then so too does the predicted ESS investment 
level.  Solid line: benefit function 1, k1= 5,  k2 = 0.1,  k3 
= 1. Dotted line: benefit function 2,  k1= 5,  k2 = 3,  k3 = 
2. 
 
The invasion fitness fx(y) of the rare mutant with 
investment level y in a resident population of 
conspecifics that each invest x is given by:     
 
 fx(y) = P(y, x) - P(x, x)  (4) 
 
which in effect measures the relative success of the rare 
mutant compared to a random member of the population.   
 

We now introduce specific forms of the cost 
and benefit functions, which assume in the first instance 
that the benefits of investment increase non-linearly with 
the amount of investment, but that the costs increase 
linearly.  The benefit to any given individual from a 
combined available investment z (which equates to y p + 
x (1-p) in the case of a rare mutant that invests y, and x in 
the case of an individual that invests the population 
standard x) was either assumed to be: 
 
B(z) = k1 z / (k2 + z)  [function 1](5) 
 
or  
 
B(z) = k1 {1 – exp(-k2 z)} [function 2](6) 
 
while the cost of investing q was assumed, in the first 
instance, to be a simple linear function: 
 
C(q) = k3 q   (7) 
 
where k1, k2, k3 and k4 are positive constants.  The 
asymptotic benefit function simply reflects diminishing 
returns in which higher investments do not necessarily 
bring about greater rewards.  By contrast, the cost 
function reflects a situation in which overall costs 
increase at a fixed rate with investment size (this 
restrictive assumption is later relaxed). 

4. GAME THEORETICAL SOLUTIONS 
 
4.1. Well-mixed population  

How would investment levels tend to evolve 
from a given starting point in the above model? We can 
apply standard methodologies from the framework of 
adaptive dynamics (24-26) to derive analytical insights into 
the underlying properties of the above model.  Singular 
points (whether they be branching points, or evolutionary 
stable strategies) are given by solutions to δfx(y)/δy | y=x = 
0. 
 
Using function 1, a singular point occurs at the investment 
level x* where: 
 
x* =  (1/  k3) { (p k1 k2 k3)1/2  -  k3 k2 } (8) 
 
Since δ2fx* /δy2 | y = x*  = - 2 p k3

2 (p k1 k2 k3)1/2 which is 
negative for all positive values of {k1, k2, k3}, then this 
investment level x* represents a local maximum and 
therefore an evolutionary stable strategy (ESS).  Using 
Function 2, a singular point occurs at the investment level 
x* where 
 

x*   =     [ln(p k1 k2) – ln(k3)]/ k2 (9) 
 
Note that δ2fx* /δy2 | y = x*  =   - p k2 k3, which is less than 0, 
such that x* again marks an ESS. 
 

Thus, with both function 1 and function 2, the 
ESS investment level increases as the proportion of 
investments that are available to the producer increases 
(Figure 1).  Note that when p = 1 then this represents the 
solution to the single individual optimal investment in 
which payoffs are individually maximized; conversely, 
when p approaches zero then the optimal level of 
investment will be zero for all positive solutions of x*. 
 

When the costs of investment increase 
exponentially with investment level such that: 
 
C(q) = k3 exp (k4 q)   (10) 
 
then simulation-based solutions to the evolutionary optimal 
investment levels confirm that the same general 
relationships hold.  For example, Figure 2 shows the 
predicted evolutionarily stable investment level when 
benefit function 1 and exponentially increasing costs are 
assumed. 
 
4.2. Spatially-structured population with global 
competition 

The assumption that the proportion (1-p) of 
investment products of an individual are shared out equally 
amongst all others is a rather extreme scenario.  Instead, 
one might envisage a situation in which individuals share 
their investments locally, such as with their nearest 
neighbors (be they cells in close proximity, or territory 
owners).  We begin by assuming that a producer shares its 
investments between itself (fraction p) and its 2 nearest 
neighbors in a large linear array, each obtaining fraction (1
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Figure 2. Effect of exponentially increasing costs on 
investment in extracellular enzyme production.  The 
predicted ESS investment level rises with the proportion of 
enzymes (p) retained by a producer even when the costs of 
investment increase exponentially with investment size.  
Here benefit function 1 is assumed with k1= 5,  k2 = 0.1, 
while exponential costs (equation 10) are assumed with k3 
= 1 and k4 = 0.1, 0.5, 1, 2 or 5.  Solutions were derived 
numerical simulation, with maximum and minimum 
investments of 1 and 0 respectively.  As the exponential 
coefficient increases then the evolutionarily stable 
investment level in enzymes decreases. 

 
p)/2 of this investment.  Let us assume in the first instance 
that the processes of competition and invasion that give rise 
to population replacement continue to take place between 
randomly chosen pairs of individuals in the system.  The 
payoff to a rare mutant individual which invests y 
interacting with members of a large population which each 
invest x then becomes: 
 
P(y, x) = B( y p + 2 [x (1-p)]/2) – C(y) (11) 
 
which reduces to (2), while P(x, x) remains the same, such 
that the ESS for function 1 and function 2 are precisely 
those as given by equations (8) and (9).  Clearly, the result 
is extendable to any number of neighbors (hence a two or 
three dimensional grid), whenever the fraction of total 
investment (1-p) that is available to neighbors is shared out 
equally among them.  Therefore, so long as there is global 
competition our original predictions for the ESS investment 
level remain valid. 
  
4.3. Spatially-structured population with local 
competition 

When there is spatial structure in the way 
investments are leaked and in the way competition takes 
place, then the analysis is more complicated because one 
must separately consider the conditions for invasion from 
extreme rarity, and spread from this initial seed. For 
example, it is possible that a lone mutant can have a higher 
fitness than its nearest neighbor and thereby invade it, but 
once there are two such mutant strategies adjoining one 
another, then these two individuals have a lower fitness 
than their neighbors (we have invasion without spread).  
Likewise, a particular mutant form may be unable to spread 
from extreme rarity, but should a cluster of mutants happen 
by chance to arise together (for example, a second high-

investment mutation arises in the neighbour, before the 
lone mutant is out-competed), then it may nevertheless 
spread. 
 

Here we identify the conditions for initial 
invasion and subsequent spread in a linear array of 
investors, but the same principles are readily applied to 
systems with more than 2 nearest neighbors, such as grid 
systems with 8 nearest neighbors (Figure 3a,b).  In both 
cases it is readily shown than non-zero levels of investment 
can evolve, with higher mean investments the higher p. 
 

Any lone mutant individual investing y in a linear 
array of individuals that invest x will spread so long as: 

 
B(p y + x (1-p)) – C(y)  >   B(p x + {y (1-p)/2 } +  {x (1-
p)/2 }) – C(x)   (12) 
 
Assuming benefit function 1 and linear costs, and solving 
(12), it is possible to show that a lone mutant investing 
slightly more than the population (y > x) will spread so long 
as x <  (1/  2 k3) { [2 k1 k2 k3 (3p -1) ]1/2  - 2 k3 k2 } 
[threshold 1], indicating evolutionary selection away from 
non-zero investment.  Conversely, a lone mutant investing 
slightly less than the population (y < x) will invade 
whenever the population level of investment x is greater 
than this threshold. 
 

Nevertheless, despite passing the criterion for 
invasion, such mutants will only spread in a linear array so 
long as a cluster (in this case 2 or more mutants in a row 
with an y-x interface), can invade, namely:  
 
B(p y + {y (1-p)/2 } +  {x (1-p)/2 })) – C(y)  >   B(p x + {y 
(1-p)/2 } +  {x (1-p)/2 }) – C(x)  (13) 
 
Assuming benefit function 1 and linear costs, and solving 
(132) we note that inequality (13) is satisfied for y slightly 
larger than x, so long as x <  (1/  k3) { (p k1 k2 k3)1/2  -  k3 k2 
} [threshold 2].  Conversely, a cluster of mutants investing 
slightly less than the population (y < x) will invade 
whenever x is greater than this threshold.   
 

When all individuals invest less than thresholds 1 
and 2, then any individual investing slightly higher than the 
population level will not only invade,  it will also 
subsequently spread.  Likewise, when all individuals invest 
more than threshold 1 and 2, then any individual investing 
less than this population level will not only invade, it will 
also spread.  The evolution of investments between these 
thresholds is the outcome of a more complex dynamic in 
which any clusters of high investors that happen by chance 
to form can spread, but once widespread, they will be 
undermined by the establishment of single mutants with 
lower investment which can invade their nearest neighbor, 
but then fall victim to their own limited success.  
Simulations confirm this precise result (Figure 3a).  
Analogous arguments about the ability to invade and spread 
apply to the two dimensional case (Figure 3b), and again 
confirm that if investment products are shared out locally, 
and competition is local, then non-zero investment levels 
readily evolve.  Indeed, the greater the extent of local
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Figure 3. Spatial simulation results.  Results of a simulations 
over 2000 generations involving a linear array (A), and two 
dimensional array (B), of n individuals which each invest in 
extracellular products that can leak locally to their two nearest 
neighbors (linear array) or eight nearest neighbors (two 
dimensional array).  Terminal cells were assumed to wrap 
around.  Initial investments of individuals were selected from a 
normal distribution with mean 0.02, standard deviation 0.02.    
Each generation n randomly chosen pairs of neighbors were 
repeatedly chosen and the individuals with the highest payoffs 
invade their neighbor.  There was also a small probability of a 
mutation (0.005 per individual per generation), following 
which the investment in the cell was incremented by a 
normally distributed value with mean 0 and standard deviation 
0.01.   Benefit function 1 was assumed, with p = 0.7, k1= 5, k2 
= 0.1,  k3 = 1.  Under these conditions, threshold 1 is 0.424 and 
threshold 2 is 0.492 for the linear case (see text).    Each cell is 
colored according to the investment (x) of the individual it 
contains. Color codes: blue  x < 0.1, green 0.1  ≤ x <  0.2,   red 
0.2  ≤ x  <  0.3, cyan 0.3  ≤ x <  0.4, magenta 0.4  ≤  x <  0.45,  
yellow 0.45  ≤  x <  0.5, white 0.5  ≤  x <  0.52 (A) In the linear 
case (n = 200), individuals evolve investments towards the 
threshold 2, but the evolved solution is continually undermined 
by individuals investing slightly less.  (B) In the two 
dimensional case (n = 50 x 50), individuals evolve investments 
even closer to the predicted ESS for global competition 
(0.492), although temporary clusters of investors investing 
slightly higher can temporarily succeed. 

sharing the closer the mean level of investment matches the 
ESS for the global competition. 
 
5. RELATIONSHIP TO CLASSICAL DISCRETE 
GAMES 
 

Although the model analysis outlined in section 
4.1 is couched purely in terms of investment levels, we can 
gain qualitative insight into the evolutionary stable 
strategies that evolve by comparing the tensions involved to 
those in classical games.  Thus, one might define mutual 
cooperation as an act in which both interacting parties (the 
mutant and the resident) give the higher of two possible 
investments x and y, and mutual defection as an act in 
which both partners give the lower of these two 
investments.  If we cast the model in this way, then with y 
> x and a large well mixed population, the payoffs to a rare 
mutant become: 

 
  Action of other individuals 
  C [= y] D [= x] 

C [= y] B(y)-C(y)  B(py +(1-
p)x)-C(y) 

Action of 
mutant 

D[= x] B(px + (1-p) 
y)-C(x) 

B(x)-C(x) 

  
The game is effectively a Prisoner’s Dilemma (PD) if the 
payoffs from adopting particular actions are such that DC > 
CC > DD > CD. However, it is a chicken (= snowdrift) 
game if DC > CC > CD > DD, a deadlock game if DC > 
DD > CC > CD and a simple cooperative game if CC > CD 
> DC > DD (“Mutual 1”) or CC > DC > CD > DD 
(“Mutual 2”) - see Poundstone (14).  From these 
inequalities, it is clear that changes in game type will occur 
when CC = DC and DC = DD.  Solving CC = DC for non 
trivial solutions of x with function 1 and substituting this 
expression into DC = DD, generates precisely the same 
solution for x* as (8).  A similar result applies to function 2.  
Thus the points at which evolutionary-stable investment 
levels occur (as given by (8) and (9) in this instance) 
consistently mark the point at which several game 
structures meet (Figure 4a,b).  
 

The evolutionary dynamic giving rise to the ESS 
is now easier to see.  It is clear that the simple payoff 
schemes in equation (2) and (3) represent several different 
games dependent on investment levels, rather than any one 
single type of game.  At low investment levels cooperative 
games are played and higher investment is favored, 
whereas at high investment levels, more exploitative games 
are being played and lower investment is favored.  An 
equilibrium is reached at the juncture between games that 
favor increased investment and games that favor reduced 
investment. 
 
6. PERSPECTIVE 
 

The model we have explored here treats the 
degree of investment in extracellular enzyme production as 
a continuous rather than an all-or-nothing discrete strategy.  
Overall, we feel that such an approach is more realistic (see 
for example 22, 23, 27, 28).  Indeed, as Greig & Travisano
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Figure 4. The type of game played varies as a function of 
investment level.  The types of game played between 
mutants and members of the rest of the population when 
mutual cooperation corresponds to each player investing 
the higher of two investments and mutual defection is each 
player investing the lower of two investments.  The 
evolutionary stable points mark investment levels at which 
games promoting cooperation and games promoting 
defection meet. (A) Benefit function 1, k1= 5,  k2 = 0.1,  p = 
0.7, cost equation (7) with k3 = 1 (B) Benefit function 2, 
k1= 5,  k2 = 3, p = 0.4, cost equation (7) with k3 = 2. 

 
(5) note, “continuously variable heritable levels of enzyme 
production may be envisaged in real life”.  Our approach 
also allows one to identify solutions, such as the optimal 
level of investment, which is simply not possible with a 
discrete formulation involving investors and cheats.  Our 
model clearly shows that it frequently pays individuals to 
invest in extracellular enzyme production, even if other 
individuals may also incidentally benefit (29).  The same 
type of approach might equally apply to producer-
scrounger systems.  Thus, the observation of investment in 

processes that also incidentally confer benefits to 
conspecifics is not such a difficult phenomenon to explain.   
 

Note that our approach differs fundamentally 
from many other continuous games of cooperation in 
recognizing that a proportion (p) of an individual’s 
investments can bring a direct return to the producer.   For 
example Killingback et al. (30) explored a continuous 
game of cooperation in a spatial lattice in which all the 
benefits of an individual’s investment were enjoyed by 
neighbors, and the producer received no direct return at all 
from its investment.  Introducing the possibility of a direct 
return to the individual not only makes the system more 
realistic, but clearly facilitates greater investment.  Do such 
behaviors constitute cooperation?  A proportion of the 
investment (1-p) of an individual clearly benefits other 
individuals, but it is not selected for because of its 
beneficial effect on the recipient, and would therefore not 
constitute cooperation, as defined by recent commentators 
(31). 
 

In the simplest model structure, in which a 
proportion of investments are shared globally, a single 
evolutionarily stable level of investment was identified and 
characterized.  We find that the higher the proportion of 
investments that an individual is able to retain, the higher 
its optimal level of investment, all else being equal.  This 
hypothesis could, in principle, be tested experimentally by 
following the level of investment that evolves in genotypes 
that differ in the fraction of product they retain for 
themselves, as in Dugatkin et al’s (2) experiments 
employing E. coli strains that shared β-lactamase to 
different extents.  
  

Note that positive investment solutions are 
possible even for p < 0.5, so that even if the majority of an 
individual’s investment is “squandered” on the population 
as a whole then investment can still be profitable.  
Interestingly, many bacteria appear to have adaptations that 
help keep the enzymes used in extracellular digestion in 
very close proximity to the cell membranes (32), thereby 
keeping p high. Many extracellular proteins produced by 
Gram-negative bacteria are, for example, secreted into the 
periplasmic space between the cytoplasmic membrane and 
the outer membrane, and only secondarily leak passively 
across the outer membrane into the environment (33), 
suggesting that the outer membrane may have evolved in 
part as an adaptation for retaining investment products.  It 
has also been suggested that phagocytosis in eukaryotes 
may also have evolved as a way around problems with 
extra cellular digestion (34).  At an extreme, one might 
think that an individual should have some physical means 
of bringing back all of the products of their investment so 
as to prevent them from being shared, a form of ‘tethering’.  
Indeed, many bacteria do have tethering mechanisms in the 
form of specific uptake systems embedded in the outer 
membrane designed to take up key resources such as iron 
(35).  However, bacteria also produce iron-binding 
molecules such as siderophores and hemophores that are 
released freely into the environment.  Why should they 
maintain both systems when the production of siderophores 
and hemophores could be so readily undermined by cheats? 
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An interesting avenue for future research would therefore be to 
identify conditions that promote or prevent the evolution of 
tethering. 
 

In adopting a continuous model, our approach has 
been rather different than traditional approaches which adopt a 
frame structure such as Prisoner’s Dilemma model and identify 
strategies that would do well.  By contrast our approach, like 
Doebeli et al.’s (22), has been based on generalized payoff 
functions. Our analysis has revealed how simple payoff 
functions can generate a variety of games dependent on 
investment levels.  The fact that stable solutions occur at 
positions where game structures meet can be readily 
understood on the basis of games favoring increasing 
investment adjoining games favoring reduced investment.   
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