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1. ABSTRACT 
 

Cell membrane glycoconjugates undergo 
characteristic changes as a consequence of neoplastic 
transformation. The cancer-associated carbohydrate 
structures play key roles in cancer progression by altering 
the cell-cell and cell-environment interactions. In this 
review, we will discuss some of the most relevant cancer-
associated carbohydrate structures, including the β1,6-
branching of N-linked chains, the sialyl Lewis antigens, the 
α2,6-sialylated lactosamine, the Thomsen-Friedenreich-
related antigens and gangliosides. We will describe the 
mechanisms leading to the expression of these structures 
and their interactions with sugar binding molecules, such as 
selectins and galectins. Finally, we will discuss how the 
glycosylation machinery of the cell is controlled by signal 
transduction pathways, epigenetic mechanisms and 
responds to hypoxia. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 The surface of eukaryotic cells is covered by a 
sugar coat, known as glycocalix. The carbohydrate 
molecules forming the glycocalix are either linked to 
proteins or to lipids. The vast majority of cell membrane or 
secreted proteins are decorated by sugar chains and are 
consequently referred to as glycoproteins. The sugar chains 
linked to glycoproteins are classified in two main types: 
those linked to the amidic nitrogen of asparagine (referred 
to as N-linked chains) (1) and those linked to the hydroxyl 
group of serine or threonine (referred to as O-linked chains) 
(2). The sugar chains of glycoproteins can play highly 
specific roles, including the receptor function for 
microorganisms and toxins and the modulation of the cell-
cell and cell-microenvironment interactions (3). In cancer 
tissues, glycosylation is profoundly altered, leading to the 
expression of cancer-associated antigens which, in some 
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Figure 1. Structures of N-linked chains. A typical biantennary N-linked chain (middle) can be transformed in a β1,6-branched 
structure (upper) by the action of GnT5. The β1,6-linked structure is frequently elongated by polylactosaminic chains, which are 
often terminated by complex structures, such as the sialyl Lex antigen. The action of GnT3 leads to the addition of a bisecting 
GlcNAc (lower), which inhibits the formation of the β1,6-branched structure.  
 
cases, recapitulate the antigens expressed during fetal life 
(4, 5). These structures may play fundamental roles in 
cancer progression through different mechanisms. In this 
review we will discuss the molecular mechanisms which 
are at the basis of the expression of some cancer-related 
carbohydrate structures and the mechanisms through which 
these structures exert their biological effects. Many of these 
biological effects are mediated by interactions with animal 
lectins, in particular selectins, which recognize sialylated 
Lewis antigens (6-8) and galectins which bind structures 
terminated by galactose and whose importance in cancer is 
increasingly recognized (9-15). The identification of the 
mechanisms of cancer-associated glycosylation changes is 
crucial in the perspective of therapeutic interventions aimed 
at the normalization of the glycosylation pattern of cancer 
cells. Cancer-associated glycosylation changes are in some 
cases tissue-specific, while in other cases are broadly 
expressed. In the next section we will focus on some of the 
broadly expressed cancer-associated carbohydrate 
structures. 
 
3. SURVEY OF CANCER-ASSOCIATED 
GLYCOSYLATION CHANGES 
 
3.1. β1,6 branching.  

The β1,6 branching of N-linked chains consists in 
the addition of an antenna whose first GlcNAc is β1,6-
linked to a core mannose residue (Figure 1). This antenna, 

which can be detected by the leukoagglutinin from 
Phaseolus vulgaris (L-PHA), is preferentially elongated by 
polylactosaminic sequences and is frequently terminated by 
antigens of the Lewis type (Figure 1). Although the 
association of β1,6-branching with metastasis has long 
been known (16), the conclusive evidence about the 
causative role played by these structure in metastasis 
formation came from studies in mice in which the enzyme 
responsible for this modification, β1,6N-
acetylglucosaminyltransferase V, (GnT5 product of the 
Mgat5 gene), was knocked down (Mgat5-/-). Mice 
expressing the polyomavirus middle T antigen (PyMT) 
from a transgene in mammary epithelium, spontaneously 
develop mammary tumors. When these mice were crossed 
with Mgat5-/- mice, the tumors grew slower than in the 
PyMT-transgenic littermate expressing Mgat5 and 
metastasis formation was almost completely inhibited (17). 
Cells derived from Mgat5-/- mice exhibited increased 
contact inhibition and substratum adhesion than Mgat5-
expressing cells (18). 

 
The relationship between β1,6-branching and 

increased growth and metastasis is probably due to more 
than one mechanism (19). The sugar chains elaborated by 
GnT5 decorate various cell surface molecules, including 
growth-promoting receptors (such as PDGFR and EGFR) 
and receptors with arrest/morphogenic activity (such as 
TGF-βR and CTLA-4). β1,6-branched, polylactosaminic 
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chains are a preferred ligand for galectin-3 which, 
consequently, forms a lattice which stabilizes the receptors 
on the cell surface (19). However, growth-promoting 
receptors express an average higher number of N-linked 
glycans (high-n receptors) than receptors with 
arrest/morphogenic activity (low n-receptors) (20). As a 
consequence, the galectin-3-mediated stabilization of 
membrane receptors favors highly-branched, growth 
promoting receptors. Interestingly, the switch from growth 
to arrest can be regulated by the nutrient flux. In fact, 
glucose is converted to glucosamine and UDP N-
acetylglucosamine, which is the donor substrate of 
GlcNAc-transferases. An increase of UDP-GlcNAc levels 
results in a little change of the glycosylation of high n-
receptors but in a dramatic increase of glycosylation (and 
galectin binding capacity) of low-n receptors. This change 
mediates the switch from a growth to an arrest condition. 
Moreover, galectin-3 binding to β1,6-branched glycans 
regulates tumor cell motility by stimulating focal adhesion 
remodeling, FAK and PI3K activation, local F-actin 
instability, and α5β1 integrin translocation to fibrillar 
adhesions (21). 
 
 Another mechanisms proposed to explain the 
relationship between β1,6-branching and metastasis 
involves matriptase, an activator of both urokinase-type 
plasminogen activator and hepatocyte growth factor. This 
molecule, when glycosylated by GnT5, acquires resistance 
to degradation and increased activity (22, 23). A direct 
effect of galectin-3 on VEGF- and bFGF-mediated 
angiogenesis has been shown by a recent paper showing 
that this effect is due to the binding of galectin-3 to the 
β1,6-branched chains of αvβ3 integrin and to the activation 
of focal adhesion kinase signaling (24). As discussed in 
detail in section 5.1, MGAT5 expression is regulated by the 
Ras pathway, thus explaining its close association with 
cancer. In many circumstances, GnT5 activity is 
counteracted by that of a competing enzyme, GnT3 (Figure 
1) (section 4.4), which synthesizes bisecting N-linked 
glycans.  
 
3.2. Sialyl Lewis antigens 

Lewis a and Lewis b antigens are originated by 
the mono- or di- fucosyl substitution of type 1 chains while 
Lewis x  and Lewis y derive from the mono- or di-fucosyl- 
substitution of type 2 chains (Figure 2). The mono-fucosyl 
substitution of the α2,3-sialylated type 1 or type 2 chains 
leads to the formation of  sialyl Lewisa (sLea) and sialyl 
Lewisx (sLex) antigens, respectively (25). These structures 
are usually present at the terminal non-reducing ends of 
polylactosaminic chains, preferentially mounted on the 
β1,6-branching of N-linked chains (Figure 1) or of O-
linked chains (26), but also on glycolipids (27). An aberrant 
expression of Lewis-type antigens appears to be a general 
cancer-associated phenomenon, reported in carcinomas of 
the lung (28), colon (27, 29, 30), stomach (31) and kidney 
(32). The sLea tetrasaccharide is the epitope of CA19-9 
antigen, a cancer-associated marker widely used in the 
clinical practice. The interest in the expression of sialyl 
Lewis antigens in cancer increased enormously after the 
discovery that sLex  and sLea acted as ligands for E- and P-
selectin cell adhesion molecules expressed on activated 

endothelial cells (6, 33-35). The physiological role of E- 
and P-selectins is to mediate leukocyte extravasation at 
sites of tissue damage or injury (36). However, these 
molecules may also regulate the metastatic cascade by 
forming emboli of cancer cells and platelets and favoring 
their arrest on endothelia (7, 37-39). In some cell lines, the 
major glycoproteins carrying sialyl Lewis antigens have 
been identified as the hyaluronate receptor CD44 (37, 40, 
41), mucin 1 (MUC1) (42-44) and lysosomal membrane 
glycoproteins 1 and 2 (LAMP-1 and LAMP-2) (44). The 
relationship between expression of sialylated Lewis 
antigens and hematogenous metastasis is demonstrated by 
many clinical and experimental studies (45). In colon 
cancer patients, increased expression of sLex and sLea 
antigens correlated with metastasis and poor survival (46-
49). sLex correlated with malignancy also in renal cell 
carcinoma (50) and breast cancer (51, 52), although in the 
latter the survival did not appear to be related with sLex 
expression (53). 

 
Several studies have reported that down-

regulation of sialyl Lewis antigen expression by knock-
down of key glycosyltransferases in cancer cell lines 
resulted in reduced selectin binding and reduced metastatic 
ability (54-57), while cancer cells forced to express sialyl 
Lewis antigens by gene transfer exhibited increased 
adhesion to selectins in vitro and increased metastatic 
ability in vivo (58). Consistently, populations of cancer 
cells selected for their increased metastatic potential often 
displayed increased expression of sialyl Lewis antigens (59, 
60). The role of selectins in the metastatic process was 
confirmed by the findings that the formation of 
experimental pulmonary metastases could be inhibited by 
the use of peptides mimicking sLea and were inhibited in E-
selectin- knock-out mice (61).  
 

Apart from the role as selectin ligands, sialyl 
Lewis antigens can play a role in cancer progression in at 
least two other key steps of invasion: angiogenesis and 
immune recognition of cancer cells. The role of sLex in 
angiogenesis is supported by the finding that when 
epidermoid cancer cells were co-cultured with endothelial 
cells, the former produced nests of growing cells 
surrounded by tube-like networks consisting of endothelial 
cells. These phenomena could be reproduced in vivo and 
could be inhibited by antibodies against sLex (62). The 
ability of sLex-expressing cancer cells to promote 
angiogenesis was confirmed by the fact that inhibition of 
sLex biosynthesis in hepatocarcinoma HepG2 cells resulted 
an impairment of their ability to induce angiogenesis (63). 
The role of sLex in the recognition of cancer cells by 
natural killer (NK) cells stemmed from the unexpected 
observation that melanoma cells expressing high sLex 
levels were less metastatic than cells expressing moderate 
levels of the antigen (64, 65). This striking behavior was 
explained by the finding that high sLex-expressing cells 
were a better target of NK cells than cells expressing 
moderate levels of the antigen (65). Altogether, these 
findings indicate that sialyl Lewis antigens are important in 
mediating key steps of the metastatic process, in particular 
the adhesion of emboli of cancer cells to endothelia and 
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Figure 2. Biosynthesis and structures of Lewis-type antigens. Substitution of GlcNAc by a β1,3-linked galactose leads to the 
basic unit of type 1 chain, while substitution with a β1,4-linked galactose leads to lactosamine, the basic unit of type 2 chains. 
The addition of a fucose linked either via α1,4 or α1,3 to N-acetylglucosamine in type 1 or 2 chains respectively, leads to the 
formation of Lea and Lex, respectively. These antigens can be further elongated by a α1,2 fucose, leading to the formation of Leb 
and Ley antigens, respectively. The α2,3-sialylation of type 1 or 2 chains, followed by the addition of α1,4- or α1,3-linked fucose, 
respectively, leads to the biosynthesis of sialyl Lea and sialyl Lex antigens, respectively. The α2,6-sialylation of type 2 chains 
leads to the formation of Sia6LacNAc. 

 
neoangiogenesis. Nevertheless, very high expression levels 
of sLex can trigger a strong NK-mediated tumor rejection. 

 
The terminal steps of the biosynthesis of sialyl 

Lewis antigens proceeds from the α1,3/4 fucosylation of 
α2,3-sialylated type 1 (sLea) or type 2 (sLex) chains. On 
this basis the role of α1,3/4 fucosyltransferases and α2,3 
sialyltransferases in the cancer-related over-expression of 
sialylated Lewis antigens has been the focus of intense 
investigation. It should be noted that the forced expression 
or down-regulation of α2,3 sialyltransferases (58, 66) or of 
α1,3 fucosyltransferases (54, 56) or of core 2 β1,6 N-
acetylglucosaminyltransferase (C2GnT, Figure 3) (67) 
could modulate the expression of sialyl Lewis antigens in 
experimental systems. However, this does not necessarily 
imply the regulatory role of each mentioned 
glycosyltransferase in vivo. There are at least five enzymes 
which can mediate the addition of fucose in α1,3 linkage to 

an α2,3-sialylated type 2 chain: fucosyltransferases III, IV, 
V, VI and VII (Fuc-TIII-Fuc-TVII, products of genes 
FUT3-FUT7), while only one (Fuc-TIII) can add fucose in 
α1,4-linkage to an α2,3-sialylated type 1 chain. The 
expression of sLex appears to be regulated mainly by Fuc-
TVI in breast tumors (68), while in lung tumors it is 
regulated by a coordinate up-regulation of Fuc-TIII and 
Fuc-TVI (69). On the contrary, in gastrointestinal tumors, 
such as pancreatic cancer, the over-expression of sialyl 
Lewis antigens did not correlate with any single 
glycosyltransferase gene (70). In colon cancer, the 
molecular basis of the over-expression of sialyl Lewis 
antigens are particularly complex. An investigation on the 
level of activity of the fucosyltransferases synthesizing sLea 
or sLex concluded that an altered activity of 
fucosyltransferases could not explain the increased 
expression of sLea/sLex antigens in colon cancer tumors 
(71). Consistently, other investigations reported that the 
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Figure 3. Biosynthesis and structures of short O-linked chains. Elongation of the Ser/Thr-linked GalNAc residue (also known as 
Tn antigen) by β1,3-linked galactose leads to the formation of core 1 structure, also known as T antigen, while the addition of 
α2,6-linked sialic acid to GalNAc, mediated by ST6GalNAc.1, leads to the biosynthesis of sialyl-Tn antigen. The addition of a 
β1,3-linked GlcNAc forms the core 3 structure. The addition to the core 1 structure of a sialic acid α2,3-linked to galactose forms 
the sialyl-T antigen, while the addition of a GlcNAc β1,6-linked to GalNAc forms the core 2 structure. This β1,6-linked branch 
can be elongated by polylactosaminic chains and is frequently terminated by sialyl Lewis antigens. 

 
mRNA level of different fucosyltransferases and 
sialyltransferases involved in the biosynthesis of sialylated 
Lewis antigens could not explain their increased expression 
in colon cancer tissues (72, 73). In a recent paper, we have 
shown that Fuc-TVI is the major, if not the only, sLex 
synthase in colorectal cancer tissues and cell lines (74). The 
activity of this enzyme showed a significant relationship 
with sLex in cancer tissues, suggesting that terminal α1,3 
fucosylation is a limiting step in sLex biosynthesis in colon 
cancer tissues. However, in agreement with previous 
studies, we found that Fuc-TVI was not over-expressed in 
cancer. Thus, the problem of sLex over-expression in 
cancer remains open. A likely explanation is based on a 
competition between Fuc-TVI and enzymes synthesizing 
alternative structures, such as the Sda antigen (75, 76) or 
the sialyl 6-sulfo Lewisx antigen (77) (Figure 4, section 4.4). 
However, the biosynthesis of sialyl Lewis antigens is a 
complex process involving the coordinate expression of 

several glycosyltransferases, which might be different 
depending on the nature of the glycoconjugate (N- or O-
linked chains of glycoproteins or glycolipids) carrying the 
antigen. In fact, the expression of both sLex and sLea 
antigens expressed by glycolipids in colon cancer tissues 
has been related to the activation of a β1,3GlcNAc 
transferase which synthesizes a sugar chain which is a 
precursor for both type 1 and 2 Lewis structures (78). 
Interestingly, this enzyme is activated by Helicobacter 
pylori infection, leading in stomach cells to increased 
expression of sLex ,which is a ligand for H. pylori adhesin 
SabA (79). On the other hand, the expression of sLex/sLea 
antigens on O-linked chains of glycoproteins is strongly 
dependent on C2GnT (26). The relative abundance of type 
1 and type 2 chains is an important factor in determining 
the relative level of expression of sLex/sLea antigens. An up 
regulation of lactosaminic chains (80) and of their 
biosynthetic enzymes β1,4-galactosyltransferase I (81) and 
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-IV (82) and a down-regulation of the β1,3-
galactosyltransferase which synthesizes type 1 chains in 
epithelia (β3GalT5) (83, 84), has been reported in colon 
cancer (85-87), indicating a switch towards the synthesis of 
type 2 chains in the transformation of colonic tissues. The 
key role of β3GalT5 in the regulation of the balance 
between type-1 and -2 chains was also indicated by the 
finding that suppression by anti-sense DNA of β3GalT5 
resulted in down-regulation of sLea and up-regulation of 
sLex and of lactosaminic chains in the pancreatic cancer 
cell line BxPC3 (88). The down-regulation of the 
biosynthesis of type 1 chains in colon cancer tissues leaves 
unanswered the question on the origin and the nature of the 
circulating sLea antigen (CA 19.9) present in the blood of 
several patients affected by various cancers of digestive 
organs. Recent data identified glycolipids associated with 
bile globular membrane as another CA 19.9 carrier, other 
than mucins, in the sera of pancreatic cancer patients (89). 
 
3.3. α2,6-sialylated lactosamine (Sia6LacNAc). 

Lactosaminic chains expressed by N- or O-
linked chains of the polylactosaminic type are frequently 
terminated by sialic acid linked either through an α2,3- or 
an α2,6 bond (Figure 2). α2,6-sialylated lactosamine 
(Sia6LacNAc) is the product of β-galactoside α2,6-
sialyltransferase (ST6Gal.1) (90, 91). Although a second 
enzyme able to mediate the α2,6-sialylation of lactosaminic 
chains, ST6Gal.2, was cloned (92, 93), its strict substrate 
specificity for oligosaccharides and its narrow tissue 
distribution leaves ST6Gal.1 as the major, if not the only 
enzyme responsible of the biosynthesis of Sia6LacNAc. 
This structure can be detected by the α2,6-sialyl-specific 
lectin from Sambucus nigra (SNA) (94) and, although 
widely expressed by normal tissues, shows a dramatic 
increase in several cancers (95, 96). We (97) and 
successively others (98-102) reported that ST6Gal.1 was 
increased in colon cancer tissues compared with normal 
mucosa. Other malignancies, including acute myeloid 
leukemia (103), choriocarcinoma (104), cervical carcinoma 
(105) gastric cancer (106) and some types of brain tumors 
(107) show an elevation of ST6Gal.1 activity or of the 
ST6Gal.1 transcript. As a consequence of the enhanced 
ST6Gal.1 expression, the vast majority of colon cancer 
specimens expresses an increased level of α2,6-sialylation 
of lactosaminic chains, as detected by SNA (108-110), 
although its level does not always correlate with that of 
ST6Gal.1 (110). A clinical study has indicated that high 
SNA reactivity is an independent predictive marker of poor 
prognosis (111). The CDw75 antigen is a peculiar form of 
α2,6-sialylated lactosamine, formerly identified in 
lymphocytes (112). This antigen is somehow different from 
that recognized by SNA in that colon cancer cells 
transfected with ST6Gal.1 exhibited SNA reactivity but not 
anti CDw75 reactivity (113). A recent study (98) has 
indicated that CDw75 is elevated in colorectal cancer, 
although its expression does not correlate with that of 
ST6Gal.1. In colon cancer, ST6Gal.1 over-expression leads 
also to the expression of an α1,2-fucosylated variant of 
Sia6LacNAc: the STH2 antigen (Fucα1-2(NeuAcα2-
6)Galβ1-4GlcNAcβ1-3Galβ1-4Glc-Cer) (114). In human 
hepatocarcinomas, only a minority of the patients exhibits 

increased ST6Gal.1 expression (115), while ST6Gal.1 and 
α2,6-sialylated glycans show an altered distribution (116, 
117). In breast cancer, high ST6Gal.1 is associated with 
poor prognosis markers, such as high grade and absence of 
progesterone receptor (118). Among brain tumors, 
ST6Gal.1 and Sia6LacNAc are expressed only by those of 
non-neuroectodermal origin (107). In general, among brain 
tumors, a more aggressive behavior appears to be related 
with reduced, rather than increased, expression of ST6Gal.1 
and SNA reactivity (119). 

 
Mice transgenic for the SV40 large T antigen 

under the control of a liver-specific promoter 
spontaneously develop well-differentiated hepatocellular 
carcinomas. In these animals, an elevated α2,6-sialylation 
of plasma and liver glycoproteins, as well as an increase of 
liver and serum ST6Gal.1 activity closely followed tumor 
progression (120). To reconcile these findings with the fact 
that only a minority of liver cancer cases displays increased 
ST6Gal.1 and α2,6-sialylation (115) we hypothesized that 
only a few of the multiple mechanisms of cell 
transformation operating in human hepatocarcinomas led to 
ST6Gal.1 activation.  

 
Owing to the fact that ST6Gal.1 is 

transcriptionally regulated by the Ras pathway (discussed 
in section 5.1), it is not clear whether the obvious 
association of ST6Gal.1 activation with neoplastic 
transformation merely reflects the activation of the Ras 
pathway or is causally related to a growth advantage 
provided by Sia6LacNAc structures. This latter 
possibility was suggested by the observation that human 
colon cancer cell lines grown as nude mice xenografts, 
expressed increased levels of ST6Gal.1 and of 
Sia6LacNAc than cell lines grown in the usual in vitro 
conditions (121). To get insights into the causal role of 
ST6Gal.1 and of the cognate Sia6LacNAc structures in 
cancer progression, we (122) and others (123-125) 
stably inserted the ST6Gal.1 cDNA in different cell 
types. The analysis of these transfectants consistently 
indicated an increased adhesion of ST6Gal.1-expressing 
cells to extracellular matrix substrates, such as collagen, 
fibronectin and laminin in both colon cancer (124, 126) 
and breast cancer cell lines (123). Unexpectedly, in the 
colon cancer cell line SW948, ST6Gal.1 expression 
appeared to reduce the tumorigenic potential in nude 
mice and the ability to grow as a multilayer in vitro (126). 
Reduced invasive properties upon ST6Gal.1 transfection 
were described also in glioma cells (125, 127). Altogether, 
these data indicate that the relationship between expression 
of Sia6LacNAc termini and invasive growth is complex 
and probably strongly tissue dependent. An important clue 
on the role of α2,6-sialylation in tumor growth has been 
provided by a study showing that breast cancer tumors 
developed by PyMT mice (see section 3.1) displayed 
increased differentiation when developed in a ST6GAL1-
null background (128). However, ST6Gal.1-null tumors 
displayed similar growth properties when compared with 
tumors developed by ST6Gal.1+/+ mice, indicating that at 
least in this mouse model of breast cancer, Sia6LacNAc 
termini play a role in tumor differentiation but not in tumor 
growth.  
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Several lines of evidence indicate that β1-
integrins are crucial substrates of ST6Gal.1. α2,6-
sialylation exerts opposite effect on of β1-integrin binding 
to extracellular substrates in colon cancer and in myeloid 
cells that is, it increases the adhesion (124, 126, 129, 130) 
and the expression of β1-integrins on the surface (126) of 
colon cancer cells while it decreases adhesion in myeloid 
cells (131, 132). A recent study (133) has provided the 
thermodynamic basis for the increased binding to 
fibronectin of desialylated β1-integrins. However, it is not 
clear how to reconcile these data with the observed 
increased binding of sialylated fibronectin in colon and 
breast cancer cells. A stronger binding of α2,6-sialylated 
β1-integrins to extracellular substrates can reinforce 
integrin-based signal transduction, as suggested by its 
increased binding to talin (124). In addition, α2,6-
sialylation of β1-integrins can play a major role in cancer 
biology by reducing the binding of galectin-3 (134) a lectin 
which, in some circumstances, can exert a pro-apoptotic 
effect (135). Thus, the reduced binding of galectin-3 to 
ST6Gal.1-expressing cells would prevent their apoptotic 
death, resulting in increased malignancy. It is interesting to 
note that breast tumors developed by ST6GAL1-null mice 
(128) exhibited altered expression of genes associated with 
focal adhesion signaling and had decreased 
phosphorylation of focal adhesion kinase, a downstream 
target of β1-integrins.  

 
It has been shown that exposure to ionizing 

radiations results in increased expression of ST6Gal.1 in 
both animals and cultured cell lines (136, 137). A causal 
relationship between high ST6Gal.1 expression and 
radiation resistance was indicated by the finding that 
transfection of ST6Gal.1 cDNA in colon cancer cell lines 
resulted in radiation resistance (137). Increased signaling 
through α2,6-sialylated β1-integrins is at the basis of this 
phenomenon (138), because of a stronger activation of 
paxillin and AKT signaling (139). It is known that the 
activation of these molecules leads to cell survival and to 
the activation of radiation-resistance pathways (140). These 
data depict a scenario in which increased expression of 
ST6Gal.1, by activation of the Ras pathway as discussed in 
section 5.1 or by other means leads to α2,6-sialylation of 
key membrane receptors, including β1 integrins, which 
convey activation and survival signal to cancer cells. 
 
3.4. T, Tn and sialyl-Tn antigens 

These low molecular weight sugar antigens 
derive from an incomplete synthesis of O-linked chains (25, 
141, 142) (Figure 3). The Tn antigen is formed by a 
GalNAc linked to Serine or Threonine. This sugar can be 
substituted by α2,6-linked sialic acid, leading to the 
formation of sialyl-Tn antigen, or by a β1,3-linked 
galactose, forming the Thomsen-Friedenreich (T) antigen, 
or by a β1,3-linked GlcNAc, forming the core 3 structure. 
The β1,3-galactosyltransferase which mediates the 
formation of the T antigen (T-synthase) is peculiar because 
it requires the presence of a molecular chaperone, the 
product of the gene Cosmc (143) which, in the endoplasmic 
reticulum, binds to T synthase preventing its ubiquitin-
mediated proteosomal degradation (144). While the 

presence of core-3 based glycans prevented colitis and 
colorectal cancer in a murine model (145), the expression 
of Tn, sTn and T antigens has often been correlated with 
cancer progression (146). During neoplastic transformation 
of breast epithelium, mucin glycosylation undergoes a 
characteristic switch from the expression of core 2 
structures to accumulation of T (147-150) and sialyl-Tn 
structures (150, 151), (reviewed in (152)). In normal 
colonic tissues, T antigen is not expressed (153-155) 
because it is masked by sialylation (156). On the contrary, 
it is expressed by the majority of colon carcinoma specimens 
(153, 155) and by an even higher percentage of liver 
metastases (157). A molecular basis for the relationship 
between T-antigen expression and metastasis was provided by 
the observation that the interaction between this carbohydrate 
structure and galectin-3 could mediate both the homotypic 
aggregation of cancer cells (158, 159) and the docking of 
tumor cells to endothelial cells (160, 161). The homotypic 
aggregation protects cancer cells from the apoptosis induced 
by the lack of adhesion to extracellular substrates (anoikis) 
(159). The interactions between galectin-3 and the T antigen 
can be specifically inhibited by peptides (162, 163) which are 
able to inhibit both homo- and heterotypic cell adhesion and 
metastasis. In addition, the presence of cancer cells expressing 
the T antigen has been shown to induce the expression of 
galectin-3 by endothelial cells (164). Altogether, these data 
point to the interaction between galectin-3 and T antigen as an 
important determinant of cell malignancy (165). The exposure 
of the T antigen by colonic cells might be per se at the origin 
of proliferative signals. In fact, the binding to the T antigen of 
mitogenic dietary lectins (such as peanut lectin) results in 
increased cell proliferation (166) through stimulation of c-Met 
and MAPK (167); a similar stimulatory effect could be 
obtained by anti T antibodies (168). T antigen appears to be a 
possible target for cell-mediated anti cancer immunity. In fact, 
its expression increased NK susceptibility of cancer cells 
(169), while peptides containing the T antigen were able to 
elicit a specific and MHC class-I-restricted anti-tumor CTL 
response (170, 171). Moreover, anti-T antibodies were able 
to inhibit lung metastasis formation by breast cancer cells 
(172). 

 
Despite the fact that breast cancer tissues often 

accumulate T antigen, ST3Gal.1 the enzyme which 
synthesizes sialyl T antigen, is usually elevated in breast 
cancer (173). The relationship between over-expression of 
ST3Gal.1 and breast cancer progression has recently been 
studied in a murine breast cancer model over-expressing 
ST3Gal.1 under the control of the MUC1 promoter (174). 
In ST3Gal.1 over-expressing mice, tumors developed with 
a shorter latency. However, this effect did not appear to be 
mediated by the accumulation of the sialyl-T antigen but, 
rather, by the mere over-expression of the sialyltransferase, 
suggesting the possibility that the enzyme acts as a tumor 
promoter (174). Interestingly, an elevation of ST3Gal.1 
mRNA was reported also in bladder cancer specimens 
(175). The role of this modification in the biology of 
bladder cancer remains to be established. 

 
Sialyl-Tn antigen is expressed by many 

malignancies, including stomach (176), liver (177), 
pancreas (178). In particular, in breast cancer its expression 
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Figure 4. Alternative biosynthetic pathways in colonic tissues. A, type 1 chains: normal colonic mucosa expresses mainly 
disialyl Lea antigen, while in colon cancer sialyl Lea predominates (264). The biosynthesis of the former antigen proceeds from 
α2,6-sialylation mediated by ST6GalNAc.6, followed by α1,4-fucosylation, mediated by Fuc-TIII. In colon cancer, the 
expression of ST6GalNAc.6 is down-regulated, thus only sialyl Lea can be synthesized. B, type 2 chains: the sialyl Lex antigen is 
expressed at a much higher level in colon cancer than in normal colonic mucosa. On the contrary, the Sda (76), the sialyl 6-sulfo 
Lex (77) and the 3-sulfo Lex (266) antigens are strongly expressed by normal colon and poorly expressed in cancer. 3-O sulfation 
prevents the formation of α2,3-sialylated lactosamine, which is the precursor of the Sda, sialyl 6-sulfo Lex and of sialyl Lex 

antigens The down-regulation of β4GalNAcT-II and of 6-O-sulfotransferase contributes to the increased expression of sialyl Lex.  
 

correlates with a poorly differentiated state (179) and 
resistance to adjuvant therapy in node-positive patients 
(180), while in colon cancer, sTn antigen is expressed by 
most primary tumors and metastasis and correlates with a 
worse prognosis (153, 157, 181, 182). The significance of 
sTn antigen as a tumor marker and its association with 
increased malignancy (183) suggested its use as a cancer 
vaccine (184, 185). Theratope is the commercial name 
given a conjugate formed by the sialyl-Tn disaccharide 
chemically linked to a highly immunogenic protein carrier. 
When administered to metastatic breast cancer patients, the 
conjugate induced an humoral as well as a cellular anti-
cancer response. The protective effect of Theratope has 
been confirmed in a murine model of breast cancer (186).  

 
The biological effects of sTn over-expression 

have been studied in cells over-expressing sialyltransferase 
ST6GalNAc.1, which is the major sTn synthase (187). In 
murine carcinoma cells, ST6GalNAc.1 over-expression led 
to sTn expression on β1-integrins, to major morphological 

changes and to reduced ability to migrate on fibronectin 
and hyaluronic acid (188). On the contrary, ST6GalNAc.1 
over-expression in human breast cancer cell lines resulted 
in the expression of sTn antigen on MUC1 and other high 
molecular weight glycoproteins; this was associated with 
reduced cell adhesion and increased cell migration (189, 
190). 

 
T and sialyl Tn antigens are carried mainly by a 

high molecular weight splice variant of CD44 (191) and 
MUC1 (192-194) in colon cancer, by MUC2 in gastric 
cancer (176) and by MUC1 in breast cancer (194).  

 
A general mechanism which has been proposed 

to be at the basis of the over-expression of Tn and sTn 
antigens in cancer is based on the somatic inactivation of 
the gene Cosmc which, in colon cancer and melanoma cell 
lines is associated with the expression of Tn and sTn 
antigens (143). These data confirm a previous observation 
(195) reporting that the down regulation of a carbohydrate 
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Figure 5. Simplified representation of ganglioside structure and biosynthesis. Sialylation of lactosylceramide, mediated by 
ST3Gal.5, leads to the formation of GM3, which is the founder of a-series gangliosides. The addition of a second, α2-8-linked 
sialic acid to GM3 by ST8Sia.1, yields GD3, which is the first member of b-series gangliosides. The addition of GalNAc on 
either GM3 or GD3 yields GM2 and GD2, respectively and is mediated by the same enzyme: β4GalNAcT-I (GM2/GD2 
synthase). The structure and biosynthesis of higher gangliosides and of c-series gangliosides are omitted for simplicity. 

 
structure can deviate the glycan biosynthesis towards 
alternative structures.  
. 
3.5. Gangliosides 

Gangliosides are sialic acid-containing 
glycolipids, whose expression is often deranged in cancer 
cells (4). In particular, accumulation of ganglioside GD3 is 
characteristic of melanoma (196-198), while accumulation 
of GD2 characterizes neuroblastoma (199). Gangliosides 
may play a role in cancer biology not only as cell surface 
structures (200), but also as molecules shed by the tumor, 
which can exert an immunosuppressive effect by 
sensitizing T lymphocytes to apoptosis (201). On the cell 
membrane, gangliosides are organized into complex 
structures known as glycosynapses, regions of the cell 
membrane where glycoconjugates are clustered with 
growth factor receptors and adhesion receptor (200, 202). 
The relevance of gangliosides as cancer-associated 
molecules has suggested their use as target for anti-cancer 
immunotherapy (203).  

 
Key steps in ganglioside biosynthesis (Figure 5) 

are represented by the α2-3-sialylation of lactosylceramide, 
catalyzed by ST3Gal.5 (GM3 synthase), which results in 
GM3 synthesis, and by the α2-8 sialylation of GM3 by 
ST8Sia.1 (GD3 synthase), which yields GD3. GM3 and 
GD3 are the founders of the a- and b-series gangliosides 
respectively and are transformed in GM2 and GD2 
respectively by the action of the same enzyme: 
β1,4GalNAcT-I (GM2/GD2 synthase). As a general rule, it 
appears that malignancy is positively associated with the 
expression of GD3 (25, 204-206) and negatively with that 
of GM3 (207-210). Expression of GD3 enhances in vivo 
growth and metastasis formation (211-215) through 
mechanisms involving interactions with both, receptors for 
growth factors such as c-Met (216) and receptors for the 
extracellular matrix, such as integrins (217). Interestingly, 

this interaction takes place between the carbohydrate 
portion of GD3 and the sugar chains of integrins (217). 
ST8Sia.1 transfection of a breast cancer cell line resulted in 
the activation of c-Met in the absence of its ligand, the 
hepatocyte growth factor (also known as scatter factor). 
This, in turns, resulted in the activation of both the 
PI3/AKT and MAPK signaling pathways (216). GD3 
expression is necessary for VEGF signaling (215), and 
results in the activation of signaling molecules, such as 
focal adhesion kinase, paxillin and p130Cas (218, 219) and 
eventually of the Ras/MEK/ERK pathway (220). The over-
expression of the tumor suppressor molecule caveolin-1 
displaces GD3 from lipid rafts and inhibits paxillin and 
p130Cas activation, resulting in an attenuation of the 
malignant phenotype (221). The promoter region of GD3 
synthase (ST8Sia.1) contains putative binding sites for 
transcription factors c-Ets-1, CREB, AP-1 and NF-kB 
(222), but appears to be regulated mainly by NF-kB (223).  

 
The negative effect of GM3 on cell growth and 

malignancy is mediated through different mechanisms. It 
down-regulates EGF signaling (224) by interacting with its 
carbohydrate portions (225, 226). Moreover, GM3 inhibits 
VEGF (227), and PDGF (228) signaling, it associates with 
ErbB2 (229) and stimulates the expression of the cell cycle 
inhibitors p21(WAF1) and p27(kip1) through the tumor 
suppressor phosphatase PTEN (230). In addition, 
fibroblasts from ST3Gal.5-KO mice, lacking GM3 and a-
series gangliosides, display a highly activated state of the 
MAPK pathway (231). However, these cells lack also GD3 
and other b-series gangliosides; this indicates that the mere 
absence of GM3 in the absence of GD3 is sufficient to 
derange the MAPK pathway. GM3 induces apoptotic death 
in neuronal cells (232) and, in association with tetraspanin 
CD82, is able to inhibit c-Met signaling and its cross-talk 
with integrins, resulting in reduced cell motility (233, 234). 
In considering the relative contribution of GD3 and GM3 to 
the neoplastic phenotype, it should be kept in mind that a 
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near complete ganglioside depletion in oncogene-
transformed cells resulted in a dramatic inhibition of in vivo 
growth in syngeneic animals (235). Altogether, these 
results suggest that either the absence of GM3 or the over 
expression of GD3 are sufficient to exacerbate the 
neoplastic phenotype of cancer cells. 

 
Beside the many studies indicating a role of 

GM3 in the attenuation of the neoplastic phenotype and of 
GD3 in its exacerbation, a few studies report that in given 
condition the opposite may happens (236-238). Very 
recently, it has been shown that over-expression of 
sialyltransferase ST6GalNAc.5 in glioma cells led to 
deranged expression of complex gangliosides, including 
increased expression of GM3 (239); these changes were 
associated with reduced malignancy. 
 
4. MECHANISMS LEADING TO ALTERED 
GLYCAN STRUCTURES 
 

Different mechanisms can account for the cancer-
associated altered glycosylation pattern. These include the 
derangement of biosynthetic enzymes (e.g. 
glycosyltransferases, sugar nucleotide transporters) or of 
sugar degrading enzymes (e.g. glycosidases) and the 
masking of sugar epitopes by substituent groups. Examples 
of deranged glycosyltransferase expression have been 
provided in the preceding sections. In this chapter we will 
discuss other mechanisms. 
 
4.1. Altered glycosidase expression  

The best example of altered glycosidase activities 
in cancer is provided by Neu sialidases, a group of four 
enzymes (Neu1, lysosomal; Neu2, cytosolic; Neu3, cell 
membrane and Neu4, mitochondrial) showing marked 
alterations in cancer (240). Neu1, which is specific for 
oligosaccharides and glycopeptides, shows marked down-
regulation in cancer, promoting anchorage-independent 
growth and metastatic ability. Over-expression of this 
enzyme in murine melanoma cells led to reversion of the 
malignant phenotype (241). Over-expression of cytosolic 
Neu2 also led to reduced invasion of cancer cells and to a 
concomitant reduction of sialylated molecules, such as 
GM3 and sLex (242). The ganglioside-specific, cell 
membrane-associated Neu3 displayed up-regulation in 
cancer. The mechanism through which Neu3 promotes 
cancer growth is related to inhibition of apoptosis through 
increased Bcl-2 and decreased caspase expression (243-
245). The signal leading to apoptosis inhibition is 
originated at the plasma membrane and involves a 
potentiation of the EGFR signaling, resulting in the 
activation of the Ras cascade (243). 
 
4.2. Masking of sugar structures by substituent groups 

Cancer-associated sugar structures, such as 
sLex/sLea and sTn might be expressed also by normal 
tissues but their recognition by monoclonal antibodies can 
be hindered by substituent groups. In normal colon, the 
recognition of the sTn antigen is hindered by the O-
acetylation of sialic acids. In fact, after de-acetylation of 
the samples by alkali treatment, the antigen appeared to be 
expressed at similar level by normal mucosa and colon 

cancer (246). However, this treatment rarely increased sTn 
expression in normal and neoplastic gastric and pancreatic 
tissues, suggesting that different mechanisms might be at 
the basis of the increased sTn expression in different tissues. 
O-acetylation of sialic acid plays a relevant role also in 
masking sLex in normal colonic tissues, in that after alkali 
treatment the expression of sLex carried by mucins in 
normal mucosa equaled that of cancer tissues (247). Our 
recent data (74, 76) confirms the expression of sLex in 
normal mucosa after de-acetylation of the samples. 
However, in cancer tissues the expression of sLex remained 
higher than in normal mucosa even after removal of O-
acetyl groups (74).  

 
Another example of the masking of a cancer-

associated carbohydrate antigen is represented by the 
addition of a sulfate group linked to the 6 position of the 
GlcNAc residue of sLex in normal colonic mucosa, 
generating the sialyl 6-sulfo Lewisx antigen (Figure 4) (77). 
The presence of this antigen, which is highly expressed in 
non malignant colonic mucosa but poorly or not expressed 
by colon cancer (77), contributes to explain the low sLex 
expression in normal colon. 
 
4.3. Altered expression of sugar and sugar nucleotide 
transporters  

During the biosynthesis of the glycoconjugates, 
the addition of the more distal sugars (sialic acid, fucose, 
galactose) in the Golgi apparatus by the respective 
glycosyltransferases requires the availability of the 
appropriate sugar nucleotide donors inside the Golgi 
cisternae. These compounds are actively transported from 
the cytoplasmic side to the luminal side of the Golgi 
membranes by specific sugar nucleotide transporters. An 
involvement of a UDP-galactose transporter in the 
regulation of the expression of the cancer associated 
antigens T, sLea and sLex was indicated by a study showing 
that the mRNA of this transporter was up-regulated in 
colon cancer tissues, compared with normal mucosa (248). 
Transfection of this cDNA in SW1083 colon cancer cells 
resulted in elevation of T and sLea but not of sLex antigen, 
whereas transfection in SW480 cells resulted in little or no 
changes in the expression of T and sLea antigens but in 
strong elevation of sLex. This cell line-specific effect on 
sugar antigen biosynthesis of the UDP-galactose transporter 
suggests that it might be a limiting factor in the sugar 
antigen biosynthesis in some cell lines but not in others. 
Other examples of the influence of transporters on the 
biosynthesis of cancer-related sugar antigens are provided 
by the sialic acid transporter sialin (249) (discussed in 
section 5.2) and by the sulfate transporter DTDST (250), 
which is necessary for the biosynthesis of the sialyl 6-sulfo 
Lewisx antigen (section 4.2 and Figure 4). The down-
regulation of this gene in colon cancer tissues (250) 
provides a molecular basis for the reduced expression of 
the sialyl 6-sulfo Lewisx antigen in colon cancer and for the 
concomitant over-expression of sLex (77). 
 
4.4. Competition between normal and cancer-associated 
carbohydrate structures 

The expression of a given carbohydrate antigen 
can be regulated by the level of expression of enzymes 
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synthesizing alternative structures. In this chapter we will 
discuss some examples of this mechanism. A first example 
is provided by the competition between GnT5 and GnT3 in 
the biosynthesis of the N-linked chains (reviewed in (251)) 
(Figure 1). The addition of the bisecting GlcNAc inhibits 
the addition of the β1,6-branched chain (252, 253) and 
consequently, the elaboration of the polylactosaminic 
chains and of the terminal carbohydrate antigens (such as 
sLex). The main substrates of GnT3 are integrins (254), 
EGFR (255) and E-cadherin (256, 257). A negative effect 
of bisecting GlcNAc on cancer growth is suggested by 
several studies. For example, the addition of a bisecting 
GlcNAc on E-cadherin led to a down-regulation of tyrosine 
phosphorylation and to an altered localization of β-catenin 
after EGF stimulation (258), while the expression of GnT3 
suppressed lung metastases of melanoma cells (259). 
Conversely, down-regulation of Wnt/β-catenin signaling 
led to reduced GnT3 expression and down-regulation of 
bisecting GlcNAc on β1-integrins (260). However, it has 
also been reported that under some circumstances bisecting 
GlcNAc can promote cancer growth. For example, in B16 
melanoma cells expression of GnT3 led to the formation of 
bisecting structures on CD44 (261) which, in turns, led to 
increased adhesion to hyaluronate and increased tumor 
growth and metastasis. Moreover, circulating glycoproteins 
bearing bisecting GlcNAc promote hepatocyte proliferation 
(262). Nevertheless, the bulk of data supports the view that 
cell surface receptors modified by bisecting GlcNAc exert 
an inhibitory effect on cancer cell growth, in part by 
inhibition of the β1,6-branching. 

 
Another example of competition between 

normal and cancer-associated structures is provided by the 
alternative presence of disialyl Lewisa or sLea antigens in 
normal and cancer colon, respectively (Figure 4) (263). The 
final steps of disialyl Lewisa biosynthesis, which is 
expressed mainly by normal mucosa and serves as ligand 
for the sialic acid binding inhibitory receptor Siglec-7 
expressed by lymphoid cells (264), is mediated by the 
coordinate action of sialyltransferase ST6GalNAc.6 and 
fucosyltransferase 3 (Fuc-TIII) (265). Owing to the fact 
that sLea is not a substrate of ST6GalNAc.6, the 
biosynthesis of disialyl Lea can proceed only through the 
α2,6-sialylation of the GlcNAc residue of 
NeuAcα2,3Galβ1,3GlcNAc, followed by the Fuc-TIII-
mediated addition of an α1,4-linked fucose (Figure 4). 
Thus, ST6GalNAc.6 and FucT-III contribute to the 
biosynthesis of this antigen in a manner that is at the same 
time cooperative and competitive. In fact, even though the 
contribution of both enzymes is necessary for the 
elaboration of this antigen, when the activity of 
ST6GalNAc.6 is not adequate (as occurs in colon cancer), 
only sLea antigen is synthesized.  

 
Many of the studies on tissue expression of 

carbohydrate antigens utilized monoclonal antibodies. One 
of the few chemical analysis of the carbohydrate structure 
of mucins from normal and cancer colon reported the 
prevalence of a 3-sulfo Lewisx structure in which the α2,3 
linked sialic acid of sLex was replaced by a sulfate group 
(266). In cancer mucin, this 3-sulfo Lex structure was 
down-regulated and sLex became predominant (266).  

Another “normal” carbohydrate antigen whose 
down-regulation in cancer might be responsible for the 
expression of cancer-associated structures is the Sda antigen. 
This antigen is formed by a GalNAc β1,4-linked to the 
galactose residue of α2,3-sialylated lactosamine (Figure 4). 
The addition of this GalNAc residue is mediated by 
β4GalNAcT-II (also known as CT GalNAc transferase) 
(267), product of the B4GALNT2 gene. The enzyme is 
expressed at a very high level by normal colonic mucosa 
but is dramatically down-regulated in colon cancer (76, 268, 
269). In vitro studies have shown that forced expression of 
this enzyme in colon and stomach cancer cell lines 
expressing the sLex or sLea antigens, resulted in the 
expression of the Sda antigen and in a dramatic down-
regulation of sLea/sLex antigens (75, 76). This change was 
reported to be associated with a complete (stomach cells) or 
near complete (colon cells) loss of the metastatic potential 
(75). Moreover, structural studies have shown that the Sda 
or the sLex antigens can be expressed by colonic mucins in 
a mutually exclusive manner (270), in that the structures 
containing the β1,4-linked GalNAc on galactose did not 
contain the α1,3/4 fucose on GlcNAc. Altogether, these 
data strongly suggest that the cancer-associated down-
regulation of β4GalNAcT-II plays a role in the expression 
of sLex/sLea antigens by cancer tissues. 

 
Other glycosyltransferases have shown the 

potential to down-regulate sLex expression upon 
transfection in cancer cells. An example is provided by 
α1,2 fucosyltransferase I (Fuc-TI, product of FUT1 gene), 
whose expression has been reported to inhibit, through a 
competitive mechanism, the biosynthesis of sLex and the 
binding to E-selectin, without affecting the biosynthesis of 
sLea and P-selectin binding (271, 272). In HepG2 cells, this 
modification resulted in inhibition of vasculogenesis and 
tumor growth (63). 

 
Another example is provided by the competition 

between ST3Gal.1, which synthesizes the sialyl-T antigen 
and core 2 GlcNAcT-1 (C2GnT1), which synthesizes core-
2 branching (Figure 3) (273). The distribution of these 
enzymes along the Golgi apparatus displays a certain 
degree of overlapping, with C2GnT1 more proximal and 
ST3Gal.1 more distal. Transfection experiments have 
indicated that when ST3Gal.1 was increased, as occurs in 
breast cancer, the O-glycans of MUC1 became dominated 
by core 1 structures, even in the presence of C2GnT1 
expression (273). Consistently, in the human colon cancer 
cell line SW480, C2GNT1 expression led to down-
regulation of T antigen expression (274). In rat colon 
cancer cells, the expression of sTn appears to be controlled 
by the balance between the α2,6-sialyltransferase which 
synthesizes sTn and the GlcNAcTs which synthesize core 2 
structures (275).  
 
5. MECHANISMS OF REGULATION OF 
GLYCOGENES 
 

Genes whose products are involved in the 
biosynthesis, degradation or recognition of carbohydrate 
chains can be referred to as “glycogenes”. In this section 
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Figure 6. Control of glycosylation by the mechanisms regulating cell growth. Centrifugal relationships link oncogenes, tumor 
suppressor genes and hypoxia, sometimes through epigenetic mechanisms, to cell membrane structures, such as sugar antigens 
and galectins (italicized). Frequently, these relationships are mediated through glycosyltransferase expression. Numbers indicate 
the most relevant references supporting the indicated relationships. 

 
we will discuss the mechanisms of regulation of these 
genes, with focus on glycosyltransferases and galectins. 

 
5.1. Regulation of glycogenes by oncogenes and tumor 
suppressor genes 

From the early papers published in the ‘80s, it 
turned out that transfected (276-278) or virally expressed 
(279, 280) oncogenes induced an increased size of the N-
linked chains due mainly to increased β1,6 branching and 
increased expression of polylactosaminic chains. Among 
the oncogenes able to induce this effect were Ras (276-278), 
vfps/fes but not myc (278), while among viruses were 
polyoma (280) and Rous sarcoma viruses (279). The 
relationship between altered glycosylation and altered 
signal transduction is bidirectional. In fact, on the one hand 
the cancer-associated alterations of the signal transduction 
pathways frequently lead to increased expression of 
specific glycosyltransferases, resulting in altered 
glycosylation pattern (centrifugal relationship) (Figure 6). 
On the other hand, cancer-associated glycans expressed on 
cell membrane receptors can modify the cell signaling, 
resulting in the modulation of the basic properties of cancer 
cells (centripetal relationship, Figure 7). In the first case the 
alteration of the glycosylation pattern is the consequence of 
altered signaling, while in the second is the cause. 
Examples of the first relationship are mainly provided by 
MGAT5 and ST6GAL.1 genes, whose transcription is 
under the control of the ras/MAPK/Ets-1 pathway. MGAT5 
is up-regulated by src (281), ErbB2 (282), v-sis (283) and 
Ras (284, 285) oncogenes, through Ets-1 (286, 287). Also 
sialyltransferase ST6Gal.1 is regulated by both N-ras and 
H-ras through RafGEF signaling (288-291). Other 

glycosyltransferases involved in increased branching of N-
linked chains, such as galactosyltransferase-1 (292) and 
galactosyltransferase-5 (293) are under the control of Ets 
family members of transcription factors. Altogether, these 
data suggest that different upstream agents, signaling 
through the Ras pathway, cooperate in determining an 
increased size of N-linked chains. 

 
In the pancreatic cancer cell line Capan1, 

expression of the tumor suppressor p16INK4a, which encodes 
an inhibitor of  cyclin D CDK4/6 complex, restored the cell 
susceptibility to anoikis, and a profound alteration of the 
glycosylation machinery (294). p16INK4a  induced increased 
expression of the fibronectin receptor integrin α5β1, 
altered expression of galactosyltransferase genes, down-
regulation of α2,3-sialylation of O-linked chains and of 
α2,6-sialylation of N-linked chains. Decreased cell 
sialylation was accompanied by increased expression (and 
binding) of the pro-anoikis galectin-1, which interacts with 
the sugar chains of α5β1 integrin (295), while the 
expression of the anti-anoikis galectin-3 was decreased 
(296). Both, galectin-1 (297) and galectin-3 reinforce Ras-
signaling (298) by directly interacting with Ras proteins. 
Through potentiation of the Ras signaling, cancer-derived 
galectin-1 facilitates cancer growth by stimulating the pro-
angiogenic activity of endothelial cells (299). In addition, 
galectin-3 activity is regulated by c-abl-mediated 
phosphorylation of specific sites (300).  

 
The metastasis-suppressor gene nm23-H1 has 

been reported to down regulate several glycosyltransferases 
involved in the biosynthesis of metastasis-associated 
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Figure 7. Control of the cancer cell phenotype by glycosylation. Centripetal relationships link cancer-associated carbohydrate 
structures and prominent features of the cancer cell phenotype. Signals originated by the cancer-associated sugar structures 
(italicized) on the cell membrane converge on a few "hubs"(ovals) which convey signals inside the cell, resulting in increased cell 
growth and survival, angiogenesis and adhesion to endothelia. Numbers indicate the most relevant references supporting the 
indicated relationships. 

 
structures, including GnT5 (301) as well as 
fucosyltransferases and sialyltransferases involved in sLex 
biosynthesis (302) and to inhibit integrin glycosylation 
resulting in reduced cell surface expression of β1 integrins 
(303). These effects are likely to play a role in the nm23-
H1-induced reduction of the metastatic ability of cancer 
cells. 
 
5.2. Glycosylation changes and hypoxia 

Owing to the irregular and insufficient blood 
supply, large parts of a growing tumor can undergo hypoxia 
(insufficient oxygen supply). Cells respond to hypoxia 
through the hypoxia inducible factor (HIF), a dimeric 
transcription factor responsible for the transcription of 
several genes whose products compensate for the hypoxic 
conditions (304). The regulatory subunit of HIF is known 
as HIF-1α. The genes positively regulated by HIF-1α 
include those involved in angiogenesis, anaerobic 
metabolism, erythropoiesis and cell motility. In addition, 
recent findings have shown that also some glycosylation-
related genes are under the control of HIF-1α (305). Colon 
cancer cell lines kept either in hypoxic conditions or in the 
presence of the hypoxia-mimic drug desferioxamine 
exhibited an increased expression of the selectin ligands 
sLex and sLea (306). The transcription of the mRNA of two 
glycosyltransferases potentially involved in selectin ligand 
biosynthesis, ST3Gal.1 and Fuc-TVII, was found to be 
under the control of HIF-1α and was increased in colon 
cancer tissues (306), suggesting that this increase is 

responsible for the augmented selectin ligand biosynthesis. 
However, the level of the FucT-VII transcript in colonic 
tissues is extremely low (72-74), consequently the 
contribution of this enzyme to sLex biosynthesis in colonic 
tissues is at least uncertain. Another gene stimulated by 
hypoxic conditions is that encoding for sialin, a sialic acid 
transporter (249). The over-expression of sialin resulted in 
increased expression of gangliosides containing the non-
human sialic acid N-glycolyl-neuraminic acid (NeuGc). 
The presence of this non-human sugar in human cancer 
tissues and cell lines is due to the uptake from the diet or 
from bovine serum, respectively (307). These studies 
suggest that hypoxic conditions of tumor growth enhance 
incorporation of non-human sialic acid in gangliosides 
(308). Hypoxic conditions influence also the expression of 
sugar binding molecules such as galectin-1 (309). HIF-
induced expression of galectin-1 in head and neck 
squamous cell carcinomas led to a reduced presence of 
tumor infiltrating lymphocytes, probably because of the 
known ability of galectin-1 to induce apoptosis of T 
lymphocytes (310). In colorectal cancer cell lines, HIF-
dependent expression of galectin-1 is responsible for 
increased migration and invasion (311), indicating that this 
lectin is an important mediator of the effects of tumor 
hypoxia on cancer growth. 
 
5.3. Epigenetic regulation 

The best known examples of epigenetic 
regulation of gene expression include DNA methylation of 
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CpG islands in gene promoter regions, chromatin 
alterations (i.e. histone acetylation, methylation, and 
ubiquitylation) and the expression of non-coding RNAs 
(312-314). The relevance of these modifications in cancer 
progression is increasingly recognized and the mutual 
interplay among these mechanisms is emerging as a novel 
paradigm of gene regulation (315). Many glycogenes appear to 
be aberrantly regulated in cancer because of epigenetic 
mechanisms (305, 316), including galectins (317-321), 
enzymes involved in the biosynthesis of sugar nucleotides (322, 
323), transporters (250) and glycosyltransferases (264, 324-
333). However, many of the cited studies were restricted to the 
investigation of the methylation status of the promoter region, 
usually through the use of the demethylating agent 5-aza-2-
deoxycytidine (5-aza-dC). However, recent studies on 
hypermethylated tumor-suppressor promoters have reported 
only partial reactivation upon treatment, because they maintain 
several repressive histone modification marks (334, 335). 
Interestingly, a CpG island nearby the putative promoter 
region of the B4GALNT2 gene was found to be heavily 
methylated in colon cancer tissues (329), while treatment of 
colon cancer cell lines with 5-aza-dC resulted only in a partial 
recovery of enzyme expression (336). A similar behavior is 
displayed by the native promoter of β3GalT5, which lies in the 
context of two CpG islands (337). In fact, the activity of this 
promoter inversely correlated with the methylation status of 
the CpG islands in different cell lines, but 5-aza-dC treatment 
resulted in little or no effect on gene expression (Caretti, 
Dall’Olio, Trinchera, unpublished results). These data suggest 
that other glycogenes might be under the control of 
epigenetic mechanisms even if poorly responsive to 5-aza-
dC. Consequently, the contribution of epigenetics to the 
regulation of glycosylation could be more relevant, as 
hypothesized (338). 
 
6. PERSPECTIVE 
 
  The availability of genetically manipulated cell 
lines as well as of transgenic and knock-out mouse strains 
has allowed to establish unequivocally the causal role 
played by the cancer-associated glycosylation changes in 
cancer biology and to establish the multiple links between 
the cell glycosylation machinery and the signal 
transduction mechanisms. As depicted in Figure 6, the 
basic mechanisms controlling cell behavior affect the 
expression of cell surface carbohydrate structures and 
carbohydrate binding molecules, through "centrifugal" 
relationships. However, as depicted in Figure 7, 
carbohydrate structures on the cell membrane are able to 
affect the basic properties of cancer cells through 
"centripetal” relationships". These interactions appear to be 
integrated by a few types of molecules (including receptors 
of growth factors, integrins, galectin-3, E-cadherin), acting 
as "hubs". Glycosylation, like other post-translational 
modifications, has the potential to "fine tune" the 
interactions between cells and molecules. The full 
elucidation of these interactions, which are at the basis of 
the healthy development of complex organisms and are 
profoundly altered in cancer, is a major challenge of the 
post-genomic era and will provide the conceptual basis for 
therapeutic interventions aimed at the normalization of the 
cell surface of cancer cells. 
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