
[Frontiers in Bioscience 18, 1051-1071, June 1, 2013] 

1051 

Octamer-binding transcription factors: genomics and functions 
 
Feng-Qi Zhao1 
 
1Department of Animal Science, University of Vermont, 570 Main Street, Burlington, VT, USA  
 
TABLE OF CONTENTS 
 
1. Abstract 
2. Introduction 
3. Structural characteristics of Oct proteins 
4. Binding specificity of Oct proteins 
5. Oct members and their tissue expression, genomic organization and general functions 

5.1.  Oct1 
5.2.  Oct2 
5.3.  Oct3/4 
5.4.  Oct6 
5.5.  Oct7 
5.6.  Oct8 
5.7.  Oct9 
5.8.  Oct11 

6. Functional roles of Oct proteins in specific physiological processes 
6.1.  Essential functions of Oct proteins in embryogenesis 
6.2.  Pivotal role of Oct4 in the maintenance of cell pluripotency 
6.3.  Interactions of Oct proteins with basal transcription machinery in regulation of gene expression 
6.4.  Regulation of immune functions by Oct1/2 
6.5.  Oct1, a sensor of metabolic and stress signals 
6.6.  Regulation of milk protein gene expression by Oct factors 
6.7.  Oct proteins in neural development 
6.8.  Oct11 and Oct6 in keratinocyte and taste cell proliferation and differentiation 

7. Pathophysiological roles of Oct proteins 
8. Conclusions and perspectives 
9. Acknowledgements 
10.  References 
 
 
 
1. ABSTRACT 

 
The Octamer-binding proteins (Oct) are a group 

of highly conserved transcription factors that specifically 
bind to the octamer motif (ATGCAAAT) and closely 
related sequences in promoters and enhancers of a wide 
variety of genes. Oct factors belong to the larger family of 
POU domain factors that are characterized by the presence 
of an amino-terminal specific subdomain (POUS) and a 
carboxyl-terminal homeo-subdomain (POUH). Eleven Oct 
proteins have been named (Oct1-11), and currently, eight 
genes encoding Oct proteins (Oct1, Oct2, Oct3/4, Oct6, 
Oct7, Oct8, Oct9, and Oct11) have been cloned. Oct1 and 
Oct2 are widely expressed in adult tissues, while other Oct 
proteins are much more restricted in their expression 
patterns. Oct proteins are implicated in crucial and versatile 
biological events, such as embryogenesis, neurogenesis, 
immunity, and body glucose and amino acid metabolism. 
The aberrant expression and null function of Oct proteins 
have also been linked to various diseases, including 
deafness, diabetes and cancer. In this review, I will report 
both the genomic structure and major functions of 
individual Oct proteins in physiological and pathological 
processes. 

 
 
2. INTRODUCTION 
 

Transcriptional regulation of gene expression is 
dependent on the interactions of trans-acting proteins with 
cis-acting sequence-specific DNA elements located in gene 
promoter or enhancer regions (1). The octamer motif, 
ATTTGCAT, and its closely related sequences are a group 
of cis-acting transcriptional regulatory elements found in 
the promoters and enhancers of a wide variety of both 
ubiquitously expressed and cell type-specific genes (2, 3). 
Nuclear extracts prepared from various adult mouse organs 
and different developmental stages of mouse embryos form 
at least 11 distinct binding complexes when incubated with 
the radiolabeled octamer motif sequence in electrophoretic 
mobility shift assays (EMSA) (Figure 1) (3-5). These 
binding proteins were named octamer-binding transcription 
factors, or Oct, and were assigned Oct1 to Oct11 
designations. To date, eight genes that encode these Oct 
proteins, Oct1 (6), Oct2 (7), Oct3/4 (8), Oct6 (9), Oct7 (10, 
11), Oct8 (12), Oct9 (13), and Oct11 (5), have been cloned 
and characterized (Table 1 and Figure 2A for human 
sequences). At least some of the remaining band-shift 
activities may represent degraded products or the splice 
variants of the above genes. Except for the apparent 
ubiquitous expression patterns of Oct1 (2, 6) and possibly
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Table 1. Genomic location and organization of human octamer-binding transcription factors (Octs) 
Protein Gene symbol Chromosome location1 Putative isoforms:aa, (kDa)2 
Oct1 POU2F1 1q24.2 Oct1A:    766 (79) 

Oct1B:    743 (76) 
Oct1F    703 (72) 
Oct1L:    755 (78) 

Oct2 POU2F2 19q13.2 Oct2.1    463 (49) 
Oct2. 2479 (51) 
Oct2.7    467 (50) 

Oct3  8Q24.21 Oct3    359 (39) 
Oct4 POU5F1 6P21.31 Oct4A    360 (39) 

Oct4B    265 (30)    190 (21)    164 (18) 
Oct6 POU3F1 1p34.1 Oct6    451 (45) 
Oct7 (Brn2) POU3F2 6q16 Oct7    443 (47)    263 (29)    244 (27) 
Oct8 (Brn1) POU3F3 2q12.1 Oct8    500 (50) 
Oct9 (Brn4) POU3F4 Xq21.1 Oct9    361 (39) 
Oct11 (Skn-1a) POU2F3 11q23.3 Oct11    436 (47) 
Protein Genomic organization1 
Oct1 

 
Oct2 

 
Oct3 Intronless 

mRNA: NM_001159542; protein: NP_001153014 
Oct4 

 
Oct6 Intronless 

mRNA: NM_002699; protein: NP_002690 
Oct7 (Brn2) Intronless 

mRNA: NM_005604; protein: NP_005595 
Oct8 (Brn1) Intronless 

mRNA: NM_006236; protein: NP_006227 
Oct9 (Brn4) Intronless 

mRNA: NM_000307; protein: NP_000298 
Oct11 (Skn-1a) 

 
1Adapted from the NCBI Gene website (http://www.ncbi.nlm.nih.gov/pubmed?Db=gene&Cmd=retrieve&dopt=full_report&list_uids=“gene id”), 
version: 12-Jan-2012. In the genomic organization column, each vertical bar represents an exon, and arrows indicate the orientation of the gene. 
The GenBank Accession Number of each reference sequence is labeled. 2aa = amino acids, kDa = deduced molecular mass in kilodaltons. 
 
Oct2 (14), all other members of the Oct proteins exhibit a 
developmental and tissue-specific expression pattern (15, 
16). 

 
Sequence analysis of Oct factors reveals that all 

of these proteins are members of the POU factor family 
(17), a family of proteins (>150 family members) 
characterized by the presence of a POU-specific domain 
(POUS) and a POU-homeodomain (POUH) (Figure 3). Both 
of these two POU domains are required for high-affinity, 
site-specific binding to the octamer motif and are involved 
in protein-protein interactions with other transcription 
factors or co-factors. Different Oct factors appear to differ 
in their transcription-activating domains and in their 
capacity to transactivate target genes. These proteins 

originate from different highly conserved Oct genes; 
however, multiple differentially spliced isoforms of the 
same Oct gene also exist (Table 1). This review will report 
the genomic structure and expression of individual Oct 
genes and will summarize their known major functions in 
physiological and pathophysiological processes. 

 
3. STRUCTURAL CHARACTERISTICS OF OCT 
PROTEINS 
 

All Oct proteins, like other POU family 
members, share a highly conserved bipartite DNA binding 
domain, consisting of a74-82 amino acid amino-terminal 
POUS subdomain and a 60 amino acid carboxy-terminal 
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Figure 1. Electrophoretic mobility shift assay of octamer-binding transcription factors (Octs) in adult mouse tissues, embryos and 
cell lines. HeLa: human cervical carcinoma cell line; BJA-B: human lymphoblastoid cell line; undifferentiated F9 cells (F9 UD): 
embryonic carcinoma cell line; differentiated F9 cells (F9 D). Reproduced with permission from (3). 

 
POUH subdomain. These domains are tethered by a linker 
of variable length (14-26 amino acids) (Figure 3A). 

 
The POUH is distantly related to the classic 

homeodomain, which is encoded by homeobox. The 
homeobox genes encode a large family of transcription 
factors (>2000), which act as master regulators of 
anatomical development in animals, fungi and plants (18). 
The homeodomain forms a triple α-helix that binds to DNA 
through a helix-turn-helix (HTH) structure (19). The 17 
amino acid helix III, referred to as the WFC region (Figure 

3A) (20), is highly conserved and may function to 
recognize DNA. Evidence from a high-resolution study of a 
Drosophila eve-DNA complex suggests that the 
homeodomain proteins bind DNA as multimers (19). 
Although the POUH is related to the classical 
homeodomain proteins, POUH alone cannot efficiently 
bind to DNA (21, 22). The mechanism of POUH binding 
is distinct from that of the classical homeodomain 
proteins. Efficient and sequence-specific DNA binding 
requires POUH to cooperate with POUS (21, 22); this 
cooperation will be discussed in Section 4.
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Figure 2. A, B. Alignments of all human Octamer-binding factors (Octs) (A) and Oct3 and Oct4 isoforms (B). The GenBank 
protein identification numbers of these sequences are NP_002688 (Oct1A), NP_002689.1 (Oct2.1), NP_001153014.1 (Oct3), 
NP_002692.2 (Oct4A), NP_002690.3 (Oct6), NP_005595 (Oct7), NP_006227.1 (Oct8), NP_000298.2 (Oct9), NP_055167.2 
(Oct11), CAA77952 (Oct4B-265) and NP_001167002.1 (Oct4B-190). The alignment was performed with the CLUSTAL-W 
program with an open gap cost = 10 and a gap extension cost = 0.2. Residues that are highlighted with black shading represent 
conserved amino acids, and the gray shading indicates 5 or more (A) or 2 or more (B) conserved residues at that position. 
Positions of the POU-specific domain (POU-S) and the POU homeodomain (POU-H) are given by dashed lines at the top of the 
sequence alignment. In addition, the conserved amino acids are shown on the bottom of the sequence alignment. C. Phylogenetic 
tree of Oct factors drawn from the multiple sequence alignment using CLUSTAL-W. The numbers represent tree weights.  
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Figure 3. A. Common structural domains of POU transcription factors, including Octamer-binding factors (Octs). AA, amino 
acids; POUs, POU-specific domain; WFC, WFC motif. B. Crystal structure of DNA binding of the POU-specific domain and the 
POU-homeodomain (POUH). The helices (H) of each POU domain and the N- and C-termini are labeled. B is reproduced with 
permission from (37). 

The POUS is only present in POU factors. POUS 
is more conserved than POUH, with two highly conserved 
regions: POUS-A and POUS-B (Figures 2A and 3A). The 
solution structure of POUS, determined by nuclear 
magnetic resonance (NMR), reveals that it forms two long 
and two short α-helices (23). The POUS binds to the left 
half of the octamer motif through HTH (Figure 3B), and 
this binding may be mediated by helix III (23, 24). 

 
In addition to DNA binding, the POU domains 

also mediate specific protein-protein interactions between 
Oct factors or between Oct factors and other transcription 
factors or cofactors. These interactions result in cooperation 
or preclusion of DNA-binding and recruitment of critical 
factors to activate or inhibit gene expression. For example, 
Oct1 and Pit1 form heterodimers via their POU domains 
on the prolactin promoter; this interaction induces 
prolactin expression (25). The cyclin-dependent kinase-
activating kinase (CAK) assembly factor, MAT1, can 
interact with the POU domain of Oct1 and Oct2 to 
enhance CAK activity (26). Transcriptional synergism 
between glucocorticoid receptor (GR) and Oct1 and Oct2 
in mouse mammary tumor virus (MMTV) expression is 
mediated by direct binding between the GR DNA-
binding domain and the POU domain of the Oct protein 
(27). Finally, the herpesvirus trans-activator VP16 
specifically interacts with the human Oct1 
homeodomain, and a single amino acid exchange 
transfers this interaction from Oct1 to the Oct2 
homeodomain (28).  

There are no structural characteristics common to all 
Oct factors outside of the POU domain. These regions bear the 
transactivation and inhibitory domains of the proteins, and 
their activities are isoform-specific. The Oct1 protein contains 
two 5’ glutamine-rich domains, a serine-threonine-rich domain 
and a hydrophobic C-terminus region (6, 29). Truncated Oct1 
variants, missing either a C-terminal or an N-terminal domain, 
exhibit different capacities to cause developmental defects 
in Xenopus embryos (30). Paradoxically, the Oct1 C-
terminus represses basal level promoter activity but 
enhances the hormonal induction of the β-casein gene (31). 
Two transcriptional activation domains have been 
identified in Oct2: one in the N-terminal glutamine-rich 
region and another in the C-terminal serine-, threonine-, 
and proline-rich region (32). An inhibition domain was also 
identified in the N-terminus of Oct2 (33). The C-terminal 
domain of Oct2 is required for its in vivo functions (34). 
Similarly, transactivation domains have also been identified in 
both the N- and C-termini of Oct3/4 (35, 36).  

 
The phylogenetic analyses of all known Oct proteins 

are consistent with the classifications of the POU domain 
factors (Figure 2C). It appears that only the proteins in POU-II, 
III and V subclasses exhibit high-affinity binding to the 
octamer sequences.  
 
4. BINDING SPECIFICITY OF OCT PROTEINS 
 

Both POUH and POUS can individually bind to 
DNA with different sequence specificity. The binding 
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consensuses of the POUH and POUS subdomains are 
RTAATNA (R = purine) and gAATAT(G/T)CA, 
respectively (21). These two consensus sequences overlap 
the right and left halves of the POU domain recognition 
sequence [a(a/t)TATGC(A/T)AAT(t/a)t], respectively; the 
core sequence is the octamer motif. However, individual 
POU subdomains bind to DNA with low affinity and less 
specificity (21). For the intact POU domain, the two 
subdomains are folded independently and bind to the 
opposite faces of the DNA in two adjacent major grooves 
through HTH (Figure 3B) (37). The POUS subdomain 
enhances the POU domain DNA-binding affinity up to 
1000-fold and also enhances the sequence recognition 
specificity (21). A recent investigation by liquid crystal and 
paramagnetic NMR revealed that the POUH subdomain 
searches the DNA primarily by rotation-coupled sliding 
(intramolecular translocation), while the POUS subdomain 
acts as an antenna to promote intersegment transfer via 
intermolecular translocation (38). Each subdomain fulfills 
different and complementary roles during the search 
process and the cross-talk between them ensures the 
location of Oct1 to specific target sites. This mechanism 
was also observed in the interaction of Oct1 with Sox2 on 
the Hoxb1 regulatory element (39). 

 
The length (minimum of 10 to 14 amino acids) 

and sequence of the hypervariable POU linker also 
influences the DNA-binding specificity (40, 41). In 
addition, the bases flanking the core recognition sequence 
make a modest but significant contribution to the DNA-
binding affinity of the POU domain (21). These influences 
should contribute to the selective binding of a specific Oct 
factor to a particular promoter.  

 
Interestingly, not all natural Oct-binding elements 

in gene promoters are optimized for high-affinity binding. 
The Oct-binding site of the mouse β-casein gene proximal 
promoter varies by one base pair from the complement of 
the classic octamer motif. Mutation of this base to yield the 
exact octamer motif sequence increases the binding affinity 
for Oct1 in an in vitro assay, but significantly decreases the 
basal activity level and hormonal induction of the promoter 
(31). In addition, the orientation of the Oct-binding site 
within gene promoters is also critical. Reversing the 
orientation of the Oct-binding site of the mouse β-casein 
gene proximal promoter to the orientation of the classic 
octamer motif also dramatically reduces the basal activity 
level and hormonal induction of the promoter (31), possibly 
due to the disruption of Oct1 interactions with other factors 
on the promoter. 

 
While the octamer motif can be bound by all Oct 

factors, individual Oct proteins prefer some sequences 
more than others. A recent chromatin immunoprecipitation-
sequencing (ChIP-seq) study in glioblastoma cancer cells 
identified a consensus Oct4-binding sequence, TTTkswTw 
(k=T or G, s=C or G, w=A or T), which is AT-rich like the 
classic octamer motif (preferably bound by Oct 1 and 2) but 
is distinguishable from the classical sequence (42). 

 
The DNA-binding activity of Oct can be 

modulated by phosphorylation, glycosylation, oxidation, 

ubiquitinylation, and sumoylation of the POU domain and 
other regions. Mitosis-specific phosphorylation of a serine 
residue in the POUH subdomain of Oct1 by protein kinase 
A is associated with inhibition of Oct1 DNA binding in 
vitro and in vivo (43, 44). Phosphorylation of Oct1 and 
Oct2 by protein kinase A, protein kinase C and casein 
kinase 2 in vitro regulates their binding specificity (45). 
Alternative phosphorylation and glycosylation of several 
residues in the POU domain, the linker region between the 
two POU subdomains and the N-terminus of Oct2 are 
involved in the differential binding behavior of Oct2 to the 
octamer motif (46). Cysteine oxidation of Oct7 reduces its 
binding to octamer sequences (47). Sumoylation of the 
lysine residue (Lys 118) next to the Oct4 POU domain 
enhances Oct4 stability and DNA binding (48).      
 
5. OCT MEMBERS AND THEIR TISSUE 
EXPRESSION, GENOMIC ORGANIZATION AND 
GENERAL FUNCTIONS 
 
5.1. Oct1 [Gene symbol: POU2F1; GenBank Gene ID = 
5451 (human) and 18986 (mouse)] 

Oct1 was one of the first identified members of 
the POU factor family (6) and is the most studied member 
of the Oct transcription factors. It is ubiquitously expressed 
in many tissues and cells and either positively or negatively 
regulates the expression of a variety of genes. These genes 
include the RNA polymerase II-transcribed and 
ubiquitously expressed histone H2B gene (49, 50), tissue-
specific immunoglobulin genes (51, 52), β-casein gene (31, 
53), and RNA polymerase II- or III-transcribed snRNA 
genes (29). Oct1 is also involved in basal transcription from 
virus promoters (54, 55). Oct1 has been shown to interact 
with a variety of tissue-specific co-activating factors and 
viral proteins. The herpesvirus V16 protein and Bob are 
two such proteins that specifically bind to the POU domain 
of Oct1 (56-58). Therefore, the ubiquitously expressed 
Oct1 is able to contribute to tissue-specific expression by 
requiring tissue-specific co-activators. 

 
A multitude of Oct1 isoforms has been identified 

in human and mouse tissues and cells; at least four have 
been found in humans (Table 1) and at least seven in mice 
(2). These multiple isoforms are derived from a single Oct1 
gene, located on chromosome 1 in both humans and mice. 
Oct1 gene, which contains 18 exons, spans over 207 kb in 
humans and 128 kb in mice (2, 59). The Oct1 human 
transcript variant 1 (GenBank accession number: 
NM_002697) encodes the longest isoform, Oct1A, which 
contains 766 amino acids (aa) and has a predicted 
molecular weight of 79 kilodaltons (kDa) (Table 1) (59). 
The variant 2 transcript (NM_001198786) lacks an in-
frame coding exon and encodes 703 aa Oct1F 
(NP_001185715), which lacks an internal segment of 
Oct1A on the N-terminal side of the POU domain. The 
variant 3 transcript (NM_001198783) has an alternate 
promoter and first exon, resulting in the 755 aa Oct1L 
(NP_001185712) with a shorter and distinct N-terminus. 
However, the major Oct1 isoform is probably Oct1B 
(P14859), which contains 743 aa (6) and has a mass of 76 
kDa. Oct1B lacks the first 23 aa of Oct1A and results from 
a transcript (not shown in Table 1) that does not contain the 
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upstream AUG codon of the Oct1A transcript. Human 
Oct1B is the most popular human Oct1 sequence 
deposited in GenBank and also corresponds to the major 
Oct1 isoform detected in mouse tissues (2). In addition, a 
human Oct1 variant transcript (NR_017361) has an 
additional exon in the 5’ region (Table 1), resulting in an 
internal stop codon and a nonfunctional protein. In 
mouse tissues, the majority of known Oct1 isoforms have 
different C-termini (2); the counterparts of most of these 
isoforms likely exist in humans. 

 
All known Oct1 isoforms retain intact POU 

domains and the linker sequence but differ in their N- or 
C- terminal segments. Because the N- and C-terminal 
sequences contain activation and inhibition domains, 
different isoforms may very likely have different 
physiological functions. The occurrence of multiple Oct1 
isoforms raises the possibility that these isoforms are 
expressed in a tissue-specific manner and play different 
roles in different tissues. This hypothesis is supported by 
the finding that two of the mouse isoforms, Oct-1L and 
Oct-1R, are only expressed in lymphocytes (60). 

 
5.2. Oct2 [Gene symbol: POU2F2; Gene ID = 5452 
(human) and 18987 (mouse)] 

Oct2 was originally cloned from B cells (7). It is 
encoded by a single gene spanning approximately 43 kb 
and containing 15 exons on human chromosome 19 (Table 
1) and mouse chromosome 7. Like Oct1, multiple alternatively 
spliced isoforms have been identified in both humans (Table 1) 
(61) and mice (14, 62). In human tissue, the variant 1 transcript 
(NM_001207025) encodes Oct2.2 (NP_001193954), a 479 aa 
protein with a mass of 51 kDa. Variant 2 (NM_002698) 
uses an alternate in-frame splice junction at the 5’ end of 
exon 8 and encodes the major isoform Oct2.1 
(NP_002689), a 463 aa protein with a mass of 49 kDa. 
Variant 3 (NM_001207026) uses an alternate in-frame 
splice junction at the 3’ end of exon 14 and encodes 
isoform Oct2.7, which has a shorter C-terminus. The 
counterparts of these isoforms have also been 
observed in mouse tissues, in addition to at least 4 
other Oct 2 isoforms (14). 

 
Oct2 is generally considered to be expressed 

only in B lymphocytes and neuronal cells (63). 
However, Oct2 is widely expressed in many tissues at 
the transcription level (14). B lymphocytes and the 
mammary gland predominantly express Oct2.1, which 
includes a C-terminal activation domain that 
overcomes the effect of an N-terminal inhibitory 
domain and stimulates transcription of its target genes 
(14, 33, 63, 64). In contrast, neuronal cells 
predominantly express Oct2.4 and Oct2.5, which lack 
the C-terminal activation domain but contain an intact 
N-terminal inhibitory domain, resulting in a generally 
repressive effect on transcription (63, 64). Originally, 
Oct2 was thought to play a critical role in determining 
the B cell-specific expression of immunoglobulin (Ig) 
genes, but it was later shown not to be essential for Ig 
gene expression in Oct2-deficient mice (65, 66) (see 
Section 6.4). 

 

5.3. Oct3/4 [Gene symbol: POU5F1; Gene ID = 5460 
(human) and 18999 (mouse)] 

Oct4 (also known as Oct3) is only expressed in 
totipotent mouse and human embryonic stem (ES) and 
germ cells. In these cells, it plays a pivotal role in the 
regulation and maintenance of pluripotency (it is a widely 
used marker for pluripotency) and self-renewal of ES cells 
(67). Expression of Oct4 is down-regulated when 
embryonic stem cells are triggered to differentiate, and 
expression is lost in normal somatic cells of differentiated 
tissues (68). 

 
The POU5F1 gene refers to a less than 17 kb 

sequence located on chromosome 6 (6P21.31), which 
consists of 6 exons and generates multiple transcripts by 
utilizing different transcription initiation sites or different 
splicing mechanisms (Table 1 only shows the last 5 exons). 
The main transcripts (NM_002701 and NM_203289; Table 
1) were originally cloned from human pancreatic islet cells 
and encode Oct4A and Oct4B, which consist of 360 and 
265 aa (Figure 2B), respectively (originally named Oct3A 
and Oct3B) (69). These two isoforms differ in their cell-
specific expression (70), DNA binding, transactivation and 
cell capacity to confer self-renewal (71). Recently, our 
laboratory has cloned multiple transcripts of this gene 
(DQ486514-DQ486517) from MCF10 cells, a normal 
human mammary epithelial cell line. These transcripts lack 
an upstream AUG codon (AGG), which is found in the 
Celera human genome assembly but not in the GRCh37 
primary assembly in GenBank. This polymorphism 
(reference SNP 3130932) may have functional significance 
and is thus worth further investigation. In vitro 
transcription and translation of these cDNAs resulted in no 
protein products (Zhao et al., unpublished observations). 
However, these transcripts may use a downstream non-
AUG (CUG) start codon to produce a 190 aa product 
(Oct4B-190) (72). Additionally, they may also be able to 
use a downstream AUG start codon to produce a 164 aa 
protein (Oct4B-164). Nevertheless, even though these short 
products are produced in cells, whether they retain Oct4-
like biological functions is unclear because these proteins 
lack half or a majority of the POUS subdomain. Therefore, 
they may not efficiently bind to octamer sequences of 
target genes (Figure 2B). 

 
 Interestingly, from cells of the human breast 
cancer cell line MCF7, our lab has cloned different sets of 
transcripts from an intronless Oct4-like gene on human 
chromosome 8 [DQ486513; Oct3C in (69)] that was 
thought to be a pseudogene. However, the full cDNA can 
be transcribed and translated into a protein product in vitro, 
and its deduced amino acid sequence has 96% sequence 
identify to the Oct4A described above (Figure 2B) (Zhao et 
al., unpublished observations). Based on their differences 
in deduced protein products and their different 
chromosome locations and genomic structures, I propose to 
describe these two sequences as two individual genes by 
designating the gene on chromosome 6 Oct4 and the gene 
on chromosome 8 Oct3. Describing these two sequences as 
two individual genes is further supported by emerging 
evidence that some cancer cells gain expression of Oct3 but 
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not Oct4 and that Oct3 plays a role in carcinogenesis [Zhao 
et al., unpublished observations; (73)]. 
 
 In addition, multiple Oct4 pseudogene sequences 
have been identified on chromosomes 1, 3, 10, and 12 (74-
76). Expression of these pseudogenes has been observed in 
different tumor cells (74, 76, 77); thus, they may have 
caused some misunderstanding of the roles of Oct4 in 
cancer.  
 
5.4. Oct6 [Gene symbol: POU3F1; Gene ID = 5453 
(human) and 18991 (mouse)] 

Oct6 (also known as SCIP and Tst-1), a POU-III 
sub-class member, is an intronless gene located on 
chromosome 1 (1p34.1) in human. It encodes a 451 aa 
protein with a mass of 45 kDa (Table 1). The protein 
contains a glycine/alanine-rich N-terminal region, a short 
proline/histidine-rich C-terminal region and a histidine-rich 
sequence that is homologous to a region of kininogen, a 
precursor for kinin. Oct6 expression is confined to 
embryonic stem cells, the developing brain, Schwann cells, 
oligodendrocyte precursors, skin and testes (78-80). Its 
function has been mainly studied in Schwann cells, where it 
is required for proper myelination of peripheral nerves (78, 
81-83). In addition, Oct6 is also plays roles in the 
regulation of epidermal keratinocyte differentiation during 
normal development and wound healing (84) and in the 
survival and self-renewal of mouse spermatogonial stem 
cells induced by glial cell line-derived neurotrophic factor 
(GDNF) (85). 

 
5.5. Oct7 [Gene symbol: POU3F2; Gene ID = 5454 
(human) and 18992 (mouse)] 

Oct7 [N-Oct3 and Brain-2 (Brn2)], the second 
member of the POU-III class of transcription factors, is a 
neural factor involved in neuronal differentiation. The Oct7 
gene is also intronless like Oct6 and is located on 
chromosome 6 (6q16) in human (10). The predicted full-
length open reading frame (ORF) encodes a 443 aa protein 
with a mass of 47 kDa (Table 1); however, two additional 
ORFs are nested in the same frame and may encode 29 and 
27 kDa proteins, respectively (11). Interestingly, the Oct7 
cDNA contains an unusually high density of CpG 
dinucleotides in both the 5’ untranslated region and the 
coding region; this CpG rich region resembles a CpG island 
and may have methylation implications (11). In addition, 
the N-terminus of the protein contains homopolymeric 
regions of 21 glycines and 21 glutamines (Figure 2A). The 
homopolymeric glutamines are encoded mainly by CAG 
clusters, which are known to be a hot spot for triplet repeat 
mutations (11).   

 
Oct7 mRNA is abundantly expressed during all 

stages of neurogenesis and is expressed at a lower level in 
distinct neural subsets within the adult central nervous 
system (CNS), including the paraventricular nuclei (PVN) 
and the supraoptic nuclei (SON) of the hypothalamus (12). 
Oct7 plays an essential role in neurogenesis (see Section 
6.7). In addition, Oct7 is expressed in most cell derivatives 
of the neuroectoderm, including neuroblastoma and 
melanoma cells (86). In melanocytic cells, growth arrest 
and DNA damage-inducible protein (GADD45) and 

microphthalmia-associated transcription factor (MITF) are 
two known targets of Oct7. Expression of GADD45 is 
activated by Oct7 in response to UVB radiation (87), and 
Oct7 represses expression of MITF, which controls cell 
survival, differentiation, proliferation, and 
migration/metastasis (88). Emerging evidence demonstrates 
that modulation of MITF levels by Oct7 regulates 
melanocytic growth and tumorigenesis (see Section 7).   
 
5.6. Oct8 [Gene symbol: POU3F3; Gene ID = 5455 
(human) and 18993 (mouse)] 

Oct8 (Brn1) is another member of the class III 
POU family of transcription factors. Oct8 is an intronless 
gene like other members of this class and is located on 
chromosome 2 (2q12.1) in human. The predicted ORF of 
Oct8 encodes a 500 aa protein with a mass of 50 kDa 
(Table 1); this protein contains alanine, glycine and proline 
repeats (Figure 2A). The presence of homopolymeric 
amino acid repeats is a major structural feature of most 
mammalian class III POU genes; these repeats are absent in 
the non-mammalian homologues. These repeats may be 
generated via GC pressure in mammals (89). Oct8 is 
essential for the development and functions of nephrons in 
the kidney. Oct8-deficient mice have a severely retarded 
Henle's loop, distal convoluted tubule and macula densa 
(90). Oct8 is also able to fully replace Oct6 during 
Schwann cell development and myelination (91, 92). 
 
5.7. Oct9 [Gene symbol: POU3F4; Gene ID = 5456 
(human) and 18994 (mouse)] 
 The Oct9 (Brn4) gene encodes another member 
of the POU-III class of neural transcriptional factors. It 
consists of a single exon and is located on the X 
chromosome (Xq21.1) in human (13). The ORF encodes a 
39 kDa protein with a length of 361 aa (Table 1 and Figure 
2A). In contrast to other members of the POU-III class and 
like its non-mammalian homologue, the mammalian Oct9 
has no amino acid repeats. Oct9 expression is restricted to 
only a few regions of the adult forebrain, including the 
SON and PVN of the hypothalamus (93). Differentiation of 
neural stem cells requires Oct9 expression (94). 
Additionally, Oct9 plays a prominent role in inner ear 
development (95). Evidence strongly suggests that 
nonfunctional Oct9, resulting from various mutations, 
results in X chromosome-linked nonsyndromic mixed 
deafness (DFN3) (96-98) (see Section 7).  
 
5.8. Oct11 [Gene symbol: POU2F3; Gene ID = 25833 
(human) and 18988 (mouse)] 
 Oct11 (Skn-1a, Pla-1, and Epoc-1) is a POU 
domain factor primarily expressed in the epidermis that 
plays a major role in keratinocyte proliferation and 
differentiation (84). The Oct11 gene is located on 
chromosome 11 (11q23.2) in human and contains 13 exons, 
which span over 80 kb (Table 1). Oct11 generates multiple 
alternatively spliced transcript variants encoding multiple 
isoforms with various N-termini (99, 100). The major 
transcript variant (NM_014352) encodes a 436 aa protein 
with a mass of 47 kDa (NP_055167). This variant contains 
two functional domains: a primary C-terminal 
transactivation domain and a combined N-terminal 
inhibitory domain and transactivation domain (101). 
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Because of the combined effects of the N-termini, it is not 
surprising that Oct11 isoforms have different functions in 
keratinocyte proliferation and differentiation (99, 102). 
Oct11 has also recently been shown to play a critical role in 
specifying taste receptor cell lineage (103) and is a 
candidate cervical cancer suppressor protein (see Section 
7). 
 
6. FUNCTIONAL ROLES OF OCT IN SPECIFIC 
PHYSIOLOGICAL PROCESSES 

 
Oct proteins have been known to function as both 

positive and negative regulators of gene expression. Genes 
known to be regulated by Oct include a wide variety of 
ubiquitously expressed genes and tissue-specific genes. 
Thus, Oct factors are involved in the regulation of many 
physiological functions. In this section, some of these 
functions that have been relatively well studied will be 
discussed. 
 
6.1. Essential functions of Oct proteins in 
embryogenesis 
 The POU factors are known to play critical roles 
in establishing and maintaining cell fate and cell identity 
throughout embryonic development; they accomplish these 
functions by establishing correct spatio-temporal 
expression patterns of target genes. Currently, we know 
that at least Oct1-, Oct2- and Oct4- gene-deficient (Oct-/-) 
mice are embryonic lethal, indicating essential roles of 
these Oct proteins in embryogenesis. Oct1-/- mice die 
between embryonic day (E) 12.5 and E18.5 (104-106). 
Oct1-null embryos have reduced extra-embryonic ectoderm 
formation, lack the ectoplacental cone, and fail to develop 
beyond the early streak stage (106). Oct1 appears to be 
primarily required for the maintenance and 
differentiation of the trophoblast stem cell compartment 
during early post-implantation. In addition, the Oct1-
deficient embryos lack erythroid precursor cells and 
often appear anemic (104). Oct2-/- mice survive to birth 
but die within a few hours of birth with no apparent 
defects (65). Strikingly, although Oct1+/- or Oct2+/- 
heterozygotes mice exhibit no apparent differences from 
wild-type animals, Oct1+/-; Oct2+/- transheterozygotes 
rarely survive to adulthood (104), indicating a gene 
dosage effect and interdependent roles of Oct1 and Oct2 
in mouse development.  
 

Oct4-/- embryos die at the time of implantation 
(107). Loss of Oct4 changes the fate of the inner cells of 
the blastocyst of early mouse embryos; these cells cannot 
form the inner cell mass (ICM) and differentiate into a 
trophectoderm lineage. Thus, Oct4 is considered to be a 
gatekeeper in the early steps of mammalian embryogenesis 
(108). 

 
Oct7 is essential for the differentiation of specific 

neuronal lineages in mouse hypothalamus development. 
The migratory precursor cells for neurons of the PVN and 
SON of the hypothalamus in transgenic mice carrying a 
loss-of-function mutation in Oct7 die at approximately 
E12.5 (109). These animals die within 10 days of birth with 
a complete deficiency of these neurons.   

6.2. Pivotal role of Oct4 in the maintenance of cell 
pluripotency 

Oct4 is only expressed in totipotent mouse and 
human ES and germ cells. The expression level of Oct4 is 
vital for the maintenance of pluripotency and early cell 
differentiation. Knockdown of Oct4 in ES cells promotes 
cell differentiation (110). Expression of Oct4 is down-
regulated when embryonic stem cells are triggered to 
differentiate, and expression is lost in normal somatic cells 
of differentiated tissues (68). Oct4-deficient mouse 
embryos lose pluripotency and differentiate into 
trophectoderm (107). The pivotal role of Oct4 in cell 
pluripotency was further demonstrated in a recent study by 
Takahashi and Yamanaka; they found that forced 
expression of Oct4 and 3 other genes (Sox 2, c-Myc and 
KLF4) in an adult mouse fibroblast population induced the 
characteristics of ES cells (111). When these cells were 
injected into blastocysts, they contributed to mouse 
embryonic development and were thus shown to be 
pluripotent. These cells were termed induced pluripotent 
(iPS) cells. More recently, iPS cells were produced from 
human fibroblasts following forced expression of the same 
set of factors used in mice (112) or a combination of Oct4, 
Sox3, Nanog and lin28 (113). These procedures have now 
been confirmed and extended in other somatic cells, 
including stomach and liver cells (114), and in other 
species, such as monkey (115) and rat (116). Oct4 has been 
shown to be the most important factor in making iPS cells. 
iPS cells can be obtained even if Myc is omitted. Sox-1 can 
replace sox-2, and Klf 2 or Klf 5 can replace Klf 4. 
However, Oct4 cannot be replaced by other Oct members 
(e.g., Oct1 and Oct6) (117). In fact, iPS cells have been 
generated from adult mouse neural stem cells using Oct4 
alone (118). 

 
Because Oct4 is essential for totipotency, it has 

been postulated that the variations in Oct4 expression levels 
alone account for the majority of current failures related to 
somatic cell cloning (119). 
 
6.3. Interactions of Oct proteins with basal 
transcription machinery in regulation of gene 
expression 

In eukaryotes, transcription is performed by three 
different RNA polymerases (I, II and III), which synthesize 
different classes of RNA. Among them, RNA polymerase 
II (Pol II) transcribes all protein-coding genes and is 
composed of 12 subunits (Rbp1 to Rbp12). The function of 
Pol II requires assistance from a large number of proteins, 
called general or basal transcription factors (GTF); these 
proteins include TFIIA, TFIIB, TFIID, TFIIE, TFIIF and 
TFIIH. Together with Pol II, these GTFs form a 
preinitiation complex (PIC) that binds to promoter regions 
of DNA upstream of the gene they regulate (120). Among 
them, TFIID is one of the primary factors and recruits and 
helps assemble the other GTFs and Pol II to form the PIC 
on the promoter. The TATA-binding protein (TBP), a 
component of TFIID, recognizes and binds to the TATA 
box, an A/T rich sequence present approximately 25-30 
nucleotides upstream of the transcription initiation sites of 
many protein-coding genes. Another GTF that contacts the 
promoter is TFIIB, which binds to two TFIIB recognition 
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sequences (BRE) present upstream and downstream of the 
TATA box. 

 
In the promoters of many genes, such as β-casein, 

MMTV, Ig, and lipoprotein lipase, an octamer-binding site 
is closely present upstream of the TATA box. Evidence 
suggests that Oct proteins may activate transcription of 
these genes by directly interacting with TBP. Both Oct1 
and Oct2 can efficiently associate with TBP in vitro and in 
vivo through POU domains, and these associations do not 
depend on the presence of other proteins (121). Oct1 can 
also interacts with TFIIB at the lipoprotein lipase proximal 
promoter (122) and with MAT-1, a component of TFIIH 
(26). Through interactions with TFIIB and TFIIH, Oct 
factors may be able to functionally replace the role of TBP 
at some promoters that lack a TATA box. Taken together, 
Oct proteins likely recruit GTFs to form the PIC or to help 
stabilize the PIC on promoters to stimulate gene 
transcription. 
 
6.4. Regulation of immune functions by Oct1/2 
 The octamer sequence was first identified as a 
conserved sequence in virtually all Ig variable region 
promoters and in both the heavy- and k light-chain Ig 
enhancers (123, 124). The sequence is required for B cell-
specific expression of Ig genes (125); a point mutation in 
the octamer region reduces the expression of an Ig 
transgene to 5% of its normal level (126). Because of its 
predominant expression in the B cell lineage, Oct2 was 
originally thought to play a critical role in determining the 
B cell-specific expression of Ig genes. However, Oct2 is 
not essential for Ig gene expression because Oct2-deficient 
mice express Ig and other B cell-specific genes tested at the 
pre-B-cell stage of development (65, 66). Thus, it was 
postulated that the role of Oct2 in the regulation of Ig gene 
expression could be compensated by ubiquitously 
expressed Oct1. Oct1 and Oct2 have nearly identical DNA 
binding specificity, and the Ig promoters are equally 
responsive to both Oct1 and Oct2 (127). Furthermore, Oct1 
may activate Ig heavy chain promoters before Oct2 to enhance 
transcription from Ig light-chain promoters during B cell 
differentiation (127). Nevertheless, Oct2-null mutants have 
fewer mature B cells and reduced secretion of antibodies 
following stimulation (65), indicating that Oct2 is required for 
later B-cell maturation. Thus, the function of Oct2 in antibody 
secretion cannot be adequately complemented or completely 
replaced by Oct1. Additionally, Oct1 is also dispensable for B 
cell development and Ig transcription (105). The specific roles 
of these two factors in B cell development and their functions 
require further investigation.  
 

Binding of Oct1 or Oct2 to the Ig promoters recruits 
the B cell-specific coactivator Bob-1/OCA-B/OBF-1 (57, 128). 
Bob-1 enhances Oct1-, and to a lesser extent, Oct2-mediated 
promoter activity. Interaction with tissue-specific cofactors 
enables the ubiquitously expressed Oct1 to contribute to tissue-
specific gene expression. The partnership between Oct2 and 
Bob-1 has been shown to play a critical role in sustaining Ig-
secretin cell functions (129). 

 
The expression of Ig genes has also been 

confirmed in many non-B cancer cells and some normal 

cells (130, 131). This expression is also dependent on the 
presence of the octamer element in the Ig promoter, as in B 
cells. However, Oct1 but not Oct2 regulates the Ig 
promoter activity and induces Ig gene expression in 
epithelial cancer cells (132), suggesting distinct regulatory 
mechanisms for Ig gene expression in B cells and non-B 
cancer cells.    
 
6.5. Oct1, a sensor of metabolic and stress signals 
 Recently, Oct1 has been found to function as a 
sensor of both metabolic and stress/survival signals (133-
136). In pancreatic islet cells, Oct1 senses intracellular 
cAMP levels (134). Elevation of cAMP levels enhances 
Oct1 phosphorylation and shuttles Oct1 from the nucleus to 
the cytoplasm. Reduced nuclear Oct1 leads to increased 
expression of Cdx-2, which, in turn, regulates proglucagon 
and proinsulin expression (133, 134). Consistently, Oct1-
deficient cells result in a coordinated metabolic shift with 
reduced glucose metabolism coupled with increased 
mitochondrial activity and amino acid oxidation (135). 
Although these cells and Oct1-/- embryos use less glucose, 
they are more metabolically active and survive better in the 
absence of glucose than their wild-type counterparts. Oct1-/- 
cells have elevated cellular levels of amino acids of 
glutamate, threonine, isoleucine, proline and glycine 
coupled with increased amino acid catabolism. 
Remarkably, glutamate oxidation is robustly increased (5 
fold) in Oct1-/- cells (135). In addition, a recent metabolic 
footprinting (MFP) study suggested that Oct1 may be 
involved in cell uptake of all essential amino acids except 
valine and promotes protein synthesis (137). Thus, Oct1 is 
emerging as an important regulator of body glucose and 
amino acid metabolism. Because the metabolic changes of 
Oct1-deficient cells oppose tumorigenicity, Oct1 could be a 
target for cancer therapy. 
 

Oct1-/- cells are hypersensitive to stress-induced 
agents, such as ionizing radiation (IR), doxorubicin and 
hydrogen peroxide (136). Treatment of cancer cells with 
these agents induces Oct1 levels in these cells (138). When 
DNA damage occurs via IR, the Oct1 protein is 
phosphorylated at Ser/Thr sites within its N-terminus by 
DNA-dependent protein kinase (DNA-PK), leading to 
increased stability (139). Increased Oct1 levels in the cell 
down-regulate the expression of histone H2B and U2 RNA 
and promote cell survival (140). Replacement of Ser/Thr 
residues with Ala prevents Oct1 from rescuing Oct1-/- 
embryonic fibroblasts following IR treatment, indicating 
the importance of Oct1 and its phosphorylation in the stress 
response. Stress exposure induces associations of Oct1 with 
a distinct group of targets, and Oct1 is essential for the 
post-stress transcriptional response (141).  
 
6.6. Regulation of milk protein gene expression by Oct 
factors 
 An octamer-binding site is highly conserved in 
the proximal promoter regions of major milk protein casein 
genes (53, 142, 143). Mutating this binding site, reversing 
its orientation or changing it to the consensus octamer 
motif severely reduces the induction of the promoter 
activity for the lactogenic hormones insulin, hydrocortisone 
and prolactin (31). Both Oct1 and Oct2 can activate the 
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hormonal induction of these genes, and this induction is 
strongly reduced by addition of either Oct1 or Oct2 siRNA 
in mammary epithelial cells. The activation is mediated by 
the physical interactions of Oct1 with prolactin downstream 
signaling molecule STAT5 and glucocorticoid receptor 
(GR) (X. Qian and F.Q. Zhao, unpublished observations). 
The lactogenic hormones, progesterone or a combination of 
these hormones with estradiol induces octamer binding in 
the mammary gland (53), indicating that Oct factors may 
also play a role in mammary development in addition to 
activating mammary-specific milk gene expression induced 
by lactogenic hormones.   
 
6.7. Oct proteins in neural development 

The class III POU Oct factors, including Oct6 
through Oct9, play critical roles in the development and 
function of the nervous system. Oct6 is required for proper 
myelination of peripheral nerves (78, 81-83). During the 
development of the peripheral nervous system, axonal and 
other extracellular signals stimulate Oct6 expression in 
Schwann cells via the Oct6 Schwann cell enhancer (SCE) 
(144). Oct6 initiates the transition from ensheathing, 
promyelinating Schwann cells to myelinating cells. 
Schwann cell differentiation is transiently arrested at the 
promyelination stage in Oct6-/- mice (83). This function of 
Oct6 may overlap with the function of Oct6’s close 
relative, Oct7, which is also expressed in the Schwann cell 
lineage and has an expression pattern similar to that of 
Oct6. Overexpression of Oct7 in Oct6-deficient Schwann 
cells partially rescues the developmental delay phenotype 
(145). Oct6/Oct7 cooperates with Sox10 to up-regulate the 
major myelin-related zinc finger transcription factor 
Krox20, which is involved in the regulation process (146-
148). 

 
Oct7, 8 and 9 are also called brain factors (Brn): 

Oct7 (Brn2), Oct8 (Brn1) and Oct9 (Brn4). Together with 
Brn3, these factors are expressed predominantly in the 
central nervous system and are widely distributed in the 
neural tube early in development but are subsequently 
restricted to different regions of the brain. Oct7 plays an 
essential role in the determination and development of 
specific neuronal lineages in the hypothalamus (109). 
Migratory precursor cells for neurons of the PVN and SON 
of the hypothalamus die at ~E12.5 in Oct7-/- mice. The 
importance of Oct7 in neurogenesis was further 
demonstrated in a recent study in which forced expression 
of Oct7 together with Asc1, Myt1l and NeuroD1 efficiently 
converted fetal and postnatal fibroblasts into functional 
neural cells (149). Both Oct7 and Oct8 are involved in 
brain hippocampus development and complementarily 
regulates neocortical development (150). Oct8 is also able 
to fully replace Oct6 during Schwann cell development and 
myelination (91, 92). However, replacement of Oct6 with 
Oct8 in mice leads to severe defects in forebrain 
development (92), indicating that although overlapping 
functions exist for Oct6, 7 and 8, individual factors may 
have specific functions. Finally, Oct9 has been implicated 
in the regulation of striatal neuron precursor differentiation 
(151, 152).  

Neural tissues also express Oct2, predominantly 
the Oct2.4 and Oct2.5 isoforms. These isoforms generally 

have an inhibitory effect on gene expression (64). 
However, the specific roles of these isoforms in the nervous 
system are not yet known. 
 
6.8. Oct11 and Oct6 in keratinocyte and taste cell 
proliferation and differentiation 

Keratinocytes are the major epithelial cells of the 
epidermis. The formation of a stratified epidermis requires 
a balance between keratinocyte proliferation and 
differentiation, which is tightly regulated by several 
families of transcription factors, including POU factors. 
Three POU factors, Oct1, Oct6 and Oct11, are expressed in 
keratinocytes. Oct11 and Oct6 are predominantly expressed 
in suprabasal cells, while Oct1 is present in both 
undifferentiated and differentiated keratinocytes (84). 
Oct11 is primarily expressed in the epidermis (153) and is 
also termed skin factor, or Skn-1a. Oct11 can promote 
epidermal keratinocyte differentiation in vitro (84, 154) and 
inhibits keratinocyte expression of K14, a keratin marker of 
undifferentiated epidermal epithelia (155). Although the 
skins of both Oct11- and Oct6-deficient mice appear 
normal, epidermis from mice lacking both Oct11 and Oct6 
is hyperplastic (84). These results indicate that Oct11 and 
Oct6 both function to regulate epidermal differentiation and 
wound healing.  

 
Recently, Oct11 was also shown to play a critical 

role in generating and balancing taste receptor cell lineage 
(103). Oct11-deficient mice completely lack sweet, umami 
and bitter cells, and they fail to expand sour cells. Thus, 
these animals do not respond to these tastes.  
 
7. PATHOPHYSIOLOGICAL ROLES OF OCT 
PROTEINS 
 
 Oct1 plays important roles in viral DNA 
replication and gene expression. It is involved in 
adenovirus DNA replication. In this process, Oct1 recruits 
the precursor terminal protein/DNA polymerase 
heterodimer to the adenovirus origin of replication to 
initiate viral DNA replication (156). The MMTV proximal 
promoter contains an octamer-binding site and a 
glucocorticoid response element. Oct1 stimulates basal 
transcription of this promoter (54), but its activity can be 
strongly enhanced by glucocorticoid via direct interaction 
with the glucocorticoid receptor (GR) (27). Binding of 
Oct1 and nuclear factor 1 (NF1) to the MMTV promoter 
induces a partial nucleosome positioning that facilitates the 
GR-DNA interaction (157). In the herpes simplex virus 
(HSV) immediate-early (IE) enhancer core, Oct1 interacts 
with the viral transactivator protein VP16 and binds to the 
5’ portion of the core element to initiate the enhancer 
assembly (158). Oct1 is required for HSV IE gene 
expression at low multiplicities of infection; infection by 
HSV is arrested in Oct1-null cells (159). Oct1 also interacts 
with the Epstein-Barr Virus (EBV) IE protein BRLF1 and 
enhances BRLF1-mediated disruption of EBV latency 
independent of DNA binding (160). Furthermore, Oct1 
represses virus-induced interferon A (IFN-A11) gene 
expression (161). Thus, Oct1 plays critical roles in viral 
infection and may be a useful therapeutic target for 
controlling virus infection. 
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Several studies have demonstrated that Oct1 
levels are increased in various cancer cells (162-165), and 
overexpression of Oct1 is pro-tumorigenic (166). Oct1 
deficiency opposes oncogenic transformation and 
tumorigenicity (135, 164, 165). Because Oct1 is a sensor of 
metabolic stress, it is not surprising to observe an 
association between multiple variants of Oct1 and type 2 
diabetes (167). 

 
Down-regulation of Oct2 and its coactivator Bob-

1 has been linked to abnormal Ig expression in Hodgkin 
and Reed-Sternberg (HRS) cells in Hodgkin disease (168, 
169) and in primary effusion lymphoma (PEL) (170). Oct2 
and Bob-1 are useful markers for the differential diagnosis 
of classic Hodgkin lymphoma (171). In PEL tumor cells, 
Oct2 also inhibits the expression of ORF50, the key 
regulator of the switch from latency to lytic reactivation of 
human herpesvirus-8 (HHV-8). Oct2 competes with Oct1, 
which enhances ORF50 transactivation. Thus, down-
regulation of Oct2 may promote viral reactivation of HHV-
8 (170).  

 
There is mounting evidence that links Oct3/4 to 

carcinogenesis. Increased expression of Oct4 (to 150% of 
wild type expression) in embryonic ES cells shifts the 
potential of these cells to form tumors in syngeneic hosts 
from 4% to greater than 80%, while inactivation induces 
regression of the malignant phenotype (172). Oct4 has been 
defined as a diagnostic marker for human testicular germ 
cell tumor precursor carcinoma in situ/intratubular germ 
cell neoplasia undifferentiated, seminoma, and embryonal 
carcinoma (173). In addition to expression in germ-cell 
tumors, Oct3/4 has also been detected in several somatic 
tumors, including breast, bladder, gastric, pancreatic, lung, 
and rectal cancers (68, 163, 173-181). In breast cancer 
cells, Oct3/4 expression is repressed by all-trans-retinoic 
acid and is coupled with decreased cell proliferation (182). 
Expression of Oct3/4 in these cells up-regulates expression 
of fibroblast growth factor-4 (FGF-4) (182), a gene that 
stimulates MCF-7 cells to become more tumorigenic and 
metastatic in ovariectomized and tamoxifen-treated nude 
mice (183).  

 
A transgenic study demonstrated that activation 

of Oct3/4 in somatic tissues of adult mice in vivo inhibits 
cell differentiation in a manner similar to that observed in 
embryonic cells, which results in epithelial tissue dysplastic 
growth in the small intestine and epidermis coupled with an 
expansion of progenitor cells (184). The animals die shortly 
after Oct3/4 expression is activated. Furthermore, chimeric 
mice, in which somatic tissues are composed of a mixture 
of wild-type and Oct3/4-inducible cells, develop visible 
skin tumors three weeks following induction of Oct4 
expression, and induced tumors disappear completely after 
the induction of Oct3/4 is withdrawn (184). 

 
However, expression of Oct4 in somatic tumor 

cells has been challenged by several studies (185-187). 
These investigators argue that the observed expression of 
Oct4 in some somatic tumor cells may be due to false-
positive results or could have resulted from amplification of 
Oct4 pseudogenes. In addition, our lab has noted that breast 

cancer tissue and MCF7 cells express an Oct4-like gene 
(Oct3), but not Oct4 (see Section 5.3). Thus, it is essential 
to verify the transcripts of Oct3/4 genes when investigating 
their expressions in tumors.  

 
In melanoma cells, Oct7 expression is 10-fold 

higher than in normal human melanocytes, and 
overexpression of Oct7 is associated with increased cell 
proliferation and invasiveness (86, 188, 189). Oct7 controls 
melanocyte migration and proliferation via its regulation of 
MITF, by the overall Oct7 level and through regulation of 
Pax3 transcription by Oct7 phosphorylation at T361 and 
S362 residues (190, 191). Oct7 can counter-regulate 
NOTCH pathway of melanoma cells with MITF to 
suppress the differentiated melanocytic phenotype and 
enhance tumor metastasis (191). 

 
 Strong evidence has linked mutations of Oct9 to 
DFN3, the most prevalent and hereditary X chromosome-
linked hearing loss, which is characterized by conductive 
hearing loss and progressive sensorineural deafness (96-98, 
192). These mutations include substitutions (e.g., 
Gly216Glu, Arg329Pro, Arg330Ser, and Arg323Gly), 
deletions (e.g., Ser310del) or truncations (e.g., Ala116fs). 
Most of these mutations are within the regions that encode 
the DNA-binding domains of Oct9, and thus, these 
mutations can severely affect Oct9 DNA binding and its 
capacity to transactivate target genes (97, 98), such as 
Epha4, in optic mesenchyme cells (193). The hearing loss 
associated with nonfunctional Oct9 in humans is consistent 
with observations in Oct9-deficient mice, which reveal 
defective otic fibrocytes and stria vascularis in the cochlear 
lateral wall (194, 195).  
 

Oct11 was identified as a candidate cervical 
cancer suppressor (196). The Oct11 gene lies in a critical 
loss of heterozygosity (LOH) region on chromosome 11 
(11q23.3) in cervical cancer cells. Oct11 expression is lost 
in more than 50% of cervical tumors and cell lines. 
Silencing of the Oct11 gene by aberrant DNA methylation 
of its promoter has been observed in 39% of cervical 
tumors but has not been noted in normal epithelium (197).  

 
8. CONCLUSIONS AND PERSPECTIVES 
 

Multiple Oct factors are expressed in mammalian 
cells and have been shown to play critical functions in 
various physiological processes, such as embryogenesis, 
cell differentiation, immune function and neurogenesis (4, 
15, 16). Because of their similar structural and DNA-
binding properties, some Oct proteins share functional 
properties. For example, Oct1 and Oct2 both regulate 
immunoglobulin gene expression, and Oct6-9 regulate 
neurogenesis. However, individual Oct factors may have 
specific roles that cannot be completely replaced by other 
Oct proteins. 

 
It is important to note that the specific functions 

of individual Oct proteins are complicated by the presence 
of multiple isoforms. These isoforms may exhibit tissue-
specific expression and may play different and even 
opposing roles. In addition, pseudogenes or 
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pseudotranscripts exist for some Oct factors. Thus, it is 
necessary to verify the specific transcripts and isoforms 
expressed when studying the roles of Oct factors in a 
particular tissue or disease.  

 
Oct factors have been linked to various diseases; 

these include Oct1 in viral infections and diabetes, Oct-2 in 
Hodgkin diseases, Oct-7 in melanoma, Oct9 in DFN3, and 
Oct1, Oct4 and Oct11 in various cancers. These Oct 
proteins offer potential therapeutic targets for the diagnosis 
and treatment of these diseases. 

 
Finally, novel functions of Oct proteins are still 

being identified. In addition to the discussed Oct factors 
above, additional POU domain factors may also bind to 
octamer sequences and could be new Oct factor candidates. 
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