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1. ABSTRACT

The metabolic roles for L-leucine, an 
essential branched-chain amino acid (BCAA), go far 
beyond serving exclusively as a building block for 
de novo protein synthesis. Growing evidence shows 
that leucine regulates protein and lipid metabolism 
in animals. Specifically, leucine activates the 
mammalian target of rapamycin (mTOR) signaling 
pathway, including the 70 kDa ribosomal protein 
S6 kinase 1 (S6K1) and eukaryotic initiation factor 
(eIF) 4E-binding protein 1 (4EBP1) to stimulate 
protein synthesis in skeletal muscle and adipose 
tissue and to promote mitochondrial biogenesis, 
resulting in enhanced cellular respiration and energy 
partitioning. Activation of cellular energy metabolism 
favors fatty acid oxidation to CO2 and water in 
adipocytes, lean tissue gain in young animals, and 
alleviation of muscle protein loss in aging adults, 
lactating mammals, and food-deprived subjects. As 
a functional amino acid, leucine holds great promise 
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to enhance the growth, efficiency of food utilization, 
and health of animals and humans.

2. INTRODUCTION

Sufficient evidence has pointed out that 
leucine, a nutritionally essential branched-chain 
amino acid, plays a unique signaling role in both 
adipose tissue and skeletal muscle. In these cells, 
leucine stimulates protein synthesis via the mTOR 
signaling pathway, mitochondrial biogenesis, and 
fatty acid oxidation (1, 2). Protein synthesis is the 
major energy-consuming process in the cell (3). In 
particular, both mRNA translation and ribosomal 
biogenesis processes, which are strongly affected 
by the mTOR pathway, consume high levels of 
cellular energy (4). Moreover, previous studies 
indicate that leucine regulates muscle protein 
synthesis and adipocyte lipid metabolism to provide 
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an increased flux of lipids to skeletal muscle, thereby 
supplying energy substrates to support leucine-
induced protein synthesis (5). In addition, leucine is 
most effective in stimulating mTOR among various 
models (2, 6). In the present review, we firstly focus 
on the roles of leucine in protein synthesis, which 
is involved in 1) leucine entering the cells, 2) the 
mTOR signaling pathway, and 3) insulin’s role and 
endoplasmic reticulum (ER) stress. We then discuss 
the possible mechanisms of leucine in regulating 
energy partitioning between skeletal muscle cells 
and adipocytes.

3. ROLES OF LEUCINE IN PROTEIN 
SYNTHESIS

3.1. How leucine enters the cell to regulate 
mTORC1 signaling

L-Leucine has been known as a key 
activator of protein synthesis in skeletal muscle for 
more than 30 years (7). The anabolic potential of 
leucine to stimulate skeletal muscle growth via the 
mTOR signaling pathway has been examined in 
various cell models (8). mTOR, a master regulator of 
cell growth and metabolism, exists in two complexes, 
mTOR complex 1 (mTORC1) and mTOR complex 
2 (mTORC2) (9, 10). The differences between 
mTORC1 and mTORC2 mainly occur in the following 
two aspects. First, mTORC1 is very sensitive to 
rapamycin, whereas mTORC2 displays a limited 
inhibition by this drug. Second, activation of mTORC1 
stimulates protein synthesis and cell growth, while 
mTORC2 is involved in cytoskeleton reorganization 
and cellular proliferation (11). In mTORC1, mTOR 
associates with two highly conserved proteins: 
regulatory associated protein of mTOR (raptor) and 
mammalian lethal with sec18 protein 8 (mLST8) (12). 
In the present paper, we focus on mTORC1. When 
exposed to cells rich in amino acids (AAs), mTORC1 
is activated to regulate downstream effectors of 
mTORC1 to increase protein translation and to inhibit 
macroautophagy (13). The interaction between 
mTOR and raptor is mediated in part by changes in 
amino acid availability. Amino acids promote a shift 
in the raptor-mTOR complex from a stable, inactive 
complex to an unstable, active complex, which is 
essential for activation of the downstream (mainly 
S6K1 and 4EBP1) of the mTOR pathway (14). 
Furthermore, numerous metabolic roles of leucine 
depend on its cellular concentration (15). Therefore, 
we should first understand the mechanisms by which 
leucine enters the cell to subsequently activate the 
mTORC1 pathway.

Amino acid transporters, which are 
present in an ideal location on membranes to 
relay nutrient signals to the cell interior, allow the 
cell to sense amino acid availability, and launch 
an anabolic response (increased translation 
and growth) (13, 16). Through three active 
transporters, leucine enters cells (Figure 1) (16). 
The primary active transport mechanism is 
that Na+ moves from the intracellular side to 
extracellular side via the hydrolysis of adenosine 
triphosphate (ATP). The second active transport 
of leucine is mediated by transporter System A 
(solute carrier family 38 member 2 (SLC38A2). 
Extracellular leucine and Na+ enter the cytoplasm 
of the cell through the cell membrane. The tertiary 
active transport of leucine is carried out by the 
amino acid transporter hetero-exchange System 
L (solute carrier family 7 member 5 (SLC7A5)/
SLC3A2) (16).

When serum-free DMEM was added to 
starved HeLa cells, whose mTORC1 signaling 
was inhibited after deprivation of amino acid and 
growth factor, activating S6K1 (a key downstream of 
mTORC1) and caused the phosphorylation of S6K1 
and ribosomal protein S6, a key downstream target 
of S6K1. However, when AAs were added alone to 
culture medium at the same concentration as found 
in DMEM, mTORC1 signaling was not activated. In 
addition to AAs, the remaining components of DMEM 
(sodium pytuvate, sodium bicarbonate, ferric nitrate, 
nonessential amino acids and L-Gln) were added 
alone to the cells, respectively. Likewise, the mTORC1 
pathway was not activated. However, the addition 
of L-Gln to culture medium containing a mixture of 
EAAs up-regulates mTORC1 signaling, indicating 
that L-Gln is required for activation of mTORC1 in an 
AA-rich environment. Following uptake, L-glutamine 
is effluxed within 1-2 min of adding EAAs to cells, 
resulting in reciprocal uptake of L-leucine and rapid 
activation of S6K1. This uptake process requires 
solute carrier family 1 member 5 (SLC1A5) and 
SLC7A5/SLC3A2. SLC1A5 is a high affinity L-Gln 
transporter and its inhibition blocks uptake of L-Gln, 
resulting in inhibition of the mTORC1 signaling. 
SLC7A5/SLC3A2 is a bidirectional transporter 
that regulates the exchange of intracellular L-Gln 
for extracellular L-leucine. Thus, with the help of 
L-Gln, SLC1A5 and SLC7A5/SLC3A2, EAAs enter 
the cells to mediate the mTORC1 signaling (13). In 
mammalian cells, mTORC1 is acutely responsive 
to amino acid availability and signals to enhance 
mRNA translation during periods of plentiful nutrient 
supply (16).
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3.2. The mechanisms for leucine to 
stimulate protein synthesis via mTORC1 
signaling

Availability of AAs is a key factor in 
enhancing net protein synthesis (17). As noted 
previously, BCAAs, especially leucine, are essentially 
important for the regulation of protein metabolism. 
The underlying mechanisms include: 1) providing 
the precursors and metabolic substrates required for 
polypeptide biosynthesis, 2) regulating the release 
of endocrine hormones (such as insulin, insulin 
like growth factor-1(IGF-1)), and 3) modulating the 
mTOR signaling pathway responsible for protein 
synthesis (18-20). Numerous studies utilizing various 
model systems have indicated that AAs stimulate 
protein synthesis by enhancing the initiation of mRNA 
translation into protein (21, 22). The rate-limiting step 
in the process of mammalian translation initiation 
is the binding of the ribosome to mRNA. Strikingly, 
almost all of the factors (including the eukaryotic 
initiation factor (eIF) 4E (eIF4E), eIF4B, and eIF4G 
that are involved in recruiting the ribosome are 
phosphoproteins, whose phosphorylation states are 
directly in proportion to the translation and growth 
rates of the cell (23). Similarly, 4EBP1, the repressor 
protein, is also phosphorylated in this process (24). Of 
considerable interest, the mTOR signaling pathway 
regulates the phosphorylation of all of these factors, 
except for eIF4E (23). Our understanding of the 
molecular mechanisms contributing to the effect of 
leucine on translation initiation has tremendously 

increased in the past few years. Known pathways 
involve phosphorylation of the mTORC1 and 
sequential phosphorylation of S6K1, 4EBP1, and 
eIF4G. S6K1 and 4EBP1 represent important control 
points in translation initiation (20, 25, 26).

Candidates for mediating the action of 
leucine to stimulate mTOR signaling include a 
small GTPase called Rheb (Ras homolog enriched 
in brain), tuberin (also known as TSC2), and 
raptor. mTOR signaling is controlled by upstream 
members of the pathway, such as Rheb, TSC2 and 
its binding partner, TSC1 (hamartin). Rheb activates 
mTORC1. However, TSC2-TSC1 complex induces 
Rheb inactivation by promoting the conversion of 
Rheb-GTP to Rheb-GDP, which in turn represses 
mTORC1 activity. Leucine acts on mTORC1 
signaling in part through inhibiting the activity of the 
TSC1-TSC2 complex and subsequently activation 
of Rheb. Upon activation, mTORC1 phosphorylates 
downstream components, such as S6K1 and 4EBP1, 
ultimately activating translation initiation of protein 
synthesis (11, 25). In particular, previous studies 
have shown that oral leucine administration results in 
hyperphosphorylation (inactivation) of 4EBP1 in rats 
fasted for 18 h (27). However, orally administered 
leucine causes the phosphorylation (activation) of 
S6K1 (28). Of particular note, amino acid availability 
leads to an elevation in intracellular Ca2+ levels, 
which in turn enhances mTORC1 signaling via Ca2+/
calmodulin-mediated activation of hVPS34, a class III 
phosphoinositide-3-OH kinase (PI3K) (29).

Figure 1. Leucine enters the cells to promote mTORC1 signaling: via amino acid transporters as well as glutamine (Gln). Leucine enters the 
cell to stimulate mTORC1, which is a master regulator of cell growth and metabolism. Adapted from Reference 16.
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In addition to mTOR-dependent mechanisms, 
leucine can also stimulate protein synthesis 
through mTOR-independent mechanisms (30, 31). 
Numerous studies show that leucine has a stimulatory 
effect on the assembly of the eIF4F complex, the 
phosphorylation status of eIF4G and S6K1, as well as 
a downstream protein substrate S6 (25). Thus, under 
mTOR-independent mechanisms, protein synthesis in 
skeletal muscle is regulated by an ability of leucine to 
activate eIF4G (30).

3.3. Roles of insulin in leucine-induced 
protein synthesis in muscle

Elevated levels of leucine are known for their 
stimulating effect on insulin release from the pancreas. 
In turn, insulin plays a role in promoting muscle 
AA uptake in the postprandial period and hindering 
AA release from skeletal muscle during the post-
absorptive period. After meals, the effect of insulin on 
uptake of AAs by muscle cells activates an anabolic 
response and enhances protein synthesis (11). 
Furthermore, the ability of leucine to promote the 
rate of muscle protein synthesis is attenuated when 
the elevation in insulin release is prevented (32, 33). 
Thus, it has been presumed that the anabolic effect 
of leucine may result from changes in the circulating 
levels of either leucine or insulin, or a combination 
of both (34). However, the complex mechanisms by 
which leucine enhances insulin secretion are not yet 
fully understood. Nonetheless, a transient increase 
in insulin is associated with the leucine-induced 
effect on protein synthesis in skeletal muscle. These 
studies also show that somatostatin maintains insulin 
concentrations at the fasting basal level throughout 
the time course. The transient increase in plasma 
insulin, which contributes to the leucine-induced 
phosphorylation of 4EBP1 and S6K1, appears to be 
permissive to the leucine-mediated stimulation of 
protein synthesis in skeletal muscle (33). Moreover, 
studies in rats with experimentally induced diabetes 
demonstrate that administration of leucine alone has 
no effect on mTOR signaling to S6K1 or 4EBP1 but 
rather produces a stimulation of protein synthesis (35). 
However, administration of leucine in association with 
insulin infusion is sufficient to enhance mTOR signaling 
to S6K1 and 4EBP1 (35). Overall, these results indicate 
that leucine stimulates protein synthesis in skeletal 
muscle via both insulin-dependent and -independent 
mechanisms. The insulin-dependent mechanism is 
associated with signaling through mTOR to S6K1 
and 4EBP1, whereas the insulin-independent effect is 
mediated by an unknown mechanism that may involve 
phosphorylation of eIF4G and/or its association with 
eIF4E (25).

Insulin-dependent activation of mTOR is 
mediated via the PI3K/protein kinase B (also known 
as Akt) signaling pathway. PI3K is activated by insulin 
through direct interaction with receptors or through 
interaction with scaffolding adaptors, such as the 
insulin receptor substrate proteins. Downstream of 
PI3K, Akt directly phosphorylates and inactivates the 
TSC1/TSC2 complex, resulting in the subsequent 
activation of Rheb, which activates mTOR by binding 
directly to mTOR and to the mTOR-interacting 
protein mLST8 (23, 36-38). Upon activation of the 
mTOR signaling, mTORC1 phosphorylates 4EBP1 
and S6K1. Through negative-feedback mechanisms, 
mTORC1 activity inhibits insulin stimulation of 
PI3K (39).

All in all, leucine- and insulin- mediated 
effects on protein synthesis appear to activate 
different signaling pathways that converge at the 
mTOR, at least in part through repression of the 
TSC1-TSC2 complex and consequent inhibition of 
the GTPase activity of Rheb (11). TSC1/TSC2 protein 
complex may constitute the convergence point for 
both leucine- and insulin-related controls of mTOR 
activity (11, 23). mTOR, which lies downstream of 
Akt in the PI3K signaling pathway, integrates the 
two signals and contributes to the regulation of 
protein synthesis in skeletal muscle (33, 35). It is 
important to note that insulin signals exert little or 
no effect on mTORC1 signaling in the absence of 
AAs (13). However, previous studies report that 
leucine has a direct action on the PI3K/Akt signal 
pathway in activating the eIF4E initiation complex 
independent of insulin (40). This is further supported 
by studies that have shown that elevations in serum 
EAAs are responsible for the enhanced protein 
synthesis in skeletal muscle independent of insulin 
or IGF-1 changes (41). Also infusion of BCAAs or 
leucine alone can phosphorylate and activate mTOR 
in skeletal muscle without activating the PI3K/Akt 
signaling pathway (42). This raises the possibility 
that the role of leucine in protein synthesis does not 
necessarily require an increase in plasma insulin 
concentrations above fasting values, but does 
require a minimal amount of insulin.

3.4. Protein synthesis via mTORC1 
signaling and endoplasmic reticulum 
stress

ER is a highly metabolic organelle. The 
membrane-bound network of ER extends from 
the nuclear envelope to the periphery of the 
cell, maintaining vital contact zones with many 
other cell organelles. Above all, ER regulates 
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intracellular turnover of proteins (9, 43). Increasing 
protein synthesis elevates the demand on the 
ER machinery for protein folding, leading to acute 
activation of the ER stress (also referred to as 
the unfold protein response (UPR)) induced by 
mTORC1 (9). Ire1-alpha, PERK, and ATF6-alpha 
are three types of ER membrane-embedded 
proteins. Upon UPR activation, Ire1-alpha degrades 
select ER-associated mRNAs to attenuate protein 
import into the ER. PERK directly phosphorylates 
the eIF2-alpha translation initiation factor, lowering 
overall translation of protein synthesis (43, 44). 
Overall, the output of UPR signaling is homeostatic 
adaptation by a variety of mechanisms that primarily 
aim at lowering the burden of folding substrates, 
increasing the capacity of the ER folding machinery, 
and restoring ER function and promote apoptotic cell 
death (9, 45).

mTORC1 operates upstream as well 
as downstream of ER stress signals, which can 
either enhance or antagonize the anabolic output 
of mTORC1. Upon prolonged ER stress, mTORC1 
leads to apoptotic signaling by inhibiting the 
survival kinase Akt through feedback inhibition. 
Similarly, chronic ER stress blocks activation of 
Akt by mTORC2 (9). Overall, inactivation of Akt 
may be caused by chronic activation of mTORC1 
and UPR via the following mechanisms: inhibitory 
phosphorylation of insulin receptor substrate 1 
and mTORC2 by S6K1 downstream of mTORC1; 
inactivation of mTORC2 by GSK3 beta-catalyzed 
phosphorylation downstream of ER stress; PERK-
CHOP-mediated induction of TRB3, which directly 
binds to Akt and obstructs its activation. Reduced 
Akt activation results in higher levels of TRAF2, thus 
triggering the activation of the UPR (9).

4. THE MECHANISMS OF LEUCINE ON 
ENERGY PARTITIONING BETWEEN 
SKELETAL MUSCLE AND ADIPOCYTES

4.1. Fatty acid oxidation provides energy 
required for leucine-induced protein 
synthesis

In spite of being a major sink for circulating 
glucose, skeletal muscle takes up a great deal 
of plasma fatty acids (FA), either for storage 
(incorporation into intracellular lipids) or for ATP 
production (oxidation) (46). Skeletal muscle plays a 
critical role in determining energy metabolism, in the 
clearance of serum free FA, in lipid utilization, and 
in whole-body FA oxidation (5, 47). Of note, leucine 
regulates adipocyte lipid metabolism to provide an 

increased flux of free FA to skeletal muscle, thereby 
supplying energy substrates to support leucine-
induced protein synthesis (5). Interestingly, the 
body fat loss induced by dietary supplementation 
of leucine is associated with increased protein 
synthesis (8, 48-53). Taken together, it is speculated 
that a substantial amount of energy required in the 
process of leucine-stimulated protein synthesis in 
muscle cells is mainly provided by FA oxidation. 
There is emerging evidence supporting this 
hypothesis. Donate et al. (50) reports that body fat 
in rats receiving a diet containing 1.7.7 percent of 
leucine after 6 week of food restriction was reduced 
by 47%, whereas protein nutritional status and 
protein synthesis capacity in rats were improved. 
These results suggest that long-term low-dose 
supplementation of leucine enhances body fat loss, 
liver protein status, and the capacity of muscle protein 
synthesis in underfed rats. Zhang et al. (54) found a 
25% decrease in adiposity in rats receiving a diet 
with 1.5.% L-leucine. Sun and Zemel (55) reported 
that co-culture of muscle cells with adipocytes or 
incubation for 48-h with adipocyte-conditioned 
medium lowered muscle FA oxidation by 62%, but 
treating adipocytes with leucine attenuated this 
effect. These results suggest that certain cytokines 
derived from adipocytes regulate energy metabolism 
in muscle cells. Leucine significantly increased FA 
oxidation in C2C12 myotubes, while inhibiting 
fatty acid synthase and peroxisome proliferator-
activated receptor-gamma expression in 3T3-L1 
adipocytes. These results suggest that leucine can 
regulate adipocyte lipid metabolism to promote 
flux of lipid to skeletal and coordinately promote 
energy partitioning from adipocytes to muscle cells, 
leading to reduced energy storage in adipocytes and 
increasing FA utilization in muscle (55). Additionally, 
Sun and Zemel (5) proposed that energy metabolism 
in muscle and adipocytes is regulated by leucine 
at least in part through mitochondrial biogenesis 
(an increase in mitochondrial mass or number). 
Recent studies examined the effects of a leucine-
rich (4 percent) diet in rats during their most adult 
life until the onset of old age (56). The results 
further confirm the findings of previous studies 
that leucine supplementation promotes a loss in 
body fat. Accordingly, leucine may have an effect in 
mediating normal energy metabolism through its role 
in mitochondrial biogenesis and fat oxidation.

4.2. Mitochondrial biogenesis is involved in 
the role of leucine in energy metabolism

Mitochondria play a crucial role in regulating 
adipocyte lipid metabolism and cellular energy 
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metabolism (57). As noted before, mitochondria 
involves in mediating energy metabolism of 
leucine in muscle and adipocytes. Multiple genes 
expressed in mitochondria, such as peroxisome 
proliferator-activated receptor gamma co-activator 
1-alpha (PGC-1 alpha) and silent information 
regulator transcript 1 (SIRT-1), may be involved 
in the modulation of energy metabolism through 
their regulation of mitochondrial number and FA 
oxidation (58-60). Further, overexpression of PGC-1 
alpha in rodents enables muscle to oxidize fatty acids 
more efficiently (61). Leucine (0.5. mM) can enhance 
mitochondrial biogenesis in both C2C12 myocytes 
and 3T3-L1 adipocytes, and regulate skeletal muscle 
energy metabolism in part by regulating expression 
of PGC-1 alpha and SIRT-1(5). In addition, activation 
of the AMP-activated protein kinase (AMPK) results 
in phosphorylation and increased activity of PGC-1 
alpha, therefore promoting mitochondrial function (1). 
Overall, leucine plays a unique signaling role in 
skeletal muscle and adipocytes. Specifically, leucine 
signaling promotes mitochondrial biogenesis, 
which enhances cellular respiration and energy 
partitioning. As a result, oxidation of fatty acids in 
adipocytes and muscle is increased, and this cellular 
energy metabolism promotes protein synthesis via 
mTOR activation within muscle cells (Figure 2) (1).

4.3. Cytokines secreted by adipose and 
muscle may regulate energy partitioning

Energy repartitioning between skeletal 
muscle and adipose tissue has been previously 
demonstrated by many studies (5, 55, 62, 63). 
Leucine could promote oxygen consumption in 
myocytes and adipocytes, further supporting the 
role of leucine in modulation of energy combustion. 
However, exposure of myocytes to adipocytes via 
either co-culture or conditioned medium attenuates 
these effects, suggesting that certain molecules 
secreted by excess adipose tissue may affect 
FA oxidation in skeletal muscle by suppressing 
mitochondrial biogenesis (5). This discovery raises 
the possibility that cytokines secreted by adipose and 
muscle tissues may be involved in energy partitioning 
between these tissues. Cytokines, such as tumor 
necrosis factor alpha (TNF-alpha), leptin, adiponectin, 
and Interleukin-15 (IL-15), play a key role in the 
‘‘cross-talk’’ between adipose tissue and skeletal 
muscle. TNF-alpha secreted by adipocytes has 
been demonstrated to down-regulate mitochondrial 
biogenesis in both muscle and adipose tissue (64, 
65), and to inhibit in vitro myoblast differentiation 
via lowering myoD and myogenin (66). Conversely, 
two other adipokines, adiponectin and leptin, have 

been implicated in increasing the rate of FA oxidation 
and decreasing muscle lipid content (46). Muoio 
et al.(47) firstly demonstrated that leptin directly 
alters FA metabolism in skeletal muscle, namely 
partitioning FA away from intramuscular triglycerides 
(IMTG) storage towards oxidation. Steinberg 
et al. (67) confirmed these findings by demonstrating 
that leptin acutely increases IMTG hydrolysis. Of 
note, leucine increases leptin secretion via mTOR 
signaling (68). Likewise, adiponectin also has been 
shown to reduce IMTG, promote FA oxidation (69), 
and increase various enzymes/proteins involved in 
FA oxidation (such as fatty acid translocase and fatty 
acid transport protein 1) (70). Moreover, an increased 
abundance of mitochondria in adipose tissue 
enhances adiponectin synthesis (71). However, 
mitochondrial loss and dysfunction could increase 
ER stress and decrease adiponectin transcription 
though activation of N-terminal kinase (71). It is 
intriguing that the effects of leptin and adiponectin on 
FA metabolism seem to be regulated at least in part 
through the activation of AMPK and consequently 
acetyl-CoA carboxylase (ACC) (46). IL-15, a 
cytokine highly expressed in skeletal muscle, exerts 
its anabolic effects on protein dynamics in skeletal 
muscle both in vivo and in vitro, and plays a key role 
in regulating fat deposition (66, 72). Administration 
of IL-15 reduced adipose tissue deposition by 33% 
without affecting food intake in growing rats (73, 74). 
Further, another study with obese rodents showed 
that sensitivity to the white fat-reducing effects was 
related to mRNA levels for a key signaling subunit 
of IL-15 receptor in adipocytes (75). Overall, these 
results show that IL-15 decreases adipose tissue 
mass through a direct mechanism. Additionally, 
IL-15 stimulates secretion of the adipocyte-specific 
hormone adiponectin by differentiated 3T3-
L1 adipocytes (72). In turn, adiponectin greatly 
enhances IL-15 release from muscle cells (55).

4.4. mTOR and AMPK may regulates 
leucine-induced energy partitioning

Accumulating evidence has shown that 
some AA sensors, such as mTOR and AMPK, play 
critical roles in the modulation of lipid metabolism 
and energy repartitioning (76). Protein synthesis is 
the major energy-consuming process in the cell (3). 
In particular, the processes of mRNA translation and 
ribosomal biogenesis, which are strongly affected 
by mTOR pathways, consume high levels of cellular 
energy (4). Cells exhibit a reduced rate of protein 
synthesis when there is insufficient AA substrate 
or energy via a mTOR-dependent mechanism (2). 
Thus, it is speculated that mTOR activity may be 
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linked to cellular energy status (4). Reduced glucose 
availability or the suppression of mitochondrial 
respiration lowers cellular ATP levels and, therefore, 
impairs the ability of insulin to activate mTOR (4). 
Thus, cellular energy status has an effect on mTOR 
activity (4). In other words, mTOR serves as an ATP 
sensor (2, 4). Consequently, mTOR functions as a 
checkpoint by which cells sense and decode changes 
in energy status, which in turn regulates cell growth 
and proliferation (2). Further, mTOR could promote 
mitochondrial biogenesis and therefore FA oxidation 
(Figure 2) (10). Leucine can activate mTOR in various 
model systems (2, 6). Therefore, the effects of leucine 
on energy repartitioning between skeletal muscle and 
adipocytes may be exerted at least, in part, through 
the role of mTOR in mitochondrial biogenesis.

AMPK is a key regulator of FA metabolism 
and protein synthesis in skeletal muscle (77). 
AMPK is regulated by moderate changes in cellular 

ATP levels and can sense the ratio of adenosine 
monophosphate (AMP)/ATP in the cell. Thus, a 
decline of the intracellular ATP level, companied by 
an increase in the AMP level, results in an elevation 
of AMPK activity (Figure 2) (46, 78, 79). Additionally, 
leucine can decrease AMPK activity, which is not 
mediated by changes in the AMP/ATP ratio but 
is related to an increase in the lactate/pyruvate 
ratio, suggesting that leucine could cause an 
increase in NADH concentrations relative to NAD+ 
availability in muscle (80). Once activated, AMPK 
phosphorylates multiple downstream substrates 
with the aim of conserving the existing ATP. On one 
hand, activation of AMPK increases the supply of 
ATP by inducing a phosphorylation (deactivation) of 
ACC and reducing malonyl CoA concentrations (81). 
Because malonyl-CoA supresses carnitine palmitoyl 
transferase-I (CPT-I) activity, the decrease in 
malonyl-CoA content will relieve CPT-I from its 
inhibition, resulting in increased uptake of long-chain 

Figure 2. Mechanisms for leucine to regulate protein synthesis and energy partitioning in skeletal muscle and adipocytes. Leucine stimulates 
protein synthesis via mammalian target of rapamycin (mTOR) signaling, which is involved in the 70 kDa ribosomal protein S6 kinase 1 (S6K1) 
and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1). Leucine signaling promotes mitochondrial biogenesis in skeletal muscle 
and adipocytes, which could enhance cellular respiration and energy partitioning in these cells.
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fatty acids by mitochondria for oxidation in muscle 
tissues (82, 83). In contrast, activation of AMPK 
decreases ATP expenditure by suppressing key 
enzymes/proteins in biosynthetic pathways, such 
as mTOR/S6K1 signaling in protein synthesis and 
glycerol-3-phosphate acyltransferase and ACC 
in lipid synthesis (80, 84). Thus, AMPK activation 
enables adipocytes to release more FA into the 
circulation for the metabolic needs of muscle and 
liver. Furthermore, AMPK is also a mediator of the 
effects of adipocyte-derived hormones on fatty 
acid oxidation in peripheral tissues (77). Leptin 
could activate AMPK in muscle, which is essential 
for its modulation of energy homeostasis (85, 86). 
Decreasing pro-inflammatory cytokines, such as 
interleukin-6 and TNF-alpha, activates AMPK in 
adipose tissue and indirectly increases adiponectin 
secretion (87).

mTOR not only promotes protein synthesis 
but also suppresses autophagy in the presence 
of mitogens and available AA. Additionally, mTOR 
may be one of the downstream targets of AMPK. 
Upon depletion of ATP, AMPK activation leads 
to suppression of mTOR signaling via activation 
of TSC2, thereby inhibiting protein synthesis in 
cells. Inhibition of protein synthesis via AMPK is 
an important pathway by which AMPK conserves 
cellular energy during low energy states, implying that 
energy metabolism and protein synthesis are tightly 
coupled via AMPK and TSC2 (23, 77). Previous 
studies report that S6K1 is suppressed by treatment 
with mitochondrial inhibitors, suggesting that 
mitochondrial dysfunction caused by mitochondrial 
inhibitors may suppress S6K1 by activating AMPK 
(84). In addition, catabolism of leucine forms isovaleryl 
CoA and NADH by metabolic enzymes, including 
branched-chain amino acid aminotransferase and 
branched-chain α-keto acid dehydrogenase complex 
(6). Therefore, it has been speculated that leucine 
activates S6K1 via the mTOR signaling pathway, 
in part by serving both as a mitochondrial fuel 
through oxidative decarboxylation and an allosteric 
activation of glutamate dehydrogenase (88). This 
further supports the notion that leucine regulates 
mTOR function, in part by regulating mitochondrial 
function and AMPK (6). Thus, it can be surmised that 
mTOR senses the intracellular level of ATP through 
AMPK (84).

5. SUMMARY AND PERSPECTIVES

Our basic knowledge of the regulation 
of protein synthesis and energy metabolism by 

leucine has been greatly expanded over the past 
years. A growing body of evidence has shown 
that AA sensors (such as mTOR and AMPK) and 
mitochondrial biogenesis are involved in this 
modulation. Of note, understanding the important 
relationship between protein synthesis and energy 
metabolism may provide new strategies for 
favorably affecting body composition in animals 
and humans. Reducing the loss of lean body mass 
in mammals and birds during catabolic states, 
which occurs in specific physiological conditions 
(e.g. starvation, aging, and lactation) (89-94), while 
promoting the loss of excessive white adipose 
tissue (95-99), is important for both human health 
and animal agriculture. Key questions include the 
following. First, because activation of AMPK favors 
FA oxidation over FA synthesis providing energy 
and inhibiting protein synthesis via suppressing 
mTOR, how does leucine regulate AMPK during the 
process of protein synthesis? Second, what is the 
most suitable amount of leucine supplementation 
in order to coordinate effectively with insulin for 
stimulating protein synthesis? Third, although 
Wu and co-workers recently proposed optimal 
patterns of dietary amino acids for gestating, 
lactating, and growing swine (100-103), what 
is the optimal ratio of dietary BCAAs for protein 
synthesis and energy partitioning in skeletal 
muscles and adipocytes? Further studies are 
essential to clearly address these questions. Like 
other functional AA (e.g. 104-126), a suitable ratio 
of dietary BCAAs is essential to build a reasonable 
AA model for requirements, decrease dietary 
crude-protein levels, promote growth performance 
of animals. and protect the environment by rational 
utilization of AAs and the reduction of nitrogen 
discharge. Sources of supplemental leucine in 
diets can be synthetic leucine and leucine-rich 
animal products (127-131). Thus, leucine holds 
great promise for optimizing growth and health in 
animals and humans (132-135).
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