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1.  ABSTRACT

    Mammalian ovarian follicular development and
atresia is closely regulated by the cross talk of cell death
and cell survival signals, which include endocrine
hormones (gonadotropins) and intra-ovarian regulators
(gonadal steroids, cytokines and growth factors). The fate
of the follicle is dependent on a delicate balance in the
expression and actions of factors promoting follicular cell
proliferation, growth and differentiation and of those
inducing programmed cell death (apoptosis). As an
important endocrine hormone, FSH binds to its granulosa
cell receptors and promotes ovarian follicle survival and
growth not only by stimulating proliferation and estradiol
secretion of these cells, but also inhibiting the apoptosis by
up-regulating the expression of intracellular anti-apoptotic
proteins, such as XIAP and FLIP. In addition, intra-ovarian
regulators, such as TGF-alpha and TNF-alpha, also play an
important role in the control of follicular development and
atresia. In response to FSH, Estradiol-17 beta synthesized
from the granulosa cells stimulates thecal expression of
TGF-alpha, which in turn increases granulosa cell XIAP
expression and proliferation. The death receptor and ligand,
Fas and Fas ligand, are expressed in granulosa cells
following gonadotropin withdrawal, culminating in
caspase-mediated apoptosis and follicular atresia. In
contrast, TNF-alpha has both survival and pro-apoptotic
function in the follicle, depending on the receptor subtype
activated, but has been shown to promote granulosa cell
survival by increasing XIAP and FLIP expression via the
IkappaB-NFkappaB pathway. The pro-apoptotic action of
TNF-alpha is mediated through the activation of caspases,

via its receptor- (i.e. Caspases-8 and -3) and mitochrondria-
(i.e. Caspase-9 and -3) death pathways. In the present
manuscript, we have reviewed the actions and interactions
of gonadotropins and intra-ovarian regulators in the control
of granulosa cell fate and ultimately follicular destiny. We
have highlighted the role and regulation of granulosa cell
XIAP and FLIP expression, as well as their interactions
with the death signaling pathways in the maintenance of
granulosa cell survival during follicular development. We
have provided strong evidence for these intracellular
survival factors as key determinants for ovarian follicular
destiny (growth versus atresia), the expression of which is
regulated by a highly integrated endocrine, paracrine and
autocrine mechanism. Further studies in these aspects will
lead to a better understanding of the molecular and cellular
regulation of follicular development and atresia, and
provide invaluable insight into novel strategies in assisted
reproduction in human infertility as well as in increasing
reproductive efficiency in livestock industries.

2. REGULATION OF FOLLICULAR DEVELOPMENT
AND ATRESIA

    Female mammals are endowed with a large
number of primordial ovarian follicles at birth in spite of
the large variability between species (from 2 ~ 4 x 104 in
mice to 1 ~ 2 x 106 in human) (1). However, only a limited
number of follicles develop to the preovulatory stage and
ovulate, while most follicles (over 99%) undergo atresia
during the course of folliculogenesis (2-4). Follicular
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Figure 1.  Ying-Yang hypothesis for the control of ovarian
follicular growth and atresia.

Figure 2.  A hypothetical model illustrating the actions and
interactions of FSH, TGF-alpha, TNF-alpha and Fas ligand,
as well as integrin activation on cell death and cellular
survival signaling in the granulosa cell.

development can be divided into three stages – recruitment
of primary follicles, selection of the dominant follicles
from the pool of antral follicles, and dominance
(preovulatory follicles). It is believed that cohorts of
primary oocytes are recruited to develop in early follicular
phase. The initial stages of follicular development proceed
very slowly and without follicular atresia (5). In contrast,
follicular growth at the antral (penultimate) stage is much
more rapid and follicles meet one of two fates (selection) –
ovulation or atresia (6, 7). Although most follicles become
atretic during the penultimate stage, a few are selected for
dominance. In rats, primates and pigs, dominant follicles
develop only during the follicular phase and are thus

destined to ovulate. In cattle, sheep and horses, however,
recruitment, selection and dominance occur at regular
intervals, but only the dominant follicle (present during the
follicular phase) ovulates (5).

    The cellular and molecular mechanisms involved
in follicular recruitment, selection and dominance are not
well understood. Gonadotropins are known to play an
important role in these processes and follicular recruitment
is temporally correlated with slight increases in circulating
FSH. Rats exhibit a secondary surge of FSH on the day of
estrus, just before the next cohort of follicles is recruited
(8). In primates, basal FSH is slightly higher at the
beginning of the follicular phase than during the luteal or
late follicular phases (9, 10). In some species, a decline in
FSH levels for a defined period is necessary for follicle
selection, since the dominant follicle (with increased
abundance of FSH receptor) continues to grow in response
to a low concentration of FSH, which is inadequate for
survival and growth of the smaller follicles (11-13). FSH is
also required for the maintenance of follicular dominance,
since experimental reduction of plasma FSH during this
period is correlated with cessation of growth in cattle, and
in some animals the demise of the dominant follicle (5, 14).

3. REGULATION OF GRANULOSA CELL
APOPTOSIS – A PHYSIOLOGIC MECHANISM FOR
OVARIAN FOLLICULAR ATRESIA

    The fate of the ovarian follicle (continual growth
and ovulation versus atresia) at the penultimate stage of
development is determined by the fate of its cells
(proliferation and differentiation versus apoptosis), which
in turn is regulated by the relative expression of “death”
and “survival” genes under the influence of cell survival
and cell death factors (Figure 1). Thus, follicular
development may be a consequence of suppression of death
genes and/or over-expression of survival genes, while the
opposite is true for follicular atresia. Atresia is
characterized by apoptosis initially of the granulosa cells
(15) and subsequently of the theca (16). The onset of
granulosa cell apoptotic cell death is evident
morphologically by cytoplasmic and chromatin
condensation, membrane blebbing and phagocytosis of
neighboring cells (15, 17). Biochemically, this process is
accompanied by the degradation of cellular DNA into
nucleosomal units by Ca2+/Mg2+-dependent
endonucleases (18, 19) and caspase-activated DNases
(CAD) (20, 21). Follicular selection is closely regulated by
endocrine, paracrine and autocrine factors (5, 22-24). FSH
is an important survival factor for preantral and antral
follicular development in vivo (25, 26). It promotes
granulosa cell proliferation and estrogen secretion (24).
Gonadotropin withdrawal by antibody neutralization (15,
27), hypophysectomy on day of proestrus or metabolic
clearance after a single hormonal injection induces
granulosa cell apoptosis and follicular atresia (28-30).

    It is well established that apoptosis is triggered
through the activation of cysteine aspartate-specific
proteases (caspases; Figure 2), a family of the enzymes
related to the interleukin-1 beta-converting enzyme (ICE,
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Figure 3.  Granulosa-theca interaction in FSH-induced
granulosa cell XIAP expression during follicular
development (Reproduced with permission from Biology of
Reproduction).

caspase-1) (31). During programmed cell death, caspases
act as cell effectors and as initiators of apoptosis upon
appropriate pro-apoptotic signaling. Caspases are expressed
as inactive proenzymes and upon activation by
autocatalytic cleavage or proteolytic signaling, they cleave
a variety of substrates such as poly (ADP-ribose)
polymerase (PARP), DNA-dependent kinase (DNA-PKs),
as well as cytoskeletal cytoplasmic (actin, fodrin, laminin,
beta-catenin and plakoglobin) and nuclear (lamin A, lamin
B and Mdm2 oncoprotein) proteins (32-35). The rate and
occurrence of substrate cleavage is cell-specific (36). Upon
activation, caspase causes: a) inactivation of the inhibitors
of apoptosis, b) disassembly of cellular structures, such as
the nuclear lamina, c) deregulation of activity of key
regulatory proteins, such as gelsolin (37), focal adhesion
kinase (FAK) and p21-activated kinase 2 (PAK2) and d)
cleavage of the inhibitor of CAD (ICAD), resulting in CAD
release and translocation to the nucleus, and the cleavage of
chromosomal DNA (20, 21, 38-40).  In the ovary, caspase–
3 expression appears to be regulated by gonadotropin and
the activity of this protease is activated by upstream
caspase-8 and –9 and act synergistically to cause granulosa
cell death and hence, follicular atresia (41).

    Three signaling pathways are involved in the
induction of apoptosis: receptor- (Fas and TNFR),
mitochondria- and endoplasmic reticulum (ER)-mediated
death pathways, all of which involves the caspase
activation. When bound to FasL, Fas initiates cell death by
activating procaspase-8 and procaspase-3 (Figure 2).
Mitochondria-mediated pathway is activated by many
triggers, including growth factor deprivation. Cytochrome c
released into cytoplasm forms a complex (apoptosome)
with apoptotic protease activating factor-1 (Apaf-1),
leading to the recruitment and activation of procaspase-9
and procaspase-3 (Figure 2) (42). In ER-mediated death
pathway, ER stress triggers the activation of procaspase-12,
which activates caspase-9 and subsequently caspase-3 in a
cytochrome c-independent manner (43-45). Absence of or
insufficient survival signaling within the granulosa cells
(e.g. decreased FSH levels) will result in the entry of the
follicle into an apoptotic suicide program, mediated by
increased expression of death genes, such as Fas and Fas
ligand (FasL) (46, 47).  We have also demonstrated that
FSH up-regulates XIAP level and suppresses apoptosis,
thereby promoting growth of the dominant follicle (24).
Taken together, the presence or absence of FSH appears to
be critical in controlling the expression of pro-apoptotic

and anti-apoptotic proteins in the ovarian follicles, an
important determinant in follicular development.

    In addition to gonadotropins, there are other
factors that regulate cell survival and apoptosis in the
ovary. Intra-ovarian regulators such as transforming growth
factor alpha (TGF-alpha) (24) and tumor necrosis factor
alpha (TNF-alpha) (48, 49) have been shown to increase
the expression of intracellular cell survival intermediates,
such as X-linked inhibitor of apoptosis (XIAP) and flice-
like inhibitory protein (FLIP), and appear to enhance
preovulatory follicular growth. Estradiol is a key regulator
of TGF-alpha secretion from the theca cell and is
instrumental in the up-regulation of follicular XIAP
expression (24). Regulation of these proteins is multi-
factorial and involves a delicate balance in the expression
and action of cell death and cell survival factors to maintain
a normal course of follicular development and atresia.

4. DEATH PATHWAYS IN THE INDUCTION OF
OVARIAN APOPTOSIS

4.1 Fas and Fas ligand expression and the regulation of
atresia
   It is well established that the Fas/Fas ligand
(FasL) system is involved in the induction of apoptosis in
the ovary (Figure 2).  Fas (APO-1/CD95), a 45-kDa
transmembrane receptor, is a member of the TNF/nerve
growth factor (NGF) receptor superfamily. When bound to
FasL, the Fas receptor trimerizes and transduces a death
signal, resulting in apoptosis (22, 50).  FasL is a type II
integral membrane protein structurally similar to TNF and
lymphotoxin (50, 51). FasL is present in both membrane-
associated and soluble forms and proteolytic cleavage of
the membrane protein leads to the release of the soluble
protein. Although the physiologic role of these two forms
of FasL is unclear, they have been suggested to possess
different receptor affinity and pro-apoptotic activity (52). In
mammals, ligation of the Fas receptor results in activation
of Fas-associated death domain protein (FADD),
procaspase-8 and procaspase-3, and apoptosis (53). Fas
transcripts have been isolated from thymus, liver, heart,
lung, small intestine, kidney and testis (51, 54, 55).  In the
ovary, Fas and FasL are present in granulosa cells and are
involved in the induction of apoptosis during ovarian
follicular atresia (46, 56-61).  Recently, we have co-
localized Fas and FasL in atretic small and medium antral
follicles in a pattern coincidental to the localization of
TUNEL-positive cells and have demonstrated that
gonadotropin withdrawal increased granulosa cell Fas and
FasL content and induced apoptosis (29, 46). In addition,
whereas granulosa cells isolated from immature rats
exhibited high Fas and FasL content and extensive
apoptosis, treatment of the animals with a single dose of
eCG markedly decreased Fas and FasL levels and apoptotic
cell death in 48-72 h (29). Cell cycle analysis showed
significantly higher proportion of the gonadotropin-treated
cells in S and G2/M phases compared to the untreated
control. These latter responses appeared transient, as by 96
h post-eCG (when gonadotropin levels were markedly
decreased by metabolic clearance) the expression of the
death factors and the apoptotic response were again
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evident. Coincidentally, the proportion of the cells was
markedly increased in the A0 (apoptotic) and G0/G1 phases
and decreased in S and G2/M, confirming an onset of
apoptosis and the suppression of G1/S transition (29).

    The p53 protein is an antiproliferative
transcription factor that increases the rate of transcription of
various genes involved in mitosis and apoptosis (62).  It
plays a critical role in cell cycle regulation (G1/S
transition), DNA repair and induction of apoptosis (29, 63-
65).  In the ovary, changes in granulosa cell p53 content are
correlated with those of Fas and FasL and is regulated by
gonadotropins (22, 29). We have recently shown that p53
becomes markedly elevated during gonadotropin
withdrawal, suggesting that induction of atresia is p53-
dependent. Indeed, overexpression of p53 (by adenoviral
p53 sense cDNA infection) resulted in increased Fas
content and apoptosis, the latter response can be further
augmented by the addition of an agonistic Fas antibody
(29).  Taken together, these findings demonstrate a central
role of gonadotropin as a survival factor in the regulation of
granulosa cell Fas, FasL and p53 expression during
follicular development. They also suggest that the
gonadotropic control of granulosa cell apoptosis involve
two consecutive cellular events, cell cycle arrest at G1/S
and exit from G0 into A0, via regulation of p53 and
Fas/FasL death pathways. We have also demonstrated that
the accumulation of the gatekeeper protein p53 at the cell
cycle check-point (G1 phase) may play a significant role in
the up-regulation of Fas necessary for G0 to A0 exit,
granulosa cell apoptosis, and ultimately follicular atresia.

4.2. Mitochondrial and endoplasmic reticulum-
associated death pathways
  The mitochondria, through cytochrome c release,
is involved in apoptotic signaling via one of the following
mechanisms: a) interference with electron transport,
oxidative phosphorylation and adenosine triphosphate
production, b) release of caspase activator proteins,
recruitment of Apaf-1 and subsequent procaspase-9
activation, and c) disruption of cellular reduction-oxidation
reactions (66). The release of cytochrome c from the
mitochondria can be inhibited by Bcl-2 (67, 68).  Bcl-2 is a
proto-oncogene that encodes a membrane-anchored
intracellular protein that prevents apoptosis. The
mechanism by which Bcl-2 blocks the release of pro-
apoptotic proteins is based on its ability to regulate porous
transport of cytochrome c (67).  Other homologues of Bcl-
2, such as oligomycin and buthionine sulfoximine, inhibit
F0F1-adenosine triphosphatase proton pump activity and
glutathione synthesis, respectively (66). BAX is a Bcl-2
homologous protein that modulates the action of Bcl-2 by
blunting its heterodimer activity (69) or by acting
independently (70-72) to induce apoptosis. Previous studies
have demonstrated the presence of BAX mRNA and
protein in the ovary and increased BAX expression in rat
granulosa cells during apoptosis and at the onset of
follicular atresia (73,74). These findings suggest that the
Bcl-2 family members are important intracellular regulators
of apoptosis and that a fine balance between Bcl-2 and
BAX expression is maintained for granulosa cell survival
during follicular development, which is modulated by cell
death and survival signals.

     The endoplasmic reticulum-mediated death
pathway is a novel apoptotic pathway in which caspase-12
functions as the initiator caspase in response to a toxic
insult (stress) to the endoplasmic reticulum, such as by
treatment with thapsigargin (an inhibitor of the
endoplasmic reticulum-specific calcium ATPase) or
calcium ionophores (75). Furthermore, caspase-12-deficient
cells are resistant to inducers of ER stress, suggesting that
caspase-12 is significant in endoplasmic reticulum stress-
induced apoptosis (44). Endoplasmic reticulum stress has
received growing attention because of its implication in
neurodegenerative disorders and the pathogenesis of
diabetes (45,76). In the ovary, recent studies indicated that
endoplasmic reticulum is associated with germ cell
apoptosis and follicular atresia and is reorganized into
perinuclear aggregates prior to perinatal germ cell loss (77).
While dilation of smooth endoplasmic reticulum has been
observed in the ooplasma in early atretic follicles (78), if
and how this novel death pathway is involved in the
regulation of apoptosis during follicular development and
the induction of atresia, remains to be investigated.

    Although the aforementioned cell death pathways
can readily transduce a death signal to effect apoptosis
independently, evidence indicates important cross-talk
between them. In this context, Fas ligation is known to
activate procaspase-8, which in turn causes the cleavage
and activation of Bid, a pro-apoptotic member of the Bcl-2
family. The cleaved Bid induces cytochrome c release and
activates the mitochondrial death pathway (42, 79, 80).
Moreover, as these death pathways involve a coordinated
series of procaspase activation, these enzymes also serve as
important points of interaction with cell survival
intermediates, so as to minimize or avoid premature or
unwanted activation of apoptosis. Relevant to this aspect is
their regulation by two families of intracellular survival
proteins, often referred to as the inhibitor of apoptosis
proteins (IAPs) and the FLICE-like inhibitory protein,
which are reviewed in the following sections.

5. CELL SURVIVAL MEDIATED BY INHIBITOR OF
APOPTOSIS PROTEINS

    The inhibitor of apoptosis proteins (IAPs)
constitute a family of highly conserved intracellular anti-
apoptotic proteins. They were originally identified in
baculovirus, where they maintained survival of the virus
during replication (81, 82).  Six members of the IAPs have
been identified in mammals: neuronal apoptosis inhibitory
protein (NAIP) (83), X-linked inhibitor of apoptosis protein
(84), human inhibitor of apoptosis protein-1 (HIAP-1) (84),
human inhibitor of apoptosis protein–2 (HIAP-2) (84),
survivin and Livin (85, 86), which is also called KIAP in
the kidney (87). These proteins share many structural
similarities. The IAP family is characterized by the
presence of the baculoviral inhibitor of apoptosis protein
repeat (BIR), a ~70 amino acid motif, which confers
biological activity to the IAP molecule (81, 82, 88). With
the exception of NAIP and survivin, IAPs also have a C-
terminal RING-Zinc finger domain, known to be important
for protein-protein interaction (89, 90), and protein
ubiquitination and degradation (90, 91). Functionally,
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XIAP, NAIP and survivin has been shown to suppress
apoptosis induced by various pro-apoptotic factors and
conditions, including TNF-alpha, menadione, staurosporin,
etoposide (VP16), Taxol, Fas activation and growth factor
withdrawal (84, 85, 89, 92). In the ovary, IAP expression is
a crucial element for follicular growth and survival and is
controlled by gonadotropin. Previous studies in our
laboratory have shown that extensive apoptosis of
granulosa cells in preantral and early antral follicles is
associated with reduced levels of HIAP-2 and XIAP (89).
In contrast, administration of gonadotropin increases
HIAP-2 and XIAP protein content and suppresses apoptosis
in vivo. Conversely, withdrawal of gonadotropin support
by administration of an anti-eCG antibody to eCG-primed
prepubertal rats attenuates eCG-induced XIAP expression
and increases DNA fragmentation, suggesting that IAPs
play an important role in determining granulosa cell fate
and thus, the destiny of the follicle (89).

    The mechanism by which these anti-apoptotic
proteins promote ovarian follicular cell survival remains an
area of intense investigation and modulation of caspases is
a well-accepted part of this physiologic process (Figure 2).
Previous studies have shown that XIAP acts as a direct
inhibitor of caspase-3 and caspase–7 (93, 94) and has the
capability to suppress the mitochondrial (bax/cytochrome
c-mediated) pathway via inhibition of caspase-9 (95).
Additionally, as in the case of XIAP, HIAP-1 and HIAP-2
are thought to modulate TNF receptor signaling via binding
to TNF Receptor Associated Factor-2 (TRAF2) and
activating the Nuclear Factor kappa B (NFkappaB)
pathway (96), thus resulting in the induction of inhibitor of
apoptosis protein and subsequent suppression of caspase
activities.

    The inhibition of caspases by XIAP is modulated
by three intracellular XIAP-interacting proteins: XIAP
associated factor 1 (XAF1), Smac/DIABLO and
HtfA2/Omi (97-101). XAF1 is a nuclear protein that
negatively regulates XIAP by binding to it and inhibiting
its anti-caspase activity. Smac/DIABLO and HtrA2/Omi
are mitochondrial proteins, which are released into the
cytosol and bind XIAP when the cell receives an apoptotic
stimulus. They inhibit XIAP function and promoting a
cytochrome c-mediated apoptotic response (99-101). The
cytochrome-c complex recruits procaspase-9 and induces
autoactivation (102, 103), leading to activation of various
downstream procaspases (caspase-3, -6 and -7) and
eventual apoptosis. The functional domains of
Smac/DIABLO have been sequenced and are believed to
reside in the first seven amino acids in its N-terminal (98,
100). HtrA2/Omi is a mitochondrial serine protease and, in
addition to caspase activation, may function as a caspase-
independent cell death inducer (99). Interestingly, nerve
growth factor deprivation increases caspase-9 and
DIABLO/Smac expression and induces neuronal apoptosis,
suggesting that caspase-mediated pathways are dependent
on the relative expression of its components (e.g.
procaspases, IAPs, and IAP inhibitors), which are regulated
by growth factors (104). Although the activity of these
proteins has recently been established in cancer cell lines,
their role and possible physiological regulation in the
control of ovarian follicular growth and atresia is unknown.

6. REGULATION OF OVARIAN INHIBITOR OF
APOPTOSIS PROTEIN EXPRESSION

6.1. Role of follicle stimulating hormone
    Gonadotropins are important survival factors and
have been shown to up-regulate IAP expression during
follicle development in vivo (89). Moreover, gonadotropin
withdrawal by antibody neutralization markedly decreases
granulosa cell Xiap and HIAP-2 expression and induces
apoptosis and follicular atresia (15, 89). When added to rat
ovarian follicle cultures, FSH promotes granulosa cell
proliferation, follicular growth and antrum formation (105,
106), a phenomenon also demonstrated in various species
(5, 107-109). FSH also increases follicular XIAP
expression in vitro. In the absence of the gonadotropin,
follicles exhibit low XIAP expression, extensive apoptosis
and minimal or no follicular growth in vitro, as judged by
changes in DNA content, cell number and follicular
volume. A definitive role of XIAP in the gonadotropic
control of ovarian follicular survival and development has
recently been confirmed in cultured follicles infected with
adenoviral sense or anti-sense XIAP cDNA (24, 106).
While minimal apoptosis is also evident in follicles
cultured in the presence of low concentration of low FSH,
significant follicular growth can be detected.
Overexpression of XIAP by adenoviral sense cDNA
infection completely suppresses apoptosis and promotes the
gonadotropin-induced follicular growth.  Conversely,
infection of the cultured follicles with anti-sense XIAP can
decrease FSH-induced XIAP contents, induce apoptosis
and attenuate follicle growth induced by the gonadotropin
(105).  These results demonstrate that gonadotropin-
induced XIAP expression plays a crucial role in the
determining granulosa cell fate (survival or apoptosis), and
thus follicular destiny (growth or atresia; Figure 2).
    

The signaling mechanism(s) involved in
gonadotropin-induced XIAP expression during follicular
development has only been recently investigated and the
NFkappaB signaling pathway has been implicated (110).
The NFkappaB family of transcription factors is involved
in the up-regulation of XIAP gene expression in various
cell types and is activated by various cytokines (49, 111-
114). NFkappaB is composed of DNA-binding proteins
(p65 and p50 subunits) essential for its activation.
Activation of NFkappaB results in its translocation from
the cytoplasm to the nucleus and in its binding to its
responsive element in the promoter region of the gene for
transcriptional activation. Recent studies from our
laboratory have shown that addition of FSH to rat
granulosa cell cultures results in rapid translocation of
NFkappaB to the nucleus, increased NFkappaB-DNA
binding activity and increased XIAP mRNA and protein
contents. Pretreatment of the cells with SN50 [a cell
permeable inhibitory peptide that binds and inactivates the
nuclear localization signal (NLS)] but not its mutated
inactive analogue SM50 (control peptide) prior to the
gonadotropin challenge prevents NFkappaB translocation,
suppresses NFkappaB activation and XIAP expression.
When added to rat follicle cultures, SN50 also suppresses
FSH-induced follicular growth, suggesting that NFkappaB
activation is involved in the regulation of XIAP expression
and follicular growth by the gonadotropin (110).



Regulation in follicular development and atresia

227

    The cellular mechanism by which FSH activates
NFkappaB and induces XIAP expression in the granulosa
cell is not known. Our previous studies have shown that
TNF-alpha increases XIAP expression in rat granulosa cells
in vitro and that this response is mediated through
activation of I kappaB kinase (IKK), resulting in I kappa B
alpha (IkappaBalpha) phosphorylation and degradation, and
the unmasking of the NLS of NFkappaB for its
translocation to the nucleus (49). However, unlike TNF-
alpha , FSH does not elicit IkappaBalpha phosphorylation
and degradation in granulosa cells in vitro (110). Moreover,
while over-expression of the dominant negative IkappaB
(mutation of serine 32 and 36) can effectively attenuate
TNF-alpha induced NFkappaB-DNA binding activity and
XIAP expression, it is ineffective in suppressing these
responses elicited by FSH, suggesting that FSH-induced
NFkappaB activation is independent of IkappaB
phosphorylation and degradation. We have recently shown
that FSH increases granulosa cell phospho-Akt content and
addition of the phosphotidylinositol 3-kinase (PI3K)
inhibitors, LY294002 and wortmannin to granulosa cell
cultures can markedly suppress FSH-induced NFkappaB
activation and XIAP expression in a concentration-
dependent manner (110). Taken together, these
observations suggest that the FSH-induced, NFkappaB-
dependent XIAP expression during follicular development
is mediated through activation of the PI3K and not of the
classical IKK pathway (Figure 2).  The activation of the
PI3K-Akt pathway can be directly or indirectly linked to
NFkappaB activation (115, 116).  The PI3K/Akt pathway
does not contribute to the persistent induction of NFkappaB
and transcriptional activation. In human endothelial cells,
TNF-alpha and IL-1 activate a PI3K/Akt pathway and the
anti-apoptotic effect of Akt is also independent of
NFkappaB (117). These findings support the contention
that NFkappaB-dependence of the PI3K cell survival
pathway may be agonist- and cell type- specific.
    

The fate of the developing follicle is determined
by the actions and interactions of endocrine and intra-
ovarian regulators, which regulate granulosa cell fate via
paracrine and autocrine mechanisms (25). In addition to
gonadotropins, various factors synthesized and secreted
within the follicles are known to have a direct action on
granulosa cell proliferation, differentiation and apoptosis or
to modulate gonadotropin control of these processes. It has
been shown that the suppression of apoptosis by FSH is
partially mediated through IGF-I (118) and that, in addition
to FSH, epidermal growth factor (EGF) and IGF-I can
stimulate follicle growth and antrum formation in vitro
(119). EGF gene transcription is also involved in FSH-
induced preantral development in the hamster ovary (120).
Moreover, other intra-ovarian systems, including those of
IGF and activin/inhibin, are also involved in follicle
selection in response to the gonadotropin (121). Apoptosis
in isolated granulosa cells cannot be abrogated by IGF-I,
but IGF-I is effective in preventing cell death in whole
isolated follicles (7). In the rat ovary, IGF-I is primarily
synthesized in the granulosa cells (122, 123) and may bind
to receptors on the theca to stimulate the release of
EGF/TGF-alpha, which in turn promotes granulosa cell
survival (124). However, our understanding of their

possible involvement in the control of ovarian follicular
XIAP expression by IGF-I during follicular maturation,
remains incomplete.

6.2. Role of transforming growth factor alpha
    Transforming growth factor alpha (TGF-alpha) is
recognized as an important mitogenic (125-127), anti-
differentiative (128), and antiapoptotic intra-ovarian factor
in the regulation of granulosa cell function during follicular
development (129).  TGF-alpha, a member of the EGF
superfamily, binds to the EGF receptor (EGFR) and
promotes cell survival by activating the PI3K/Akt pathway
in various cellular systems (130). In addition, it has been
shown to stimulate granulosa cell proliferation during hen
ovarian follicular development by increasing prostaglandin
biosynthesis through the up-regulation of cyclooxygenase
II and cytosolic phospholipase A2 (103, 127, 131). TGF-
alpha is believed to be important in the programming of the
transition of granulosa cells from a proliferative to a
differentiated state and may determine the fate of
developing follicles in the rat ovary (growth versus atresia)
(128).  In the human, TGF-alpha level in the follicular fluid
is inversely correlated with follicle growth, suggesting that
the importance of TGF-alpha as a mitogenic factor is
follicular stage-dependent (132). TGF-alpha and EGF
attenuate both the induction of aromatase by gonadotropin
and follicular apoptosis (118, 133).  TGF-alpha increases
DNA synthesis in the undifferentiated but not differentiated
granulosa cells in vitro (128).  In addition, EGF and TGF-
alpha prevent apoptosis in rat antral follicles and hen
granulosa cells cultured in serum-free media through a
tyrosine kinase-dependent mechanism (134, 135). Addition
of EGF- or TGF-alpha-specific polyclonal antibody to
ovarian follicle cultures can markedly attenuate FSH-
induced ovarian follicular growth in both the hamster and
the rat (24, 136, 137). These findings, together with our
recent observations that FSH increases follicular growth in
vitro but fails to stimulate proliferation of granulosa cells in
primary cultures (24), support the notion that the mitogenic
response of granulosa cells to FSH during follicular
development may not be a consequence of the direct action
of the gonadotropin, but rather of the synthesis and
secretion of theca-derived factors, like TGF-alpha, which in
turn suppresses apoptosis and promotes proliferation of the
granulosa cells (24).
    

We have recently examined whether the FSH-
induced XIAP expression and granulosa cell proliferation
during follicular development is mediated by the secretion
and action of intra-ovarian TGF-alpha (Figure 3).  We have
demonstrated that FSH stimulates estradiol production,
TGF-alpha secretion, XIAP expression and follicular
growth in rat follicles cultured for 2 and 4 days. In situ
hybridization studies indicate that the theca cells are the
primary follicular source of FSH-induced TGF-alpha (24).
Intra-follicular injection of a neutralizing anti-TGF-alpha
antibody or addition of estrogen antagonist ICI 182780 to
the culture media suppresses FSH-induced XIAP
expression and follicular growth. The effect of ICI 182780
is estrogen-specific and can be partially reversed by
exogenous estradiol. TGF-alpha alone up-regulates XIAP
content and granulosa cell proliferation in primary culture,



Regulation in follicular development and atresia

228

which can be effectively suppressed by the presence of
anti-TGF-alpha antibody or by adenoviral XIAP antisense
cDNA expression. In contrast, FSH alone is ineffective in
eliciting the mitogenic response (24).  Our results support
the hypothesis that the FSH stimulates granulosa cell
proliferation via theca TGF-alpha secretion and action in
response to increased granulosa cell estradiol synthesis.
XIAP up-regulation in response to FSH suppresses
granulosa cell apoptosis and facilitates FSH-induced
follicular growth.  In addition, these studies demonstrate
the participation of both cell types (i.e. granulosa and theca
cells) in the FSH-induced, TGF-alpha-mediated granulosa
cell survival and follicular growth (24).

6.3. Role of tumor necrosis factor alpha
    As an important intraovarian regulator of steroid
hormone production and follicular development and atresia
(138-142), tumor necrosis factor alpha (TNF-alpha) is
produced by several ovarian cell types including granulosa
cells and the oocyte (143-146). TNF-alpha is a type II
membrane protein (17.3-kDa) and is cleaved and
solubilized by a membrane metalloproteinase (147). It is a
multifunctional pleiotropic cytokine and is known to act via
two distinct cell surface receptors, TNFR1 (55–60 kDa)
and TNFR2 (75–80 kDa) (Figure 2) (148, 149). Although
the extracellular domains of these receptors exhibit high
sequence homology, their intracellular domains are distinct,
indicating different signaling pathways are activated by
ligand-receptor binding. Although TNFR1 is generally
considered the predominant receptor and is mediated both
apoptotic and survival signals (i.e. caspase-8/caspase-3 and
NFkappaB, respectively) (150, 151), TNFR2 is primarily
involved in survival signaling via NFkappaB (150).
    

The physiologic role of TNF-alpha in any cell
will depend on a balance between apoptosis-inducing and
cell survival signaling (152). It is thus conceivable that, in
the ovary, the ability of TNF-alpha to promote follicular
development or atresia will be dependent on the stage of
follicular maturation, which in turn determines the relative
abundance of its receptor subtypes and the expression of
various intracellular death and survival factors (e.g.
Fas/FasL, XIAP, FLIP, TGF-alpha) (48, 49, 58, 142).
Although TNF-alpha has pro-apoptotic function and
promotes Fas-mediated cell killing, it alone does not induce
apoptosis in murine granulosa cells in vitro (49, 58). The
binding of TNF-alpha to TNFRI leads to the cleavage and
activation of procaspase-8 and procaspase-3 and of other
downstream caspases, such as procaspase-7, an ultimate
effector of apoptosis (153, 154). Further studies indicate
that TNF-alpha induces apoptosis in granulosa cells from
follicles at early developmental stages such as rat preantral
and hen large white follicles (155, 156), suggesting TNFR1
is likely present in granulosa cells at these stages of
follicular development. On the other hand, as a survival
signal, TNF-alpha can induce intracellular survival factors
for the maintenance of follicular development, especially in
late follicle stages (48). TNF-alpha activates NFkappaB
which mediates FLIP and XIAP expression, which
promotes granulosa cell survivals by inhibiting procaspase-
3, -7, -8 and -9 cleavage at the antral stage of follicular
development (49, 142). We have recently demonstrated that

the FLIP and Bcl-2 proteins are present in cultured rat
granulosa cells and human ovarian surface epithelial cancer
cells and are up-regulated by TNF-alpha in a NFkappaB-
mediated mechanism (142).

6.4. Regulation of phosphatidylinositol 3-kinase/Akt
pathway by XIAP
    While the fate of the growing follicle is
determined during the penultimate stage of development,
the follicle maintains its viability until the time of ovulation
once follicular dominance is established during the
preovulatory stage. The cellular mechanism involved in the
maintenance of follicle survival and thus of dominance, is
not known. Activation of the PI3K/Akt pathway is
important for the suppression of apoptosis in many cell
systems, including granulosa cells during follicular
development. Although XIAP is known to suppress
granulosa cell apoptosis by inhibiting caspase activation
and activities, if and how XIAP interacts with the PI3K/Akt
pathway to promote granulosa cell survival and to maintain
follicular dominance at this late stage of follicular
maturation, has not been investigated. PI3K is composed of
a catalytic (p110) and a regulatory (p85) subunit and is a
lipid kinase which phosphorylates phosphoinoisitides
(PtdIns) at position 3 of the inositol ring (157). PI3K is
activated by diverse growth factor receptors and can
phosphorylate Akt (also termed as Protein Kinase B or Rac
kinase) via a serine/threonine kinase survival pathway
(158), often referred to as the PI3K/Akt pathway (159-161).
The activated Akt in turn phosphorylates and attenuates the
actions of BAD, a pro-apoptotic member of the Bcl-2
family (162, 163). The phosphorylated BAD associates
with 14-3-3 protein, preventing BAD-BCL-XL binding and
promoting cell survival (164). Whether high levels of
phospho-Akt and consequently of phosphorylated/
inactivated BAD is involved in preventing gonadotropin-
primed granulosa cells from undergoing apoptosis during
follicular development, is not known.
    

Using a fully characterized in vivo model to
study the induction of follicular development and atresia in
immature rats, we have demonstrated that gonadotropin
treatment increases granulosa cell XIAP and phospho-Akt
protein contents and suppresses apoptosis.  In addition,
gonadotropin withdrawal (eCG-primed rats treated with an
anti-eCG antibody) can induce granulosa cell apoptosis and
significantly decrease ovarian weight gain induced by eCG.
The increased apoptosis is accompanied by marked
decreases in XIAP expression and phosphorylation of Akt
protein. While infection of granulosa cells from
preovulatory follicles (eCG-primed rats) with adenoviral
sense XIAP results in XIAP over-expression and increased
phospho-Akt content, XIAP antisense expression decreases
granulosa cell phospho-Akt level and induces apoptosis.
Moreover, addition of the specific PI3K inhibitor
LY294002 to the granulosa cell cultures decrease Akt
phosphorylation and induces apoptosis in a dose-dependent
manner. Taken together, these results demonstrate the
importance and regulation of the PI3K survival pathway by
XIAP in the control granulosa cell apoptosis and the
maintenance of follicular survival (165), although the
precise mechanism(s) involved remains to be determined.
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Phosphoinosotide-dependent kinase (PDK-1) (166) and
integrin-linked kinase (ILK, a serine and threonine protein
kinase) can directly phosphorylate Akt and are therefore
possible targets for XIAP action (167).  Alternately, it is
also possible that XIAP increases phospho-Akt content by
down-regulating phosphatases (such as PTEN, a tumor
suppressor protein and a phospholipid phosphatase) (168,
169).  Since ILK is sensitive to and activated by high levels
of PtdIns (3,4,5)P3 (167), mutation in the PTEN gene can
lead to PtdIns(3,4,5)P3 accumulation and ILK activation.
Another possible regulatory protein of PI3K is the Src
homology 2 (SH2)-containing protein tyrosine phosphatase
1, which functions by direct association with its p85
subunit (170).  However, which of these kinases and/or
phosphatases are indeed putative candidates involved in the
regulation of the phosphorylated (activated) Akt and
survival in granulosa cells by XIAP, remains to be
determined.

7. FLIP AS A CELL SURVIVAL FACTOR IN THE
CONTROL OF OVARIAN APOPTOSIS

     FLICE-like inhibitory protein (FLIP), an
antiapoptotic factor, structurally resembles caspase-8 but
lacks proteolytic activity (the cysteine residue within the
active site) (171, 172). It exists in two different spliced
isoforms, long (FLIPL) and short (FLIPs), both of which
contain two death-effector domains (DEDs) within their N-
termini (171). The FLIPL isoform includes an additional C-
terminal structure resembling the p20 and p10 subunits of
caspases (173). FLIP is recruited to the death-inducing
signaling complex (DISC) through the adaptor molecule,
Fas-associated death domain (FADD), thereby preventing
the recruitment of procaspase-8 into the complex and its
subsequent activation, which then suppresses apoptosis
(Figure 2; 142, 174). Information regarding the expression,
regulation and role of FLIP in the ovary is limited. It has
been demonstrated that the transgenic c-FLIP-/- mouse
embryo rarely survives past Day 11 of embryogenesis and
that their fibroblasts are highly sensitive to FasL- or TNF-
alpha-induced apoptosis (175).
    

We have recently cloned and sequenced a full-
length rat ovarian FLIPs gene, which share high homology
to the mouse counterpart (85%), and have examined its role
and regulation by TNF-alpha in the rat granulosa cells
(142). While TNF-alpha has no apparent effect on steady
state levels of FLIPL mRNA in rat granulosa cells in vitro,
FLIPs mRNA abundance rapidly increases in the presence
of the cytokine. A significant elevation in FLIPs mRNA
levels is evident within 1 h of TNF-alpha treatment and is
sustained for at least 6 h. Treatment of granulosa cells with
TNF-alpha results in a rapid but transient increase in
phospho-IkappaB levels and NFkappaB activation. SN50
(an inhibitor of NFkappaB translocation), but not its
inactive peptide SM50, can markedly attenuate TNF-alpha-
induced NFkappaB activation, as evident by suppressed
nuclear NFkappaB binding activity. These responses are
coincidental to a marked decrease in TNF-alpha-induced
FLIPs mRNA expression, whereas FLIPL mRNA
expression is not affected by any of the treatment. In
addition, expression of FLIPs antisense cDNA in granulosa

cells blocks the TNF-alpha-induced increase in FLIPs
protein content. Down-regulation of FLIPs expression can
significantly increase TNF-alpha-induced apoptosis. These
findings suggest that, in addition to its pro-apoptotic
function, TNF-alpha can induce an intracellular survival
factor for the maintenance of follicular development. TNF-
alpha-induced, NFkappaB-mediated FLIPs expression is a
determinant of granulosa cell fate (142).

8. FUTURE RESEARCH DIRECTIONS

    The advent of state-of-the-art molecular and
cellular technologies in recent years and their applications
to reproductive sciences as well as the availability of
recombinant bioactive peptide preparations have advanced
our understanding of the role and regulation of cell death
and cell survival factors in the control of follicular
development and atresia. While we have just begun to
unravel the mystery of individual cell death and survival
signaling pathways in these processes, one cannot but be
amazed by the complex interactions between these control
mechanisms and how the cross-talk of the different
signaling pathways ultimately determines the destiny of the
developing follicles. While these new knowledge have led
to unparalleled advancements in human and veterinary
reproductive medicine, as evident in the past decade, by
marked improvement on reproductive efficiency in animal
production programs and new therapeutic strategies in
assisted reproduction in the human, considerable gaps
remain in our current understanding of the precise
mechanism(s) by which the fate of ovarian cells is
regulated during follicular development and reproductive
aging.

    Recent evidence clearly demonstrates that
activation of specific TNFR subtypes is associated with
signaling of both death and survival pathways, the
consequence of which is the activation of caspases and
NFkappaB (with increased XIAP and FLIP expression),
respectively. It is conceivable that the predominance of
either of these pathways will in part be influenced by the
relative abundance of the TNFR subtypes. However, the
relative expression of TNFR subtypes during follicular
development, their signaling mechanism (s) involved as
well as their control by gonadotropins and intra-ovarian
regulators, is as yet unknown. Further investigations on
these aspects will provide important information if and how
TNF-alpha and TNFR subtypes participate in follicle
selection and dominance during follicular development.

   In addition, while this review has clearly shown
that the steady-state level of XIAP in granulosa cells is
dependent on the expression of the XIAP gene in response
to endocrine (e.g. FSH) and intra-ovarian (e.g. TNF-alpha
and TGF-alpha) regulation, increasing evidence in other
cellular system suggest that the processing/degradation of
XIAP may also be important. It has been demonstrated that
XIAP, while being an endogenous inhibitor of caspase-3, is
also an endogenous substrate of this death protease (176-
178). However, whether this phenomenon is physiological
relevant to the regulation of ovarian follicular survival and
dominance, has not been examined. These observations
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raise the interesting possibility that the fate of the granulosa
cells, and thus follicular destiny, may be determined by the
relative intracellular levels of these interactive intracellular
proteins, which is tightly controlled by the
microenvironment of the follicles. Studies on how FSH and
intra-ovarian factors interact in maintaining the delicate
balance between XIAP level and caspase content as well as
activation will provide important information on regulatory
mechanism in follicular development and atresia.
    

Recent evidences suggest that XIAP content may
also be regulated by post-translational modification and
degradation. It has recently been reported that the RING
zinc finger domain of XIAP possesses an ubiquitin protein
ligase (E3) (179-181), which may be important in
controlling the levels of other intracellular proteins and in
XIAP self-ubiquitination and auto-degradation in
thymocytes in response to apoptotic stimuli (91, 182).
Several E3s are highly homologous to IAP with respect to
their RING finger domains and promote degradation of
both themselves and specific substrates such as p53 (179).
Recent studies also indicate that XIAP promotes
ubiquitination of caspase-3 and –7 (178, 183), raising
another possible level of control of caspase function by
XIAP. The possibility of XIAP auto-ubiquitination as an
important regulatory mechanism in the granulosa cell
growth and apoptosis has not been investigated. Moreover,
whether caspase ubiquitination and degradation indeed
serves as a physiologic means by which XIAP modulates
caspase function in granulosa cells and how these processes
are control during follicular development, remain to be
examined.
    

The expression of XIAP in granulosa cells is up-
regulated by FSH and TNF-alpha (49, 105). However,
recent evidence suggests that the function of XIAP is
negatively modulated by a group of intracellular caspase
activators, such as DIABLO/Smac, XAF1 and HtfA2/Omi.
These proteins suppress the caspase inhibitory activity of
XIAP through binding to either or both of the bacculovirus
IAP repeats (BIR2 and BIR3) domain of XIAP (184, 185).
Our recent studies have demonstrated that while the high
expression of XIAP in granulosa cells was associated with
suppressed apoptosis in late stages of follicular
development, no clear relationship appear to exist between
follicular XIAP content and apoptosis at the preantral stage
(89). Whether these XIAP regulators are expressed in a
follicular stage-dependent manner and play a significant
role in follicle selection (early stages of follicular
development) or in the maintenance of follicular
dominance of the selected follicle(s) (during the antral
stage), is not known. Investigation into this aspect will
provide a better understanding of their role in regulation of
granulosa cell fate and ultimately follicular destiny.

Increasing evidence indicates that environmental
toxins have adverse effects on human reproduction. Recent
studies have shown that exposure to environmental
toxicants, such as dioxin and polychlorinated biphenyls, are
associated with decreased male fertility and increased
pregnancy failure (186-192). Our understanding of the
mode of action and the adverse outcome of these

compounds in the male has significantly been improved,
due in part to improved sensitivity of the analytical
techniques for these toxins and the tightly synchronized
nature of the developmental process of the male germ cells,
thus allowing the definition of the stage(s) of
spermatogenesis that is most sensitive to the toxic insults.
In contrast, while in vivo models have been used frequently
to examine their potential adverse effects on ovarian
function, the presence of pools of follicles at different
stages of follicular development in the ovary and
potentially with different sensitivity renders the
interpretation of these findings difficult. As a consequence,
the biochemical and cellular mechanism(s) by which
environmental toxins influence female reproductive health
as well as their target cells remains poorly understood. The
recent development of an in vitro follicle culture system
offers a new and convenient approach by which potential
adverse effects of toxicants of interest at physiologically
relevant concentrations on follicular development and
function may be studied in much greater details than
previously possible (193). In this context, the ability to
monitor morphologically, biochemically and functionally
their influence on the oocytes and the support cells
(granulosa cells and theca cells) of individual or a pool of
follicles of clearly defined stages of development will
facilitate the assessment of follicular stage- and cell type-
specific action of these toxicants. In addition, the in-vitro
rat follicle culture system recently established in our
laboratory has been proven to be an excellent model to
investigate the regulatory mechanisms involved in
granulosa cells apoptosis and cell survival during follicle
development and atresia (24, 105, 110). This in vitro
system will also be helpful for the assessment of not only
on the effect of these toxins on the fate of these support
cells, the signaling pathways involved, but also of their
influence on the quality of the oocytes, be it directly or
indirectly. These studies will provide important insight on
whether environmental toxicants of interest adversely affect
ovarian function, including infertility, premature ovarian
failure and ovarian cancer.
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