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1. ABSTRACT

Biliary type liver fibrosis develops as part of the
wound healing response to bile duct injury in chronic
cholestatic liver diseases. The origin of myofibroblasts
accumulating together with extracellular matrix around
proliferating bile duct structures (referred to as ductular
reaction) in the setting of cholestatic injury, has been
investigated mostly in the rat bile duct ligation model.
Evidence indicates that hepatic stellate cells undergo a
myofibroblastic transition following bile duct ligation and
that myofibroblastic hepatic stellate cells disclose
chemoattraction towards bile duct structures in cholestatic
liver. On the basis of morphological studies, nevertheless,
the origin of peribiliary myofibroblasts has also been
attributed to the activation and proliferation of portal
fibroblasts. Bile duct epithelial cells of the ductular reaction
actively contribute to the promotion and regulation of
biliary type liver fibrogenesis. They synthesize and release
a number of paracrine mediators such as transforming
growth factor-β, connective tissue growth factor, platelet-
derived growth factor–BB, and endothelin-1 that target
different liver cell types, including hepatic stellate cells and
portal fibroblasts. Through these interactions, bile duct
epithelial cells and peribiliary myofibroblasts cause
periportal fibrosis in cholestatic and also probably other
types of liver diseases.

2. INTRODUCTION

Liver injury, regardless of etiology, is
characterized by enhanced deposition of abnormal
extracellular matrix and scarring. The production of
scarring matrix components in the fibrotic liver has been

conclusively ascribed to myofibroblast-like cells, the origin
of which remains a subject of debate. Considerable
attention has been dedicated to hepatic stellate cells (HSC)
since their ability to transdifferentiate into myofibroblasts
has been unambiguously demonstrated in culture models
(1-4). However, recent reports indicate that myofibroblasts
may derive from other cell types in the liver (5, 6), while it
was previously suggested that portal fibroblasts can
undergo myofibroblastic differentiation (7-9).

Biliary type liver fibrosis arises in the setting of
chronic cholestatic liver diseases. Bile duct epithelial cells
are major targets in cholestatic injury and their virtually
constant response to injury is an intense proliferation
referred to as ductular reaction (10). Biliary type fibrosis is
initially closely associated with the ductular reaction in
portal tracts. In the experimental model of cholestatic liver
injury induced by bile duct ligation in rats (11), newly
formed bile ducts, derived from proliferating bile duct
epithelial cells, are surrounded by fibrosis and
myofibroblasts (7-9). Based on morphological
investigations and on in vitro studies in this model, the
accumulation of peribiliary myofibroblasts has been
attributed both to the activation and migration of HSC and
to the proliferation and phenotypic modulation of portal
fibroblasts (7, 8, 12). Increasing attention is drawn to the
fact that bile duct epithelial cells are active players in liver
fibrogenesis (13). It has been demonstrated that bile duct
epithelial cells, in the setting of liver injury, synthesize and
secrete a number of cytokines (14-25), which likely enable
them to promote activation of both HSC and portal
fibroblasts.
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Figure 1. Colocalization of fibrosis and smooth muscle α-
actin (α-SMA) immunoreactive myofibroblasts in ductular
reaction. Liver tissue from seven day bile duct ligated rats
were investigated for fibrosis revealed by sirius red staining
(A), and for α-SMA expression by immunoperoxidase
method (B). In normal rat liver, α-SMA immunoreactivity
is confined to portal vessel walls (not showed). After bile-
duct ligation α-SMA-positive myofibroblasts accumulate
together with fibrosis around newly formed bile ducts.
Original magnification X400.

In this review, the discussion will be focused on
the origin of the myofibroblasts accumulating around
proliferating bile ducts in the rat model of biliary type
fibrosis secondary to bile duct obstruction and the possible
role of bile duct epithelial cells in directly promoting the
activation and recruitment of fibrogenic cells. This bile
duct ligation model has been widely used to investigate the
progression of chronic cholestatic liver diseases into the
stage of biliary type fibrosis and eventually biliary type
cirrhosis.

3. ANIMAL MODEL OF BILIARY TYPE LIVER
FIBROSIS

The model of bile duct ligation is characterized
by proliferating bile duct structures accompanied by the
development of peribiliary fibrosis and the accumulation of
peribiliary myofibroblasts (Figure 1). Although
neutrophilic infiltration occurs to a certain degree (26),
inflammation is not a prominent feature in this model. One
can argue that most cholestatic diseases in human are
associated with a significant amount of inflammatory
infiltrates in the portal tract. Yet there are examples of
biliary type fibrosis in human diseases in which

inflammation is not a prominent feature. One example is
cystic fibrosis-associated liver disease, in which the
primary lesion is located in the biliary epithelium (27).
Typical findings in cystic fibrosis-associated liver disease
include accumulation of myofibroblasts colocalized with
fibrosis around bile ducts, without significant inflammatory
infiltrates (27-29). These features infer that bile duct
epithelial cells can directly promote fibrogenesis through
interactions with fibrogenic cells. Bile duct ligation in rat
can thus be regarded as a relatively pure model of biliary
type fibrosis, in which the absence of major inflammation
allows to explore bile duct interactions with fibrogenic
cells, and to test pure antifibrotic activities.

4. BILE DUCT EPITHELIAL CELLS – ACTIVE
PLAYERS IN BILIARY TYPE FIBROGENESIS

Bile duct epithelial cells may promote
fibrogenesis by a number of mechanisms, including not
only the synthesis of matrix constituents (30, 31) and the
regulation of matrix degradation (32), but also through the
release of mediators such as monocyte chemotactic protein-
1 (14, 15), interleukin-6 (16, 17), tumor necrosis factor-α
(16), platelet-derived growth factor (PDGF)-BB (12, 18),
transforming growth factor-β (TGF-β) (19-21), connective
tissue growth factor (CTGF) (22), and endothelin-1 (23-
25). These, and possibly other mediators released during
acute or chronic cholestatic liver injury, likely enable bile
duct epithelial cells to communicate with and promote
activation of other liver cells, such as inflammatory cells,
HSC and portal fibroblasts. Through these mechanisms
injured bile duct epithelial cells may directly activate and
recruit cells with fibrogenic potential.

TGF-β, which triggers the fibrogenic response in
the injured liver, is produced by bile duct epithelial cells
(19-21). The highly similar TGF-β isoforms, TGF-β1,
TGF-β2, and TGF-β3, act as regulators of cell growth and
differentiation (33-35). They are potent inducers of
extracellular matrix synthesis in fibroblasts,
myofibroblasts, and pericytes and also modulate immune
responses (33-36). Several lines of evidence point to TGF-
β as a key profibrogenic cytokine in the development of
liver fibrosis. In vitro, TGF-β1 upregulates HSC activation
and stimulates the synthesis of extracellular matrix
constituents in HSC (37-39). Increased expression of TGF-
β is associated with both experimental fibrosis and hepatic
fibrosis in human liver disease (19, 20, 40-46). Direct
evidence of a causative role of TGF-β in liver fibrogenesis
has been provided by investigations of liver fibrogenesis in
transgenic mice overexpressing TGF-β1 (47, 48) and in
TGF-β1 knock-out mice (49). Moreover, it has been shown
that anti-TGF-β intervention inhibits experimental fibrosis
in rat (50-52). Yet, the direct role of TGF-β in the
development of biliary type liver fibrosis remains to be
established, since in one report, peribiliary fibrosis was
unaffected by the administration of soluble TGF-β type II
receptor (50).

It has also recently been shown that proliferating
bile duct epithelial cells are a major source of CTGF in rat
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Figure 2. Cell migration assay. A cell culture insert
equipped with an 8-micrometer-pore membrane forms the
upper compartment, while a culture well forms the lower
compartment of the Transwell chemotaxis filter assay. The
upper inserts are seeded with hepatic stellate cells (HSC),
while the lower wells contain chemotactic factors or cell
preparations. After a six hour incubation, HSC remaining
on the upper surface of the filters are removed, and HSC
that have migrated through the pores to the inferior surface
are stained and counted.

biliary type fibrosis (22). CTGF is a cystein-rich peptide
originally identified as a growth factor secreted by vascular
endothelial cells in culture (53). The physiological function
of CTGF has not yet been elucidated, but in vitro
experiments have shown that CTGF stimulates fibroblast
proliferation and migration, and induces overproduction of
extracellular matrix constituents (53, 54). It has been
proposed that CTGF acts as a downstream effector of TGF-
β during liver fibrogenesis (55). Therefore it may be
postulated that CTGF released by bile duct epithelial cells
acts in conjunction with TGF-β and triggers the peribiliary
fibrogenic response.

Bile duct epithelial cells also have the capacity to
produce PDGF-BB (12, 18). PDGF-BB has been identified
as the most potent mitogen of cultured HSC (56) and is
overexpressed during active hepatic fibrogenesis (18, 42,
57, 58), including biliary type fibrogenesis as discussed
below.

5. HEPATIC STELLATE CELLS IN BILIARY TYPE
FIBROGENESIS

5.1. Hepatic stellate cell activation
Hepaic stellate cells are a population of resident

nonparenchymal cells located in the perisinusoidal space as
quiescent vitamin A–storing cells secreting low amounts of
extracellular matrix. Following liver injury, HSC undergo a
pleiotropic response termed “activation” (59). The entire
process ultimately leads to the conversion of a quiescent
vitamin A-storing cell into a fibrogenic myofibroblastic cell
type. Expression of smooth muscle α-actin (α-SMA) is the
hallmark of HSC activation both in culture and in the intact
liver (60-62). Upon activation, HSC also move from a
nonproliferative to a highly proliferative state (56, 61-63).
PDGF-BB has been identified as the most potent
polypeptide growth factor able to stimulate the proliferation
of culture-activated HSC (56).

PDGF isoforms are disulphide-bonded dimers of
either AA, AB or BB polypeptide chains. Their effects on
target cells are mediated by dimeric transmembrane
receptors composed of α and/or β subunits with intrinsic
protein-tyrosine kinase activity (64). The α subunit binds

both the A and the B chain of PDGF with high affinity,
whereas the β subunit binds the B chain only (65, 66).
Quiescent HSC exhibit constitutive expression of the α
subunit but no detectable transcript for the β subunit (63).
Platelet-derived growth factor receptor-β (PDGFR-β)
expression is induced in primary cultures of rat HSC within
three days after plating, coincident with the onset of
cellular proliferation (63). PDGF exerts no mitogenic effect
on HSC in very early culture (62), suggesting that de novo
expression of PDGFR-β is a prerequisite to the growth
stimulatory action of PDGF.

It has been demonstrated by the analysis of HSC
isolated at different time points after bile duct ligation that
cholestatic liver injury induces a number of phenotypic
changes characteristic of HSC activation, including
increased proliferation, increased expression of
extracellular matrix constituents, expression of α-SMA and
of PDGFR-β subunit (60, 63, 67, 68). The proliferative
response of HSC is induced as early as within 24-48 hours
after biliary obstruction, and precedes HSC phenotypic
conversion into α-SMA expressing myofibroblasts (68).
Furthermore, this early proliferative response to cholestatic
injury has been shown to be mediated mainly by PDGF
(68).

It is therefore evident that, following cholestatic
liver injury, HSC move from a quiescent into an activated
state. Yet, the contribution of activated HSC to the
population of peribiliary myofibroblasts would further
require that they migrate from the perisinusoidal space,
where they are normally located, to bile duct structures
located in the portal tracts. The anatomical connection
between the space of Disse and the portal interstitial space
documented by electron microscopical studies of human
and rat liver (69) is consistent with such a possibility.

5.2. Hepatic stellate cell migration
Chemotactic factors are produced during wound

healing, and play an important role in the recruitment of
different cell types involved in tissue repair to the sites of
injury. In keeping with an important role of HSC in liver
wound healing, it has been proposed that following necrotic
injury, HSC detach from the sinusoidal wall, where they
are normally located, and move into postnecrotic areas
(70). This assumption has been reinforced by the
demonstration of human and rat HSC migratory capacities
in vitro, particularly in reponse to PDGF-BB (12, 71-76).
Other chemotactic mediators active on HSC include
endothelin-1 (12, 77), monocyte chemotactic protein-1
(78), and insulin-like growth factor-1 (79), but the list is
likely to grow longer as the response of HSC to other
chemotactic mediators is investigated.

Results from dynamic studies using a Transwell
chemotaxis filter assay (Figure 2) have shown that HSC
may also migrate in cholestatic liver injury and accumulate
within the ductular reaction as a result of PDGF-mediated
chemoattraction by bile duct structures (12). The major
findings supporting this evidence were that bile duct
segments isolated from bile duct-ligated rats exhibited high
levels of PDGF-B chain mRNA and protein, that they were
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Figure 3. Origin of peribiliary myofibroblasts. Peribiliary
myofibroblasts could derive from either the activation and
proliferation of portal fibroblasts, or from activated hepatic
stellate cells (HSC) that are recruited to the portal tracts by
chemotaxis. Bile duct epithelial cells likely play a pivotal
role in these processes by secreting cytokines that could
directly act on both portal fibroblasts to stimulate their
activation and proliferation, or on HSC to stimulate their
recruitment by chemotaxis. Cytokines also enable bile duct
epithelial cells to communicate with inflammatory cells
(not shown), which in turn could regulate and stimulate the
fibrogenic response. MCP-1: monocyte chemotactic
protein-1; IL-6: interleukin-6; TNF-α: tumor necrosis
factor-α; PDGF-BB: platelet-derived growth factor-BB;
TGF-β: transforming growth factor-β; CTGF: connective
tissue growth factor; ET-1: endothelin-1.

very active in inducing chemotaxis of myofibroblastic
HSC, and that this effect was inhibited by blocking PDGF-
BB ligand or receptor activity. The possibility that in
human chronic liver disease, newly formed bile ducts are,
in addition to inflammatory cells and activated HSC, a
major source of PDGF, is supported by investigations of
human cirrhotic liver tissue (42, 57).

Endothelin-1 is a vasoactive peptide that exerts
an array of biological effects on HSC and modulates liver
fibrogenesis (25, 67, 80-84). A number of findings point to
proliferative bile duct epithelial cells, in addition to
endothelial cells and myofibroblastic HSC, as a major
source of endothelin-1 within the liver (24, 25). Yet, even
though a chemotactic effect of endothelin-1 on HSC has
been demonstrated (12, 77), the role of endothelin-1 in
mediating bile duct-induced migration of HSC is probably
minor as compared to that of PDGF-BB (12).

Thus, it has been conclusively demonstrated that
cholestatic liver injury induces several feaures of HSC
activation, and that dynamic interactions between bile duct
epithelial cells and HSC may occur. This is in accordance
with the view that peribiliary myofibroblasts accumulating
within collagen deposits in biliary type fibrosis may in part
derive from HSC. However, it has also been proposed that
portal fibroblasts may play a major role in biliary
fibrogenesis, in particular at early stages of cholestatic
injury.

6. PORTAL FIBROBLASTS IN BILIARY TYPE
FIBROGENESIS

Although myofibroblastic HSC are considered as the
main fibrogenic cell type in hepatic fibrosis, it has been proposed
that myofibroblasts with fibrogenic potential may derive from
other cell types of the fibroblast lineage (5, 6). In particular,
based on morphological investigations of the cellular response to
cholestatic injury induced by bile duct ligation in rats, the origin
of peribiliary myofibroblasts has been attributed to portal
fibroblasts (7, 8). These in situ studies showed that in the early
stages of biliary type fibrosis, only a minority of α-SMA-
positive peribiliary myofibroblasts also expressed desmin, a
cytoskeletal protein generally expressed by myofibroblastic
HSC. Seventy-two hours after bile duct ligation, peribiliary
myofibroblasts expressing both α-SMA and desmin appear, and
their proportion increases until day seven (7). Thus, it is likely
that in the early stages of biliary type fibrosis, portal fibroblasts,
or possibly other cell types located in the portal tract, are
activated into myofibroblasts and constitute the majority of
peribiliary myofibroblasts accumulating around bile ducts. At
later stages following cholestatic injury it is likely that HSC
contribute to the peribiliary myofibroblast population, since an
increased number of α-SMA-positive/desmin-positive cells can
be noted in peribiliary areas after prolonged times of bile duct
ligation (7, 85, 86).

Little is known about the myofibroblastic conversion
of portal fibroblasts, but mechanisms similar to those seen in
HSC activation are likely involved. HSC activation is considered
to be initiated by paracrine stimuli from neighbouring cells (2).
These stimuli include disruption of the normal extracellular
membrane pattern and exposure to cytokines. TGF-β, TNF-α
and endothelin-1 have all been shown to promote HSC
activation into myofibroblasts in vitro (37, 67). Interestingly,
these mediators may be produced by bile duct epithelial cells in
liver injury (16, 19-21, 23, 25). PDGF-BB is another cytokine
produced by bile duct epithelial cells (12, 18) that has been
shown to induce the transformation of fibrocytes to
myofibroblasts (87). We could recently report from in vitro and
in vivo studies that PDGF-BB could play an important role in the
conversion of portal fibroblasts into α-SMA-expressing
myofibroblasts (88).

7. SUMMARY AND PERSPECTIVE

It is apparent that cholestatic liver injury elicits
an early proliferative response in HSC, which may be part of a
cascade of reversible events leading to hepatic wound healing.
With ongoing or recurrent injury, HSC will eventually complete
their transition into fibrogenic myofibroblasts, and move into
peribiliary regions in portal areas, in response to chemotactic
factors, mainly PDGF, released by bile duct epithelial cells.
However, in the early stages of biliary type fibrosis the
accumulation of peribiliary myofibroblasts could be mainly due
to the activation and proliferation of portal fibroblasts. It is
obvious that bile duct epithelial cells must be looked upon as
active players in the promotion and modulation of fibrogenesis
in the setting of cholestatic injury. The release of a number of
mediators, including PDGF and TGF-β, permits the crosstalk of
bile duct epithelial cells with other liver cells, including HSC and
portal fibroblasts (Figure 3). These mechanisms can explain the
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accumulation of myofibroblasts and collagen deposits around
bile ducts even in the absence of marked inflammation, such as
in cystic fibrosis-associated liver disease (27-29), and could be
further amplified by the inflammatory reaction in biliary diseases
such as primary biliary cirrhosis and primary sclerosing
cholangitis.

As our knowledge of the pathogenesis of biliary
type fibrosis is growing, new targets for anti-fibrotic
therapy are emerging. Among these, inhibition of mediators
of biliary type fibrogenesis, such as PDGF, endothelin, and
TGF-β, could constitute new targets for anti-fibrotic
intervention. Understanding the mechanisms by which bile
duct epithelial cells promote fibrogenesis is a major
prerequisite for the development of effective therapies in
chronic cholestatic liver diseases.
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