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1. ABSTRACT

Hepatic fibrosis describes the presence of excess
collagen due to new fiber formation, laid down as part of
the tissue repair response to chronic liver injury. The causes
of injury include toxins, disorders of the immune system,
viral and parasitic infections, as well as rarer liver diseases
such as haemochromatosis, Wilson’s disease and
galactosaemia.  Whatever the cause of injury, the cells and
soluble factors contributing to this wound healing response
are similar.  The principal effector of hepatic fibrogenesis is
now widely recognized as the hepatic stellate cell.  Stellate
cells are usually quiescent cells, but in response to liver
injury they undergo an activation process in which they
become highly proliferative and synthesize a fibrotic matrix
rich in type I collagen. Initiation of stellate cell activation is
largely due to paracrine stimulation, whereas perpetuation
of activation involves autocrine as well as paracrine loops,
and is dependent on a number of functional changes. The
principal paracrine and autocrine factors currently thought
to be involved in these processes are discussed in this
review, as are the roles of the extracellular matrix, the
nuclear receptor superfamily, non-peptide ligands, and
oxidative stress.

2. INTRODUCTION

Hepatic fibrosis is a wound healing response in
which damaged regions are encapsulated by extracellular

matrix (ECM), or scar. (1) The cells and soluble factors
participating in this response in the liver are similar to those
involved in parenchymal injury to kidney, lung or skin, and
are principally the hepatic stellate cells.  In normal liver,
hepatic stellate cells are non-parenchymal, quiescent cells
whose main functions is to store vitamin A and probably to
maintain the normal basement membrane type matrix.
However, numerous in vivo and in vitro studies indicate
that in response to liver injury stellate cells undergo an
"activation" process in which they lose vitamin A, become
highly proliferative, and synthesize 'fibrotic' matrix rich in
type I collagen.

It is not certain that all cells have the capacity for
activation, but it is likely that an increasing percentage of
cells become activated with continued insult.  Activation
consists of two major phases, initiation and perpetuation.
Initiation refers to early changes in gene expression and
phenotype, which render the cells responsive to other
cytokines and stimuli, while perpetuation results from the
effects of these stimuli on maintaining the activated
phenotype and generating fibrogenesis.  Initiation is largely
due to paracrine stimulation, whereas perpetuation involves
autocrine as well as paracrine loops, and is dependent on a
number of functional changes.  These include stellate cell
proliferation and chemotaxis, leukocyte chemotaxis, matrix
degradation, fibrogenesis, increased contractility, and
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Figure 1.  Hepatic stellate cell (HSC) activation and its phenotypic features following liver injury. HSC undergo activation,
transforming from a quiescent vitamin A-rich cell, to a proliferative, fibrogenic, contractile myofibroblast.  The major phenotypic
changes that occur are shown.  Resolution of liver injury, if it occurs, may include selective clearance of activated stellate cells by
apoptosis, or possibly their reversion to a quiescent phenotype.  (From  Friedman SL. Molecular regulation of hepatic fibrosis, an
integrated response to tissue injury.  J Biol Chem  275:2248,2000; with permission).

retinoid loss.  These major features of stellate cell
activation are summarized in Figure 1 and Tables 1 and 2.
The principal paracrine and autocrine factors currently
thought to be involved in the processes of initiation and
perpetuation are discussed below, as are the roles of the
extracellular matrix, the nuclear receptor superfamily, non-
peptide ligands, and oxidative stress.

3. PARACRINE SOLUBLE FACTORS

Paracrine stimuli derive from neighboring cells,
namely injured hepatocytes, endothelial cells, Kupffer cells
and platelets.  Hepatocytes release a multitude of peptide
growth factors including TGF beta and TGF alpha, and also
release lipid peroxides that may be important in some
forms of liver injury.  Endothelial cells release endothelin 1
(ET-1) (2, 3) and cellular fibronectin (4), both of which
have activating effects on stellate cells.  Endothelial cells
may also participate in the activation of TGF beta.  (5)
Kupffer cell influx coincides with the appearance of
markers of stellate cell activation in vivo, (6) and in vitro
stellate cell studies have demonstrated that conditioned
medium from Kupffer cells accelerates stellate cell
activation. (7, 8)  Kupffer cells can stimulate matrix
synthesis, cell proliferation and release of retinoids by
stellate cells through the actions of cytokines, particularly
TGF beta, and reactive oxygen species.  Platelets are also

recognized as a potent sources of growth factors injured
liver, most notably as the source of platelet derived growth
factor (PDGF).  They also produce TGF beta 1 and
epidermal growth factor (EGF).  Other sources of paracrine
peptide growth factors include lymphocytes and
monocytes.

3.1. Transforming growth factor-beta
The TGF betas consist of three vertebrate

isoforms TGF beta1, TGF beta2 and TGF beta3.  TGF
beta1 in particular is known to be a potent modulator of cell
proliferation, cell differentiation and fibrogenesis. TGF
beta1 is usually secreted as a homodimer latent polypeptide
(L-TGF beta), and a large pool of L-TGF beta exists in
serum and bound to proteoglycans within ECM.  L-TGF
beta is activated into its mature form by the dissociation of
its inhibitory latency-associated peptide (LAP), and this
involves its binding to the insulin-like growth factor
receptor-II/mannose-6-phosphate receptor  (IGF-II/M6P
receptor).  The active/mature TGF beta1 is a 25kD
homodimer, which binds to specific TGF beta receptors.
TGF betas signal through ligand-dependent
heterotetrameric complexes with TbetaR Type I and Type
II, which have transmembrane receptor serine/threonine
kinases.  Ligand binding to TbetaRII recruits and
phosphorylates TbetaRI, which in turn propagates the
signal to downstream intracellular targets through
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Table 1. Paracrine factors involved in the initiation of stellate cell activation
Cellular source Paracrine factor
        Hepatocytes Lipid peroxides, TGFβ1, TGFα, IL-6, IGF-1, IGFBP, M-CSF, GM-CSF
        Kupffer cells Lipid peroxides,  TGFβ1, TGFα, IL-6, TNFα, PDGF, gelatinase B
        Endothelial cells TGFβ1, ET-1, PDGF, cellular fibronectin, activate TGFβ1
        Platelets PDGF, TGFβ1, EGF
        Lymphocyte TGFα, Interleukins
        Monocytes TNFα,TGFβ1, PDGF

Table 2. Autocrine and paracrine loops involved in the perpetuation of stellate cell activation
Functional Change Factors
        Proliferation PDGF, EGF, TGFα, bFGF, RANTES, IGF-1, CTGF
        Stellate cell
chemotaxis

PDGF, bFGF, IGF-1, M-CSF, MCP-1

        Leukocyte chemotaxis M-CSF,MCP-1
        Fibrogenesis TGFβ1, acetaldehyde, retinoids, IL1-β, IL-6 TNFα
        Contractility ET-1, PAF, Nitric Oxide, thrombin
        Matrix degradation MMP-2 + MMP-9 degrade normal ECM, ↓ MMP-1 activity  (degrades scar ECM), ↑TIMP1

expression
        Retinoid loss ↓ligands for RAR + RXR which maintain quiescence

phosphorylation. (9)  The intracellular targets include a
family of bifunctional molecules known as SMADs, whose
responses differ in acute and chronic injury, favoring
matrix production in the latter. (10)

TGF beta1 is present in both normal and fibrotic
liver, (11) but is increased in cirrhosis (12, 13, 14) and
experimental hepatic fibrosis. (15, 16,17,18) The primary
source of TGF beta1 in the liver is thought to be Kupffer
cells, but autocrine, stellate cell-derived TGF beta may be
equally important.  In rat CCl4–induced injury, TGF beta1
mRNA increases dramatically with a similar time course to
the Kupffer cell population, (15) and it localized
immunohistochemically to this cell type. (19)  However
small amounts are also produced by endothelial cells and
hepatocytes and stellate cells.  (20, 21) In stellate cells TGF
beta1 upregulates the expression of collagens I, II and IV,
fibronectin and laminin and accelerates transformation of
quiescent stellate cells to myofibroblasts. (22) Apart from
accelerating activation and stimulating matrix synthesis,
TGF beta1 has other profibrogenic effects.  In fibroblasts it
reduces collagenase and stromelysin gene expression and
upregulates the expression of protease inhibitors such as
TIMP-1 and plasminogen activator inhibitor, which may
protect the matrix from degradation. (23, 24)  In addition,
Pinzani et al (25) have shown that TGF beta1 increases the
mitogenic potency of the principal stellate cell mitogen
PDGF-BB, and that this is as a result of a TGF beta1
stimulated increase in the expression of the PDGFbeta
receptor subunit in cultured stellate cells.

A critical role of TGF beta1 fibrogenesis is
suggested by studies in transgenic mice.  An active form of
TGF beta1 expressed in transgenic mice, resulting in
chronic TGF beta1 production, causes hepatic fibrosis, with
increased collagen deposition, hepatocyte apoptosis, and
alpha-SMA expression. (26, 27, 28) TGF beta1-knockout
mice with CCl4 induced liver injury still develop fibrosis,
albeit at reduced levels, suggesting that TGF beta1 is

predominantly involved in the perpetuation of stellate cell
activation and acceleration of fibrosis, rather than being a
critical factor initiating activation of stellate cells.

The activation of the TGF beta downstream
mediators, the Smads, is currently being studied in stellate
cells. (29) It appears that their regulation is at the level of
phosphorylation, as the expression level of all Smads
remains largely unchanged in the activation of process of
stellate cells. (30)  The induction of collagen expression by
TGF beta is mediated by the phosphorylation of Smad2 and
Smad3, and subsequent nuclear translocation of the Smad
complex.  (30)  In addition, an in vivo study using Smad 3
knockout mice has shown that there is less accumulation of
collagen mRNA after acute liver injury compared to wild
type animals.  (31) Whether or not this translates into less
actual fibrosis remains to be seen, but early studies imply
that Smad manipulation may be a target for antifibrotic
therapies.

3.2. Tumor necrosis factor-alpha
Tumor necrosis factor-alpha (TNF alpha) is a

cytokine with proinflammatory and immunoregulatory
properties.  It is produced predominantly at sites of
inflammation by activated monocytes and macrophages and
previous studies have demonstrated that it plays a role in
tissue repair following tissue injury.  It is capable of
regulating cell proliferation and apoptosis, controlling
ECM synthesis and MMP production and inducing the
expression of adhesion molecules.

Acute and chronic liver diseases in humans and
animal models are accompanied by elevated levels of TNF
alpha and TNF alpha receptors. (32, 33, 34, 35 36, 37)
Kupffer cells are thought to represent the major source of
TNF alpha in the liver, and TNF alpha can be upregulated
by exposure of Kupffer cells to lipopolysaccarhide, viruses
or alcohol. (38,39) TNF alpha accelerates stellate cell
activation in vitro as determined by morphological criteria,
the loss of retinyl palmitate, and enhanced expression of
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alpha-SMA and TGF beta receptor type I. (22, 40)
Interestingly, TNF alpha is not a classical ‘fibrogenic’
mediator like TGF beta1. In fact, while in stellate cells TNF
alpha stimulates synthesis of fibronectin, (22) and tenascin,
it reduces the synthesis of type I  (41, 42, 43) and type III
(40) collagen.  TNF alpha also leads to increased
expression of the MMP stromelysin/transin by hepatic
stellate cells, (44) suggesting a role in matrix degradation
rather than synthesis.  Thus, the main role of TNF alpha in
hepatic fibrosis may be the initiation of stellate cell activation
rather than the stimulation of ECM produced by activated
cells.  In support of this hypothesis, it is produced by
inflammatory cells early in liver injury and increases the
synthesis of monocyte chemotactic protein-1 (45) and
neutrophil chemoattractants, (46) by transforming stellate cells.

3.3. Endothelins
The endothelins are a group of three related

isopeptides, ET-1, ET-2 and ET-3 (47, 48) that arise by
proteolytic cleavage of prepropeptides to proendothelins,
which are transformed to mature peptides by endothelin-
converting enzymes.  The isopeptides are expressed in a
number of tissues including the liver. (49, 50)  There are
three types of G protein-coupled endothelin receptors; ET-
A, ET-B (51, 52) and ET-C, (53) which have different
binding affinities for the three peptides.  Endothelins have a
variety of metabolic effects, but are regarded primarily as
potent vasoconstrictors. It is thought that contractility of
stellate cells may be a major determinant of early and late
increases in portal resistance during liver fibrosis, and that the
major contractile stimulus towards stellate cells is ET-1. (54)

In normal human liver ET-1 is expressed at low
levels, while in cirrhotic liver there is a marked increase in
ET-1 synthesis particularly by sinusoidal endothelial cells,
bile duct cells and stellate cells. (50)  An increase in ET-1
mRNA levels has also been detected in the livers of
cirrhotic rats. (49)  In advanced fibrosis ET-1 may take part
in the contraction of collagen bands resulting in distortion
of the liver lobule. (55)  In vitro studies support a role for
ET-1 in stellate cell activation and fibrogenesis.  ET-1
promotes stellate cell activation as assessed by alpha-SMA
expression, (56) and stellate cell synthesis of ET-1 by both
stellate cells and endothelial cells can be increased by the
fibrogenic mediators, PDGF and TGF beta. (50)  ET-1
induced stellate cell activation has been shown to be
mediated by ET-B receptors, as blocking these receptors in
an animal model of liver injury reduces fibronectin and
collagen synthesis. ET-1 also regulates stellate cell
proliferation, and it is the relative prevalence of ET-A and
ET-B receptors that determines the net effect.  Quiescent
cells express both ET-A and ET-B receptors, and in early
culture ET-1 promotes proliferation.  This is attributed to
an ET-A effect, as the proliferative effect in quiescent cells
is blocked by an ET-A antagonist. (50)  As stellate cells
transform, there is a shift to predominantly ET-B receptors.
(50)  ET-1 inhibits proliferation of fully activated cells,
mediated by the ET-B receptor. (57)

3.4. Platelet derived growth factor
PDGF is a dimeric protein consisting of two

related polypeptide chains that can form three isoforms:

PDGF-AA, PDGF-BB, and PDGF-AB. It is the single most
potent stellate cell mitogen currently identified. Two PDGF
receptor subunits, alpha and beta have been identified. (58)
A pathogenic role for platelet-derived growth factor
(PDGF) has been demonstrated in several fibrogenic
disorders, including the liver.  The genes encoding PDGF
and its receptor subunits are markedly overexpressed in
cirrhotic human liver, (59) and PDGF gene expression is
markedly up-regulated in rat liver 48 hours after a single
oral administration of CCl4. (60)  PDGF acts as a powerful
chemotactic and mitogenic factor for resident mesenchymal
cells, and in liver injury plays a major role in the
perpetuation of stellate cell activation and the subsequent
development of fibrosis.

The mitogenic potential of PDGF in stellate cells
requires the activation-dependent expression of its receptor.
(8)  Quiescent stellate cells express the alpha receptor but
not the beta receptor subunit.  In response to activation
there is an increase in the synthesis of the beta type
receptor while expression of the alpha type receptor
remains unchanged, resulting in the predominant
expression of the beta type receptor. (61)  These results are
in agreement with the observation that PDGF-AB and
PDGF-BB increase proliferation markedly whilst PDGF-
AA is a weaker mitogen. (62)  TGF beta is thought to be
involved in the upregulation of the beta receptor and
increases the mitogenic effect of PDGF-BB but not that of
PDGF-AA or PDGF-AB.  Cultured human stellate cells
express mRNA for both the A and B genes and secrete
active PDGF into their medium, suggesting the presence of
an autocrine loop that maintains cells in their proliferative
state. (63)  The signaling pathways downstream of the
PDGF receptor have now also been characterized in stellate
cells. (64)

3.5. Transforming growth factor-alpha
Transforming growth factor-alpha (TGF alpha) is

a polypeptide that belongs to the family of epidermal
growth factor-like ligands and is synthesized in many
normal tissues (65) including the liver.
Immunohistochemical studies have confirmed its presence
in adult and fetal liver, (66) particularly in perivenular
hepatocytes. (67)  It is thought to play an important role in
hepatocyte regeneration following hepatocyte injury, (67,
68) and has also been implicated in hepatocarcinogenesis.
(69,70)

TGF alpha is not found in sinusoidal cells in
normal liver.  However, it is synthesized by activated
macrophages, (71,72) including Kupffer cells, (73, 74) and
has also been shown to be synthesized by activated rat
stellate cells. (75,20)  Mature TGF alpha is a 6KDa
polypeptide that is released from a larger membrane-bound
propeptide after protease cleavage.  It binds EGF receptors
on stellate cells and stimulates proliferation in primary
culture in a dose-dependent manner, (76) with less potency
than PDGF. (77)  It has been suggested that stimulated
responses of stellate cells to TGF alpha are phenotype
dependent.  For example, in quiescent stellate cells TGF
alpha stimulates growth with little effect on ECM
synthesis, whereas in myofibroblast-like cells, it stimulates
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proteoglycan synthesis and may be anti-proliferative. (78)
In addition to its effects on proliferation, TGF alpha has
been reported to accelerate stellate cell activation, as
determined by alpha-SMA expression, and it has been
suggested that this may be mediated via oxidative stress
and c-myb expression. (79)

3.6. Insulin like growth factor
Insulin-like growth factor (IGF) 1 and 2 secreted

by hepatocytes may contribute to the paracrine regulation
of stellate cell proliferation. (80)  The IGFs and their
binding proteins (IGFBPs) and receptors play an essential
role in normal physiology and disease states, and are
currently under study in a number of different fields of
research including liver fibrosis.  The IGFs are potent
mitogens whose actions are determined by the availability
of free IGFs to interact with their receptors.  There are two
known IGF receptors, which are both integral membrane
proteins.  The IGF-I receptor signals multiple cascades via
its inherent tyrosine kinase activity, whereas the IGF-
II/M6P receptor is primarily involved in targeting enzymes
to various subcellular compartments. (81) The IGFBPs are
secreted by cells and accumulate in the ECM or on the
external surface of the cell.  In addition to modulation of
IGF/IGF receptor interactions, they may have some IGF
independent effects, possibly via the interaction with
integrins or other cell membrane proteins.

Activated stellate cells express both IGF-1 and
IGFBPs, (82, 83, 84) and IGF-1 has been confirmed as a
stellate cell mitogen. (82)  However, the IGF-I receptor is
expressed in early stellate cell culture, and subsequently
reduces as cells transform. (83, 84)  This in conjunction
with the increase in IGFBPs as stellate cells transform has
lead to the suggestion that IGF-I mediated effects may be
important in the initiation rather than perpetuation of
stellate cell activation.  IGF-1 is in fact equipotent to PDGF
in the stimulation of the Ras/ERK mitogenic cascade, but
only stimulates a fraction of the proliferation. (85) It may
be that its principal role in HSC activation is as a survival
factor, via its stimulation of the PI3K/PKB cascade. (86)
Conversely, stellate cell expression of the IGF-II receptor
increases as cells activate in response to either CCl4 liver
injury (87, 88) or to PDGF in culture. (89)  The time-course
of its expression and its ability to activate latent TGF beta
suggest that this receptor plays a role in the perpetuation
rather than initiation of stellate cell activation.

3.7. Other profibrogenic paracrine peptides
Additional less well characterized peptides

involved in stellate cell activation are included in the
summary in Tables 1 and 2, and some of these are
mentioned here.  Prostanoids such as thromboxane,
prostaglandins and prostacyclin are secreted from
endothelial cells, (90) and have important effects on stellate
cell contractility. Another peptide with vasoactive
properties is thrombin, which is rapidly generated after
liver damage, and may be involved in tissue remodeling
and/or scarring during liver damage. (91) Established
growth factors such as bFGF and VEGF also exert
biological effects on hepatic stellate cells.  These are
known to play roles in angiogenesis and chronic wound

healing. bFGF is a stellate cell mitogen and
chemoattractant.  Its mRNA and protein levels are
dramatically increased in an animal model of fibrosis,
supporting a role for this peptide in hepatic fibrogenesis.
(92)  VEGF binds two receptor tyrosine kinases, VEGFR1
(Flt-1) and VEGFR2 (FLK-1). VEGF stimulates activated
HSC growth and HSC activation is associated with an
increase in both VEGF and VEGR expression.  (93, 94, 95)
At later stages of activation, VEGFR1 progressively
increases, whereas VEGFR2 decreases, but the relevance of
these changes remains to be determined.  At these later
stages, VEGF attenuates the contractile properties of HSC
and  expression.  (96)

Expression of connective tissue growth factor
(CTGF) is also increased in human and experimental
cirrhosis. (97, 98, 99) In situ hybridization studies indicate
that the source of CTGF is the HSC in vivo, and expression
of CTGF in stellate cells in culture increases as cells
become activated.  Thus, this cytokine may also modulate
hepatic fibrosis.

3.8. Paracrine peptides with an inhibitory role in
fibrogenesis

It is becoming clear that a number of paracrine
peptides may inhibit the initiation or perpetuation of stellate
cell activation. The most established of these are the
interferons (IFNs),  but this group may also include some
of the interleukins, such as IL-10.

3.8.1. Interferons
IFNs are cytokines or soluble extracellular

signaling proteins that were initially described as agents
interfering with virus replication, (100) however, it has
become clear that they have diverse effects on cell growth
and differentiation, with a particularly prominent effect on
the pattern and magnitude of the immune response. The
interferons are divided into two groups designated type I
(IFN-alpha, IFN-beta, and IFN-omega) and type II (IFN-
gamma).  The type I IFNs share a common receptor
complex, whereas type II IFN binds to a distinct receptor.
(101) In general, leukocytes produce IFN-alpha and IFN-
beta species in response to viral exposure, whereas IFN-
gamma is produced by T-lymphocytes when stimulated
with a variety of different antigens, including mitogens
such as staphylococcal enterotoxin A.

Inhibition of collagen synthesis by interferons
was first reported in cultured fibroblasts in 1984, (102) and
subsequently evidence that interferons are antifibrogenic in
the liver has come from both human (103, 104, 105, 106,
107, 108) and experimental studies. (109, 110, 111, 112)
In addition, some in vivo experimental studies have shown
that IFNs reduce stellate cell activation. (113, 114,115)  In
vitro studies in human liver myofibroblast cells have shown
a reduction in cell proliferation and/or the synthesis of
ECM components such as type I collagen in the presence of
IFN-alpha or IFN-gamma. (116, 117)  Similarly, in rat
stellate cells, IFN-gamma  inhibits the proliferation and
activation of quiescent cells, ( 118) as well as the synthesis
of ECM proteins, including interstitial matrix proteins
(fibronectin, tenascin, collagen type III), and basement
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membrane proteins (collagen type IV, entactin, laminin).
(119, 120)

3.8.2.  IL-10
Stellate cells also produce the classical anti-

inflammatory cytokine interleukin-10 (IL-10), and its
expression increases during activation. (121, 122)  In
progressive human fibrosis due to hepatitis C virus (HCV)
the levels of IL-10 are reduced, (123) suggesting that IL-10
may have an antifibrogenic role.  This is supported by
recent studies showing increased fibrosis in IL-10 knockout
mice exposed to liver injury. (124, 125)  The inhibitory
effect of IL-10 on fibrogenesis may be secondary to its
anti-inflammatory properties, but recent evidence also
suggests a direct autocrine effect on stellate cells.  Wang et
al (122) recently showed a decrease in mRNA levels of
interstitial collagenase and an increase in procollagen type I
gene and protein expression in stellate cells treated with
neutralizing anti-IL-10 antibodies in vitro.  Clinical trials
looking at the therapeutic role of this cytokine are in
progress, and an uncontrolled pilot study has suggested that
in patients with hepatitis secondary to HCV, subcutaneous
treatment with IL-10 for 90 days significantly reduces both
inflammation and fibrosis on liver biopsy. (126)

3.8.3. IL-1
In fibroblasts, interleukin-1 (IL-1) inhibits the

synthesis of collagen (127) and promotes collagen
degradation by stimulating collagenase production. (128) In
stellate cells, IL-1alpha stimulates proliferation in a
concentration dependent manner, whilst inhibiting collagen
production.  (42)  It is synthesized in Kupffer cells (129)
and endothelial cells. (130)

4. AUTOCRINE STIMULATION OF HEPATIC
STELLATE CELLS

 ‘Autocrine stimulation’ implies that a growth
factor is synthesized by a cell, which binds and responds to
this same faction.  Accordingly, activated stellate cells are
able to produce many soluble mediators that regulate their
proliferation, activation and synthesis of ECM components.
In fact, autocrine signaling may be most important in HSC
activation. There is evidence for autocrine signaling of
TGF beta and EGF/TGF alpha, fibronectin (22, 131) and
type I and III collagens. (131)  Notably, activated stellate
cells also express IGF-II/M6P receptors (87) and produce
urokinase, (132) both of which are known to play a role in
the activation of L-TGF beta. (133, 87)  TGF beta is also
involved in the upregulation of the PDGF beta receptor,
thereby increasing the mitogenic effect of PDGF-BB.
(25)  As cultured human stellate cells secrete active
PDGF into their medium, the presence of a PDGF
autocrine loop that sustains cells in their proliferative
state has also been suggested. (63)  As discussed
previously, stellate cells synthesize ET-1 and express ET-
A and ET-B receptors, as well as synthesizing IGF-1,
IGFBPs and expressing IGF-Rs, constituting two other
potential autocrine regulatory loops.  Similarly,
interleukin-6 (IL-6), an acute phase protein, is secreted by
stellate cells in culture and stimulates the expression of
collagen type I in these cells. (130, 134).

5.0 OTHER SECRETORY PRODUCTS OF HEPATIC
STELLATE CELLS

Hepatic stellate cells produce additional soluble
factors, some of which, such as hepatocyte growth factor
(HGF) (135), have little direct effect on HSC. Other
secretory products, such as chemokines, platelet activating
factor, and leptin, may play a significant role in stellate cell
activation, and these are reviewed in this section.

5.1. Chemokines
Chemokines are an expanding family of

chemotactic cytokines that attract and activate leukocytes.
Stellate cells release neutrophil and monocyte
chemoattractants that amplify inflammation during liver
injury.  Among these are macrophage colony stimulating
factor (M-CSF), monocyte chemotactic protein-1 (MCP-1),
and RANTES (Regulated upon Activation, Normal T cell
Expressed and Secreted). (45, 136, 137, 64)

M-CSF is a potent hemopoetic growth factor that
modulates macrophage proliferation and differentiation.
mRNA for M-CSF is constitutively expressed in a variety of
parenchymal organs including the liver, (138) and expression
of the M-CSF gene is increased in both human liver disease
and experimental models of fibrosis. (139, 140)  Cultured
stellate cells express M-CSF mRNA and secrete the active
protein into their media. (141).

MCP-1 is a potent chemoattractant for monocytes,
lymphocytes, and mesenchymal cells, including stellate cells
themselves.  Its mRNA is not expressed in normal liver, but its
expression is up-regulated in liver tissue from patients with
chronic active hepatitis. (136)  Activated human stellate cells
in culture express MCP-1 mRNA and secrete the active protein
into their medium.  The secretion of MCP-1 by stellate cells is
regulated through beta1 integrin stimulation, (137) and is
increased by proinflammatory cytokines, such as IL-1alpha,
IFN-gamma, TNF alpha (45) and macrophage inflammatory
protein 2 (MIP-2) (46).  A high level of expression of MCP-1
by HSC in chronic liver injury in vivo has been confirmed by
in situ hybridization and Immunohistochemical studies, and
contributes to the maintenance of the inflammatory infiltrate
during chronic liver injury. (136) Interestingly a group from
Fukuoka, Japan, have reported preliminary success in
suppressing experimentally induced fibrosis in rats using gene
therapy to deliver a deletion mutant of MCP-1, which blocks
the MCP-1 receptor, inhibiting leukocyte chemotaxis. (142).

The chemokine RANTES plays a particular role
in eosinophil attraction, and has received much of its liver
related attention in the post transplantation literature as a
potential mediator of acute rejection.  A recent report,
however, suggest that this chemokine may also have a role
to play in liver fibrogenesis.  Stellate cells in culture
stimulated with TNF alpha secrete high levels of RANTES,
which in turn, induces the generation of ROS, the
phosphorylation of the ERK mitogen activated kinase
cascade, and stellate cell proliferation. (143).

5.2. Platelet activating factor
Platelet activating factor (PAF) is a phospholipid

with potent, diverse physiological actions, including
regulatory roles in inflammation and vasoconstriction.
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(144)  Its primary role is as a mediator of intercellular
interactions. It is synthesized by a variety of cell types, and
subsequently binds to receptors on the plasma membranes
of adjacent cells, resulting in their activation and a change
in phenotype.  The best characterized of these juxtacrine
interactions is that between endothelial cells and
leukocytes.  When inflamed, endothelial cells express both
PAF and the adhesion molecule P-selectin.  P-selectin
tethers the leukocyte to the endothelial cell, allowing PAF
to bind a PAF receptor (PAFR) on the leukocyte.  The
subsequent adhesion and activation of the leukocyte is
dependent upon its expression of the beta2 integrin
receptor.

In view of the role of PAF in mediating
intercellular interactions and altered cell phenotypes, it is
not hard to envisage a role in stellate cell activation,
particularly in view of the many cell types involved in liver
injury.  PAF increases the expression of extracellular
matrix proteins (145) and is believed to play a role in the
development of both renal interstitial fibrosis and
pulmonary fibrosis.  In the liver it is synthesized by
Kupffer cells (146) very early after acute injury (147) and
also by stellate cells, (148) where stimulation with the
calcium ionophore A23187, thrombin and
lipopolysaccharide all induce significant increases in PAF
secretion. A recent study suggests that PAF is the
predominant inflammatory lipid mediator produced by
hepatic cells after CCl4 / free radical- initiated liver
damage. (149)  Furthermore, it appears that cells expressing
the PAF receptor are protected from TNF alpha induced
apoptosis (NF-κB dependent mechanism) (150).  The role
of PAF in the liver has not been well characterized as yet,
but this may well change, particularly in view of the efforts
being invested in the development of antagonists to PAFR.

5.3. Leptin
Leptin released by activated stellate cells within

the space of Disse acts as a paracrine modulator of hepatic
fibrogenesis. It is a hormone product of the obese gene
expressed primarily by adipocytes.  Plasma leptin levels
correlate with percent body fat, and it is likely that leptin
signaling is important for weight regulation (151).  It binds
and activates specific receptors on hypothalamic neurons
that govern energy homeostasis, and also regulates both
insulin secretion and tissue responsiveness to insulin.
Leptin release is stimulated by cytokines, and it also
enhances the secretion of TNF alpha, IL-6 and IL-12 from
isolated macrophages in response to LPS.  It is possible,
therefore, that leptin may amplify some proinflammatory
responses, and may well influence the progression from
hepatic steatosis to steatohepatitis (152).

Recent reports suggest that leptin may also play a
role in liver fibrogenesis.  Circulating leptin expressed per
kilogram of fat mass is elevated in patients with alcohol
induced cirrhosis, and activated hepatic stellate cells grown
in culture express leptin (153).  Ikejima et al (154) have
demonstrated that recombinant leptin augments the
profibrogenic responses induced by hepatotoxic chemicals,
possibly by the up-regulation of TGF-beta1.

6. THE EFFECT OF RETINOIDS AND THE ROLE
OF THE NUCLEAR RECEPTOR SUPERFAMILY

Both chronic liver disease (155, 156) and
activated stellate cells in culture (157, 158, 159) are
associated with loss of cellular vitamin A, but whether this
is a coincidental ‘bystander effect’, or whether it is an
integral part of stellate cell activation remains uncertain.
Over a decade ago, it was reported that vitamin A could
protect against fibrosis in the CCl4 induced animal model
of liver injury. (160, 161) The observation, however, that
hypervitaminosis A is associated with increased hepatic
fibrosis in humans (162) and alcohol fed rats, (163, 164)
was inconsistent, and it has taken a number of years of in
vitro study before our general understanding of vitamin A
metabolism has shed light on this complex field.

Dietary vitamin A is esterified with long chain
fatty acids by enterocytes. These retinyl esters are taken up
by hepatocytes and hydrolyzed to retinol.  Retinol has a
number of potential fates within the hepatocyte (165), one
of which is being exported to HSC by cellular retinol
binding protein 1 (CRBP-1).  The addition of exogenous
retinol to cultured stellate cells in vitro can maintain a
quiescent phenotype, and when added to activated stellate
cells, can cause reversion of phenotypic changes, inhibition
of proliferation, (166, 167) and a reduction in collagen
synthesis. (167)  Retinol can also inhibit the production of
TGF beta mRNA by stellate cells in vitro, (167) as well as
PDGF-mediated stellate cell proliferation. (168)  However,
retinol is not the only form of vitamin A within the HSC.
In fact, retinol can be re-esterified for storage in HSC, bind
to retinol binding protein for export back to the hepatocyte,
or, importantly, be oxidized to retinoic acid.  (165)

Isomers of retinoic acid are important ligands for
the nuclear retinoic acid (RAR) and retinoid X receptors
(RXR). RXR and RAR receptors are ligand dependent
transcriptional regulators that belong to the nuclear
hormone receptor superfamily.  They are further subdivided
into alpha, beta and gamma receptors. Maintenance of the
quiescent phenotype of HSC may be dependent on
adequate levels of all-trans and 9-cis retinoic acid, and on
sufficient expression of the receptors, RAR beta and RXR
alpha. During activation, stellate cells express less RAR
beta, (169, 170) which in other cell types is required for
retinol mediated inhibition of cell proliferation.  Thus, the
expression of RAR beta by quiescent stellate cells may
contribute to their poor proliferative capacity, representing
an anti-proliferative mechanism that is lost as cells activate.
This loss of RAR beta would be exacerbated further by the
loss of cellular retinoids during activation.  Paradoxically,
exposure of stellate cells to supraphysiological
concentrations of retinoic acid is profibrogenic, possibly
because it induces plasmin mediated activation of latent
TGF beta (171; 172). This may partly explain the increased
level of fibrosis associated with hypervitaminosis A.

The nuclear hormone receptor superfamily also
includes peroxisome proliferator activated receptors
(PPARs), the vitamin D receptor, thyroid receptor, several
steroid receptors and orphan receptors (ligands as yet
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unknown). These receptors may be present in cells as
monomers in equilibrium, but in order to affect
transcription they form homo- or heterodimers with other
family members, and bind serum response elements within
the promoter regions of specific genes, awaiting ligand
induced activation.  The unliganded heterodimers tend to
act as transcriptional silencers because they recruit
corepressors and histone deacetylators (HDACs).  (173;
174)

The PPARs were so named in 1990 when they
were discovered to be the receptors responsible for the
induction of proliferation in rat liver peroxisomes in
response to a diverse set of compounds.  (175) Peroxisomes
are organelles that are involved in the oxidation of fatty
acids, producing hydrogen peroxide in the process.  It is
now recognized that PPARs are involved in hepatic lipid
metabolism and adipocyte differentiation. They function as
heterodimers with RXRs, and like the latter, are also
subdivided into subtypes of alpha, beta and gamma
receptors.  PPAR alpha is the most abundant form in the
liver, but HSC are reported to express the gamma isoform,
and recent evidence suggests that loss or inactivation of
PPAR gamma receptors may contribute to stellate cell
activation and predispose to hepatic fibrosis. (176)  PPAR
gamma mRNA is expressed in HSCs of normal rat liver
and its expression is greatly reduced in HSC from
cholestatic liver fibrosis induced by bile duct ligation.  A
decrease in PPARgamma protein is detected in culture
activated HSC, supporting the idea that its expression is
diminished with activation.  Furthermore, the treatment of
culture activated HSC with PPAR gamma ligands restores
the level of PPAR gamma mRNA to amounts
representative of quiescent HSC, and inhibits HSC
proliferation, alpha-SMA, type 1 collagen, and MCP-1
expression.

In summary, RXRs, RARs and PPARs are
emerging as important regulatory molecules in hepatic
stellate cells, and manipulation of these receptors could
potentially be used to control fibrogenesis in chronic lever
disease.

7. MODULATION BY THE EXTRACELLULAR
MATRIX

For many years the extracellular matrix (ECM)
was regarded as a passive framework binding tissues
together, but this view has now changed.  In fact, the ECM
represents an important regulator of HSC activation.  It is
made up of collagens, glycoproteins and
glycosaminoglycans, the relative quantities of which
change in a chronically injured liver.  The normal liver
ECM is rich in type IV collagen, a network-forming
collagen, but as fibrosis progresses this is replaced by more
rigid fibrillar collagens such as types I and III collagen.
These, together with fibronectin, form an electron dense
matrix within the space of Disse.  This change, termed
‘capillarization’, (177) is associated with a decrease in the
number of endothelial fenestrae (178) and a loss of
differentiated hepatocyte function. (179)

The ECM not only provides the mechanical
framework for cellular adhesion, migration, and cellular
interactions, but it can also be regarded as a reservoir of
agents which play important roles in the processes of
stellate cell activation and matrix remodeling.  It contains a
host of tethered molecules waiting to be released or
activated.  These include growth factors such as PDGF,
bFGF, TGF beta and TNF alpha, as well as enzymes
responsible for matrix processing, such as matrix
metalloproteinases and procollagen peptidases.

There is now accumulating evidence indicating
that the matrix itself is of great importance in stellate cell
activation.  Stellate cells cultured on plastic or type I
collagen become activated and express type I collagen.  In
contrast, stellate cells cultured on laminin rich basement
membrane-like matrix derived from Englebroth-Holm-
Swarm (EHS) murine tumor, retain their retinoid rich
quiescent phenotype, with low levels of proliferation and
secrete lower levels of collagen, which is predominantly
type III.  (180)  Disruption of the normal basement
membrane may be an early key event in the initiation of
stellate cell activation, as well as its perpetuation.  This
damage to normal basement membrane matrix may be
mediated by MMPs, in particular type IV
collagenase/gelatinase B released from invading
inflammatory cells or resident Kupffer cells, (181) or by
type IV collagenase/gelatinase A and transin/stromelysin
produced by activated stellate cells themselves. (182, 183,
184)  Stellate cell activation may also be regulated by
matrix production from other liver cells.  Endothelial cells
produce the EIIIA isoform of fibronectin following liver
injury, and this has been shown to stimulate stellate cell
activation in vitro. (4)

ECM-cell interactions are largely mediated via
specific receptors called integrins.  These are heterodimeric
molecules composed of alpha and beta chains whose
ligands are matrix molecules rather than cytokines.
Classical integrin ligands contain an Arg-Gly-Asp (RGD)
peptide sequence, and binding leads to conformational
changes in the cytoplasmic domains which modify the
organization of the cytoskeleton and activate signaling
cascades within the cell.  There are a number of alpha and
beta chains, giving rise to numerous alphabeta subunit
combinations, which confer specificity for different matrix
components.  The integrin expression varies between
different cell types in the liver, and this pattern of
expression altars in diseased livers. (185) Stellate cells
express several integrins, including alpha1beta1,
alpha2beta1, alphaVbeta1 and alpha6beta4. (4, 186, 187,
188, 189,190), and the pattern of integrins expressed
changes in diseased compared to normal liver (189).
alpha1beta1 appears to be the major subtype present in
quiescent stellate cells, whereas alpha2beta1, alpha5beta1
and alpha6beta1 are expressed in activated or diseased
stellate cells.  This change in the repertoire of receptor
expression is appropriate for fibrotic matrix components
(type I collagen, laminin, fibronectin), and ligand binding
in response to the deposition of these matrix components
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during liver injury may well play a role in the perpetuation
of stellate cell activation.

In addition to integrins, a growing number of
other adhesion proteins and cell matrix receptors have been
characterized, including cadherins and selectins, which
mediate interactions between inflammatory cells and the
endothelial wall.  (191; 192; 193)  Furthermore,
upregulation of a tyrosine kinase receptor, discoidin
domain receptor 2 (DDR2) has been identified during
stellate cell activation, which signals in response to fibrillar
collagens, leading to enhanced matrix metalloproteinase
expression and cell growth (194).

8. NON-PEPTIDE FACTORS

When chronic liver injury is not clearly
associated with an abundant inflammatory cell infiltrate,
other soluble substances may sustain the activation of
stellate cell through pathways that are specific for a
particular kind of insult.  In alcoholic injury for example,
acetaldehyde, the main metabolite of ethanol, has
profibrogenic effects. Not only does it increase the
expression of type IV collagenase by stellate cells in
culture, (195) suggesting an alternative means of disrupting
the normal basement membrane matrix and initiating
stellate cell activation, it is also able to increase gene
transcription and synthesis of different ECM components in
activated stellate cells, including type I collagen (196, 197).
This effect, which is associated with TGF beta gene
expression, is possibly due to formation of acetaldehyde-
protein adducts (198) and protein kinase C activation. (199)
Acetaldehyde induces activation of additional kinase
cascades in cultured HSC (pp70S6K and ERK 1/2), but these
are blocked by a protein kinase C inhibitor, (200)
supporting a major role for protein kinase C in mediating
the fibrogenic effects of acetaldehyde.  The stress activated
Jun N-terminal kinases (JNKs) 1 and 2 are also activated by
acetaldehyde in stellate cells, and JNK inhibition reduces
acetaldehyde stimulated alpha (I) collagen mRNA,
suggesting that this pathway too is involved. (201)

It remains unclear exactly how these effects of
acetaldehyde on the signaling cascades achieve an increase
in collagen gene transcription, but it is likely that
acetaldehyde affects either the levels of transcription
factors, such as basic transcription element binding protein
(BTEB) (201), or the promoter affinity of  transcription
factors such as the C/EBP family, which are known to
regulate collagen gene transcription (202, 203; 204; 205).

The other significant non-peptide factor thought
to play a role in liver fibrosis and the activation of hepatic
stellate cells is iron.  Iron overload states result in
sideronecrosis of hepatocytes, accumulation of iron in
Kupffer cells, and lipid peroxidation (206).  Damage to
lipid membranes as a result of lipid peroxidation in a
setting of increased reactive oxygen species (ROS)
introduces the contribution of oxidative stress in liver
fibrosis.  Many of effects of alcohol, acetaldehyde and iron
in the liver, as well as some those induced by viruses and
cholestasis, are thought to mediated at least in part by

oxidative stress, (207, 208,  209) and this is discussed
briefly below.

9. OXIDATIVE STRESS

Oxidative stress is thought to play an important
role in a number of pathological disease processes,
including liver fibrosis.    The term ‘Oxidative stress’ refers
to an imbalance between free radical formation as a result
of aerobic metabolism and antioxidant defenses, when the
latter are not sufficient.  A ‘free radical’ describes any atom
or molecule that contains unpaired electrons. (210)  The
unpaired electrons alter the chemical reactivity of the atom
or molecule, usually making it more reactive.  The simplest
free radical is the hydrogen radical, which is often cleaved
from other molecules during lipid peroxidation, for
example. Lipid peroxidation describes a situation where a
reactive radical removes an atom of hydrogen from a
polyunsaturated fatty-acid side chain in a membrane
phospholipid or lipoprotein.  This leaves an unpaired
electron on carbon within the unsaturated fatty acid, which
reacts with oxygen, resulting in a peroxyl radical.  The
peroxyl radical attacks an adjacent fatty acid side chain,
setting up a chain reaction resulting in membrane
disruption.  Free radicals can also damage DNA, leading to
potential carcinogenic mutations, and proteins impairing
their function.

In the last decade, attention has focused on lipid
peroxidation as a fibrogenic mediator in a number of
different liver diseases, particularly alcoholic liver disease,
hepatitis C, and iron overload. (211, 212, 213, 214, 215,
216)  Type I collagen transcripts and aldehyde (4-
hydroxynonenal [4-HNE], malondialdehyde [MDA])
adducts, by-products of lipid peroxidation, have been co-
localized in alcohol and iron-fed rats using in situ
hybridization and immunohistochemistry. (217)  Similar in
situ studies have shown a correlation between the presence
of these aldehyde adducts and collagen gene expression by
stellate cells in humans with chronic liver diseases,
including Hepatitis C, haemochromatosis and alcoholic
liver disease. (218, 219, 216, 220)  Antioxidant levels are
typically depleted in cirrhotic liver (221) which will
amplify any oxidative stress and favor lipid peroxidation.
Ethanol metabolism both induces oxidative stress, by
increasing the production of free radicals capable of
initiating lipid peroxidation, (222) and depletes antioxidant
defenses including glutathione (GSH). (223, 224, 225)
Furthermore, in vivo studies suggest that treatment with an
antioxidant may reduce stellate cell activation in humans
with hepatitis C, (226) and inhibit fibrogenesis in
experimental iron overload. (227, 228)

Culture studies support the role of lipid peroxides
in stellate cell activation.  The generation of free radicals or
the direct addition of the end-products of lipid
peroxidation, MDA, 4-HNE and F2-isoprostanes, enhance
stellate cell proliferation and/or collagen mRNA synthesis.
(229, 230, 231)  Induction of cytochrome P450 2E1
(CYP2E1) by ethanol is one of the central pathways by
which ethanol generates oxidative stress, and induction of
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this enzyme has been used as an in vitro tool. Transfection
of CYP2E1 into the T6 stellate cell line both elevates ROS
and increases mRNA for type I collagen. (232)  Notably,
co-culture with primary rat hepatic stellate cells and a cell
line overexpressing CYP2E1 also demonstrates an increase
in collagen levels, indicating that diffusable oxidants
contribute to stellate cell activation. (233)

The disappointing aspect in a number of in vitro
studies has been in the failure of induced ROS or lipid
peroxides to induce collagen protein synthesis in stellate
cells, and the failure of an effect of depletion of the critical
antioxidant, GSH, to alter collagen synthesis. (234)  Thus,
oxidative stress possibly contributes indirectly to fibrosis,
by affecting the activity of other cell types, and their
release of profibrogenic agents.  Furthermore, it is possible
that the antifibrotic effects of antioxidants are a result of
effects on cytokine mediated signaling, as outlined below.

Oxidative stress may also play a part in growth-
factor or ECM-related activation of stellate cells, as the
addition of antioxidants, such as vitamin E, resveratrol or
quercetin, appears to delay the culture activation of stellate
cells or that induced by TGF alpha or TNF alpha (79, 235,
236 ) There is an important link between cytokines and
ROS.  Not only do ROS trigger the release of
proinflammatory cytokines such as TNF alpha, but they
may also be involved in mediating the intracellular
signaling pathways of these cytokines.  Recent evidence
suggests that ROS such as superoxide anions and hydrogen
peroxide function as intracellular second messengers and
regulate a number of cellular processes. (237)  Studies over
the last decade have demonstrated that ligand stimulation of
non-phagocytic cells results in an increase in intracellular
ROS.  Ligands include cytokines with established roles in
HSC activation, such as TNF alpha (238) and TGF beta,
(239) as well as peptide growth factors such as PDGF,
which can induce ROS via both tyrosine kinase receptors
(240, 241) and G-protein coupled receptors. (242)

Thus, while ROS are undoubtedly important in
fibrogenesis, this may be via different routes, the relative
contributions of which or not yet established.  The principal
role of ROS may be via stimulating the release of cytokines
from other cells, or possibly the ECM.  The reported
antifibrotic effects of antioxidants may be via the reduction
of oxidative stress and reduced cytokine release, or in fact
by inhibiting the magnitude of signaling cascades initiated
by growth factors, rather than by inhibiting the direct
effects of ROS on stellate cells.

10. SUMMARY

Hepatic fibrosis is the result of a wound healing
response in the presence of chronic liver injury or
continued insult.  The factors contributing to activation of
hepatic stellate cells may vary somewhat depending on the
type of liver injury, such as the contribution of
acetaldehyde adducts in the case of alcohol induced
damage, but on the whole, the healing response follows a
similar pattern.  Hepatocyte injury results in the release of
proinflammatory cytokines, chemokines, and generates

ROS and lipid peroxides.  Damaged endothelial cells
release cellular fibronectin as well as cytokines.
Inflammatory cells are recruited to the region of injury, and
these, as well as resident Kupffer cells and platelets, release
additional growth factors, as well as metalloproteinases
which degrade the normal basement membrane. Local
metalloproteinase activity releases membrane bound
growth factors.  Initiation of activation and subsequent
proliferation of resident stellate cells follows.

Additional activated stellate cells accumulate
following chemotaxis.  These activated cells themselves
produce proinflammatory cytokines, regulatory factors, and
receptors that enable them to respond to their changing
environment.  In an attempt to seal off the area of injury,
this army of cells lay down a new, thickening, scar matrix,
and produce inhibitors of the metalloproteases, which are
present and ready to degrade this scar when the damage has
resolved.  Unfortunately, with continued liver injury, this
wound healing process continues without resolution,
resulting in progressive liver fibrosis, disruption of normal
liver architecture, and finally, cirrhosis.

The hepatic stellate cell is central to this whole
process, and future treatments will target this cell, either by
inhibiting its activators, inhibiting its fibrogenic function,
promoting its capacity to aid resolution of fibrosis, or even
promoting its capacity to undergo spontaneous apoptosis.
(243)
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C/EBP CCAAT enhancer binding protein
CRBP-1 Cellular retinol binding protein 1
CTGF Connective tissue growth factor
CYP2E1 Cytochrome P450 2E1
DDR2 Discoidin domain receptor 2
ECM Extracellular matrix
EGF Epidermal growth factor
ERK Extracellular regulated kinase
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