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1. ABSTRACT

Both normal and neoplastic tissues have a stroma
comprised of fibroblasts which deposit an extracellular
matrix (ECM) enriched in collagen. In most normal tissues,
the synthesis and breakdown of the ECM is maintained at a
low level. However, in normal adult tissues such as
endometrium, and in rapidly growing embryonic and
neoplastic tissues, there is a significant increase in the
synthesis and/or breakdown of ECM. The homeostasis of
the ECM is maintained by a molecular repertoire which
appears to consist of TGF-beta and lefty. TGF-beta acts as
a pro-fibrogenic cytokine by increasing the synthesis of
collagen and decreasing the degradation of ECM.
Physiologic levels of TGF-beta maintains tissue
homeostasis and aberrant over-expression of TGF-beta
leads to tissue fibrosis. TGF-beta acts through a core Smad
signaling pathway which is initiated by the binding of
homo-dimeric TGF-beta protein to two type I and II
receptors. The constitutively active receptor type II leads
to phosphorylation of receptor type I which, in turn,
causes the R-Smads to get phosphorylated. The
downstream gene transcriptional activity of this event
includes significant increase in connective tissue growth
factor (CTGF) and collagen mRNA synthesis which leads
to deposition of collagen in tissues. Lefty inhibits Smad2
phosphorylation initiated by TGF-beta or its receptor and
prevents CTGF promoter activity driven by TGF-beta.

Moreover, lefty inhibits CTGF and collagen mRNA
synthesis and increases collagenolysis and elastolysis and
as a result of these actions, lefty significantly reduces the
amount of collagen deposited in tissues. Thus, TGF-beta
and lefty might coordinately participate in the homeostasis
of ECM in tissues.

2. INTRODUCTION

All tissues are composed of two distinct but
interdependent compartments, the parenchymal cells and a
supporting fibrovascular meshwork. In the adult tissues,
fibroblasts are quiescent but during tissue injury, in response
to a number of pro-fibrogenic cytokines, fibroblasts become
activated, grow, divide and lay down a collagen rich stroma
that contributes to the healing process of the damaged
tissues. This type of activation is self limiting and after the
integrity of the damaged tissues is restored, the fibroblasts
return to their quiescent state. However, under some diseased
conditions, for reasons that are not yet clear, the
fibroblasts become activated and continue to divide and
synthesize collagen. This type of unabated activation of
fibroblasts causes a number of diseases of unknown
etiology which are collectively called fibromatosis. The
fibroblasts also contribute to tumor growth by supporting the
formation of its stroma. Fibrotic diseases, fibromatosis, and
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Figure 1. Dendrogram of TGF-beta superfamily. Major families of TGF-beta superfamily include TGF-beta, Activin-inhibin, Nodal,
BMP and lefty.

neoplasias cause significant morbidity and mortality and as yet,
there is no effective treatment for these diseases. For this
reason, there is a great interest in identifying factors that
control fibroblast growth and activation with the hope that
fibromatosis, other type of undesirable fibrosis and neoplasias
can all be effectively controlled.

3. TGF-BETA SUPERFAMILY

Transforming growth factor beta is the
prototype of a superfamily of molecules which is
comprised of more than 30 related proteins (Figure 1).
In mammals, these include three isoforms (beta1, beta 2,
beta 3) of TGF-beta, three isotypes of activins, nearly 20
isoforms of bone morphogenetic proteins (BMP), and the
newly discovered lefty family (1-4). Lefty family consists of
lefty-1 and lefty 2 in mouse, lefty A and lefty B in humans
and antivin in Xenopus. Lefty genes have been localized to
the chromosome 1 (1q42.1) both in mouse and man (1-4).

The deduced amino acid sequence of lefty shows
a great amount of identity and similarity with the known
members of the TGF-beta? superfamily (1). A motif search
revealed that the predicted lefty protein contains most of
the conserved cysteine residues of the TGF-beta related
proteins (1) which are necessary for the formation of the
cysteine knot structure (5-6). The lefty sequence contains
an additional cysteine residue, 12 amino acids upstream
from the first conserved cysteine residue. The only other
family members, known to contain an additional cysteine
residue, are TGF-beta, inhibins and GDF-3 (1). For
simplicity, in this manuscript, we will refer to lefty A (ebaf) as
lefty. Most of  these proteins are produced as precursors
which are cleaved to release the C-terminus monomeric
proteins. The pro-form of TGF-beta, is cleaved

intracellularly by the endopeptidase, furin of the
convertase family of molecules at a single RXXR site.
This enzymatic digestion releases a 12.5 kD C-terminus
protein and a 75 kD N-terminal portion (latency-
associated peptide, LAP) (Figure 2). In contrast to TGF-
beta, lefty has two RXXR cleavage sites which leads to
the secretion of two cleaved products of 28 and 34 kD
proteins and is not cleaved by furin (7). Cleavage at the
RGKR cleavage site appears to be mediated by PC5A
but the enzyme that cleaves lefty at its second cleavage
site, RHGR, has not yet been identified (7) (Figure 2).

TGF-beta family members have a
characteristic signature motif which is comprised of a
series of seven cysteine residues (Figure 3). All of these
residues are used for the formation of intra-peptide
bonds with the exception of the third cysteine residue
from the C-terminus of mature protein. Active ligands
are formed by the formation of disulfide linked bonds
between this third cysteine residues at the C-terminus of
the proteins (8-9)(Figure 4). Lefty, similar to GDF-
3/Vgr2 and GDF-9, lacks the cysteine residue necessary
for the formation of intermolecular disulfide bond (1)
(Figure 4). Whereas the carboxy terminus of the TGF-
beta family is usually CX1CX1, lefty has a longer C
terminal sequence, CX1CX19 (1). Therefore, lefty
??appears to be an additional member of the TGF-beta
superfamily with an unpaired cysteine residue which not
exist as a dimer.

4. ROLE OF TGF-BETA IN HOMEOSTASIS OF ECM

Growth regulatory molecules of the transforming
growth factor-beta family (TGF-beta) are one of the few classes
of proteins that provide the necessary signals that
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Figure 2. RXXR cleavage sites in TGF-beta and lefty. Both TGF-beta and lefty have signal peptide sequences and are secreted proteins.
The processed form of TGF-beta is released by cleavage at a single cleavage site (RXXR). Furin is the convertase  that cleaves TGF-beta
at this cleavage site. In contrast, there are two such cleavage sites (RGKR and RHGR) in the lefty proteins, which causes release of two
secreted proteins of 28 and 34 kD. PC5A cleaves lefty at RGKR site. The enzyme that cleaves lefty at the RHGR site has not yet been
identified.

Figure 3. Signature motif of TGF-beta superfamily. The signature motif of TGF-beta family is comprised of a series of seven
cysteine residues (boxed). Lefty and GDF are the only protein members that lack the third cysteine residue from the C terminus
which leads to a dimerized form of the protein.

Figure 4. Dimerization of TGF-beta. The two dimensional structure of TGF-beta and a hypothetical 2-D structure of lefty are displayed.
TGF-beta monomers dimerize by formation of a disulfide linked bond formed between the third cysteine residues at the C-termini of two
monomeric proteins (arrow). Lefty lacks this residue and therefore remains as a monomeric protein.
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Table 1. Implication of TGF-beta in normal wound healing and
pathologic fibrosis

Tissue/Condition Reference
Lung 10-14
Pancreas 15
Kidney 16
Liver 17
Wound healing-Scar 18-23
Hypertrophic scar, Keloid 24-27
Body burn 28
Radiation 29
Drugs 30-31
Transplantation 32
Scleroderma 33
Sarcoidosis 34
Fibromatosis 35-36
Idiopathic pulmonary fibrosis 37
Liver fibrosis 38-39

support the formation of a fibrovascular stroma. The available
evidence shows that generally, there is a marked increase in the
expression of TGF-beta mRNA and protein during physiologic
wound repair and in fibrotic disorders, fibromatosis and
neoplastic diseases (Table 1)(10-41). TGF-beta supports growth
of stroma by increased proliferation of fibroblasts and
enhancement of collagen deposition. This view is supported by
the strong evidence that TGF-beta increases collagen mRNA
synthesis and prevents the degradation of collagen by
suppression of specific matrix metalloproteases (MMP) that
digest collagen (42-43).

5. TGF-BETA AS A PRIME MEDIATOR OF
FIBROSIS

TGF-beta is considered a fibrogenic cytokine that
contributes to fibrosis. A large number of studies, performed in
different experimental conditions, support the idea that TGF-
beta increases fibroblast proliferation and deposition of
extracellular matrix both in physiologic settings and pathologic
conditions (40, 44-50). Essentially, there are three lines of
evidence that incriminate TGF-beta in fibrosis. These include,
increased expression of TGF-beta in fibrotic tissues,
demonstration that direct administration of TGF-beta or its
over-expression leads to fibrosis and the evidence that
inhibition of TGF-beta actions inhibit fibrosis.

TGF-beta has been implicated in vitro (51), and
in in vivo in normal wound healing, as well as pathologic
conditions shown in table 1. A number of studies show a
correlation between the expression of TGF-beta, its
downstream factor, CTGF, and the expression of
extracellular matrix components in conditions associated
with fibrotic reactions (48-52). Elevated levels of TGF-beta
are found in patients with fibrotic diseases and
experimental animals with hepatic fibrosis and cirrhosis. In
the liver, the activation of hepatic stellate cells, which are
akin to fibroblasts, is the key initiating event in hepatic
fibrogenesis (17). A high level of expression of TGF-beta is
observed in the liver in congenital liver fibrosis, as well as
in in vivo models of fibrosis induced by alcohol, iron and
allylalcohol (37-38). In normal liver, low levels of TGF
beta  transcripts are present in some portal tract stromal

cells. In fibrotic livers, high TGF beta RNA levels are
maintained in hepatic stellate cells, mesenchymal liver cells,
inflammatory cells, and in bile duct epithelial cells (53-55).

In a wound repair model, administration of TGF-
beta, led to the enhanced mRNA content of collagen types I
and III and fibronectin in the granulation tissue but decreased
the expression of stromelysin mRNA which degrades collagen
(56). Injection of TGF-beta or over-expression of TGF-beta in
transgenic mice is associated with fibroplasia and deposition of
extracellular matrix in major body organs including liver,
kidney, heart and pancreas (50, 57-60). Adenovector-mediated
gene transfer of active transforming growth factor-beta 1
induces prolonged severe fibrosis in the rat lung (61) and co-
injection of CTGF or bFGF with TGF-beta enhances and
prolongs the fibrotic response in vivo (59,62).

Inhibition of the TGF-beta activities by a
number of experimental approaches such as
administration of soluble betaglycan, anti-sense TGF-
beta, and antibody to TGF-beta, all lead to decreases
accumulation of extracellular matrix both in vitro  and in
vivo in kidney (63-66). The role of TGF-beta in fibrosis
has been demonstrated in experimental forms of fibrosis
including those induced by bleomycin and carbon
tetrachloride (CCl4) (67-78).

5.1. Bleomycin induced lung fibrosis
TGF-beta plays a prime role in the fibrotic

response in bleomycin induced lung fibrosis (67-68). TGF-
beta levels increase by 2.6- to 4.5-fold in bleomycin treated
lungs (69) and this event is associated with increased
expression of CTGF, a mediator of collagen synthesis (70).
The level of TGF-beta mRNA increases rapidly, peaks on
day 5, and precedes the five to sevenfold increase in levels
of mRNAs for pro-collagens alpha 1(I) and alpha 1(III)
which peak 10 days after bleomycin administration. The
peak levels of these mRNAs in bleomycin-treated animals
are higher than those of the control. In normal animals,
TGF-beta is elaborated at high levels during the
development of fibroproliferative lung disease but its
expression is reduced in TNF-alpha receptor knockout mice
which are protected from the fibrogenic effect of
bleomycin. Overexpression of TGF-beta by means of a
replication-deficient adenovirus vector induces fibrogenesis
in the lungs of the fibrogenic-resistant TNF-alpha receptor
knockout mice (71). The extent of fibrosis of the lung
induced by bleomycin can be significantly reduced by
Smad7, an antagonist of TGF-beta signaling (72), soluble
TGF-beta receptor (73), antibodies to TGF-beta (74-75),
anti-fibrotic drug, pirfenidone, which down-regulates the
bleomycin induced overexpression of TGF-beta gene in the
lungs (69), and by a single-stranded 27-mer
phosphorothioate oligodeoxynucleotide (ssPT) containing
the TGF-beta response element (67). Collectively, these
data show that TGF-beta is a prime mediator of fibrosis in
bleomycin induced lung fibrosis.

5.2. Carbon tetrachloride induced liver fibrosis
Plasma level of TGF-beta increase as early as 24

hours after administration of carbon tetrachloride and are
maximal by 48 hours after CCl4 administration (76). The
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collagen alpha1(I) mRNA is increased 10-fold in CCl4
treated wild-type mice compared to the untreated controls.
The increase in collagen mRNA expression is reduced by
about 80% in the TGF-beta knockout mice (77). Moreover,
over-expression of TGF-beta by an adenoviral vector leads
to 14-fold higher hepatic TGF-beta protein levels. This is
associated with 15-fold higher collagen alpha1(I) mRNA
levels than the levels reached in the control mice (77).
Induction of expression of collagen type I is mediated by
Smad3, a prime mediator of TGF-beta signaling (78).
Seventy two hours after receiving a single intragastric
administration of CCl4, in Smad3 heterozygous or Smad3
homozygous knockout mice, the hepatic collagen  mRNA
levels are only 42% and 64%, of those in wild type control
mice (78).

Collectively, these data demonstrate that TGF-
beta and its signaling pathway play a prime role in fibrosis
induced by bleomycin and CCl4 as well as other fibrotic
diseases and that inhibition of TGF-beta activity is
expected to lead to decreased fibroplasia and desmoplasia
in vivo.

6. ROLE OF TGF-BETA IN TUMOR PROGRESSION

It is currently thought that the cancer cell
genotype is the manifestation of six essential alterations
that collectively dictate malignancy; self sufficiency in
growth, insensitivity to growth inhibitory signals, evasion
of apoptosis, limitless replicative potential, sustained
angiogenesis and tissue invasion and metastasis (79).
However, strategies to treat cancer by curbing or perturbing
one or several of these cancer cell attributes have failed to
induce dramatic improvement in the treatment of human
cancers.  It is becoming increasingly clear that cancer
treatment requires a better understanding of the
contribution of ancillary cells such as fibroblasts,
endothelial cells and tumor infiltrating leukocytes in the
tumor stroma.

Solid tumors are composed of two distinct but
interdependent compartments, the malignant cells and a
supporting fibrovascular meshwork. Fibroblasts in the stroma,
provide the physical framework for tumor growth and the
supporting vasculature provides the necessary nutrients, gas
exchange and waste disposal. The formation of tumor stroma
is essential to tumor growth. The tumor stroma, does not
simply provide a scaffold for growth of the tumor, rather it
relays important signals to cancer cells. By anchoring
themselves to extracellular matrix components, cancer cells
can switch the type of the extracellular matrix receptors
(integrins) that they display, favoring ones that convey pro-
growth signals (79). The failure of the integrins to establish
these extracellular links, impairs cell motility, induces cell
cycle arrest or leads to apoptosis (79). It has been shown that
fibroblasts in the stroma convey signals that modulate the
growth and morphogenesis of tumors (80-81). Moreover, co-
injection of human fibroblasts with human carcinoma cells into
athymic nude mice, results in an increased rate of take and
growth of tumors (81). Thus, impairing the formation of
stroma might dramatically reduce the ability of tumors to reach
a significant size.

Tumor stroma is comprised of a number of
extracellular matrix (ECM) proteins. Collagen is one of the
most major structural components of the tumor stroma.
Formation of the tumor stroma is invariably associated with
deposition of collagen. In some tumors, such as breast,
ovarian, liver, pancreas, and gastric cancers, de-regulated
collagen synthesis leads to a stroma rich in collagen, a
process known as desmoplasia (82-86). In some
desmoplastic tumors, such as breast and gastric carcinomas,
up to 80% of the total tumor mass consists of tumor stroma
(87).

The induction of the tumor stroma is regulated by
a number of stimulatory and inhibitory factors. However,
under normal circumstances, the effect of stimulators
supersedes the effect of negative signals leading to
progressive formation of the tumor stroma. Growth
regulatory proteins of the TGF-beta are one of the few
classes of proteins that provide the signal required both for
formation of fibro-collagenous framework of the tumor and
its vascular network. TGF-beta plays diverse and
paradoxical roles in carcinogenesis and tumor progression.
The current operative hypothesis is that, due to their potent
inhibitory influence on epithelial cell growth and
immunosuppressive activities, TGF-beta and molecules of the
Smad mediated signaling pathway act as anti-cancer defense
mechanisms (40, 44, 47).  Despite this apparent potent tumor
suppressor activity at early stages of carcinogenesis, TGF-beta
acts as a tumor promoter at late stages of tumor development
(88). It is increasingly becoming clear that, in later stages of
tumorigenesis, the response of the tumor cells to TGF-beta is
perturbed due to mutational inactivation of the signaling
molecules of the TGF-beta or over-expression of the proteins
that actively suppress TGF-beta responses such as Smad6 and
Smad7 (89-90). These mutations have been described in a
large number of human cancers arising from ovary,
endometrium, prostate, GI tract malignancies as well as
hematological, hepatic and thyroid cancers (40).

The contribution of TGF-beta to tumor
aggressiveness has been attributed mainly to its action in
providing support to the development of tumor stroma by
inducing fibroblast proliferation and deposition of extracellular
matrix components, to its ability to promote angiogenesis and
to act as a potent immunosuppressor (40, 44 45, 47). TGF-beta
and its receptors (TGF-beta RI, RII and endoglin) have
recognized roles in vasculogenesis, vascular assembly and in
the establishment and maintenance of vessel wall integrity (91-
92). Moreover, TGF-beta leads to the proliferation of
fibroblasts and collagen deposition as well as angiogenesis,
both required for the formation of tumor stroma (44 31, 51,
93).  These effects of TGF-beta appear to depend on induction
of two factors that are essential to fibroblast proliferation and
collagen formation, fibroblast growth factor (FGF) and
connective tissue growth factor (CTGF) (94-96). By virtue of
these functions, TGF-beta promotes late stage tumor
development (40,44,47). Moreover, TGF-beta acts as an
immunosuppressor and enhances tumor invasion and
metastasis  (40,44,47).

The available evidence shows that generally,
there is a marked increase in the expression of TGF-beta
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Figure 5. TGF-beta signaling pathway. Binding of a TGF-
beta family member to the type II and type I receptor leads
to phosphorylation of the type I receptor. The activated
type I receptor phosphorylates a receptor-regulated SMAD
(R-Smad). Following this phosphorylation, the R-Smad
dissociates from the receptor and binds to a common Smad
(Smad4). This heterodimer then moves into the nucleus
where it associates with a DNA-binding partner, such as
Fast1 activating transcription.

mRNA and protein in human cancers including those
derived from pancreas, colon, prostate, stomach, lung,
endometrium, breast, brain, and bone (40,44,47). The
underlying basis for up-regulation of TGF-beta in human
tumors remains unknown. However, this over-expression
appears to have several major effects including fibrosis of
stroma, as well as enhancement of invasion and metastasis.
There is a close correlation between the expression of TGF-
beta and the extent of fibrosis in human cancers that exhibit
central fibrosis (52). Experimental evidence shows that the
enhanced TGF-beta expression in cancer cells accounts for
the stromal fibrosis. For example, over-expression of TGF-
beta in PANC-1 pancreatic carcinoma cells leads to
desmoplasia (over-proliferation of fibrotic tissue) (97) of
the tumor stroma and accelerates the tumor growth (40).

Progressive loss of growth inhibitory response to
TGF-beta correlates well with the malignant stage of
certain forms of cancer such as colon carcinoma and
glioblastoma multiforme (40). In many cancers, high
expression of TGF-beta is seen in the more advanced stages
of malignancy and is associated with decreased survival.
Expression of TGF-beta isoforms in cancers of breast (98-
99), colon (100), bladder (101) and prostate (102)
carcinomas as well as melanomas (103) have all been
associated with tumor progression.

It appears that when the tumor cells lose their
sensitivity to TGF-beta growth inhibition, the excess TGF-
beta that results facilitates invasion and metastasis
(40,44,47). Various experimental evidence support the idea
that TGF-beta promotes tumorigenesis and tumor
aggressiveness and enhances late stage tumor progression
in a number of model systems (40,44,47). Constitutive
expression of mature transforming growth factor beta1 in the

liver accelerates hepatocarcinogenesis in transgenic mice (104-
105) and enhances invasion and metastasis of TGF-beta
resistant tumor cells (47, 106). Since the anti-proliferative
action of TGF-beta on the tumor cells is commonly abrogated
by mutation or dysfunction of its signaling molecules, it is
thought that TGF-beta produced by the tumor cells acts in a
paracrine fashion on the tumor stroma to enhance
tumorigenesis (50, 107). In some instances, however, the
tumor stroma is the source of TGF-beta (108). Because of
these functions, inhibition of TGF-beta, which is produced in
large quantities in various human cancers, might perturb the
formation of the tumor stroma to the extent that it can suppress
or can even stop further tumor growth and prevent invasion
and metastasis.

7. ROLE OF CTGF IN HOMEOSTASIS OF ECM

Among the positive signals, TGF-beta increases
the extracellular matrix accumulation by signaling along
the Smad pathway and by inducing connective tissue
growth factor (CTGF).

CTGF, a member of the CCN
(CTGF/Cyr61/NOV) family of growth regulators, is a
secreted cysteine-rich, heparin binding, 38 kD protein.
CTGF is considered to be an immediate early growth
responsive gene and a downstream mediator of TGF-beta
actions in fibroblasts (109). CTGF induces chemotaxis in
mesenchymal cells and promotes proliferation of
fibroblasts and collagen synthesis in a number of in vitro
and in vivo models (110-12). Moreover, because of over-
expression in human cancers, CTGF is considered to be
part of the molecular pathways that lead to the formation of
tumor stroma by TGF-beta (113-117). CTGF appears to be
a mediator of fibrotic reactions in a host of fibro-
proliferative diseases and in the paraneoplastic condition,
pseudo-scleroderma, which develops in some patients with
lung cancer (115). CTGF induces proliferation of
fibroblasts and collagen synthesis, in a number of in vitro
and in vivo models (110-112,117-118). Thus, expression of
CTGF in wound healing and fibrotic diseases is considered
to be part of the molecular pathways that lead to the
formation of stroma by TGF-beta (119).

8. TGF-BETA SIGNALING

To exert its functions, TGF-beta brings together
two transmembrane serine/threonine kinases, the type I and
II receptors. The assembly and oligomerization of TGF-
beta receptors leads to phosphorylation of receptor-
regulated Smads (R-Smad), heterodimerization of the R-
Smads with Smad4 and subsequent nuclear accumulation
of these complexes (Figure 5). Activated Smad complexes
interact with other transcription factors in the nucleus, bind to
DNA by their NH2-terminal Mad homology-1 (MH1)
domains, and activate transcription of TGF-beta responsive
genes through the COOH- terminal MH2 domains (120).

9. REGULATION OF TGF-BETA ACTIONS

The actions of TGF-beta are regulated by feedback
mechanisms since the TGF-beta expression and collagen
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Figure 6. Mechanisms regulating biologic activity of TGF-beta. During secretion, a small latent, biologically inactive TGF-beta
complex is formed by the non-covalent association of LAP and mature TGF-beta. This complex, binds to LTBPs. This
association facilitates TGF-beta secretion and promotes its fixation to the ECM by a transglutaminase (TG) dependent
mechanism.

deposition ultimately cease after the wound is healed and tissue
damage is repaired. However, in a number conditions such as
keloid, fibromatosis, idiopathic pulmonary fibrosis, and
scleroderma, collagen synthesis is de-regulated. In such
conditions, the de-regulated collagen formation leads to a
stroma rich in collagen (121). For this reason, there is a great
interest in identifying the controlling feedback mechanisms for
TGF-beta action that selectively inhibit the action of TGF-beta
on accumulation of extracellular matrix proteins. Such
knowledge would be important in understanding how to
control the formation of stroma during wound healing and in
fibrotic conditions.

TGF-beta is a potent pleiotropic cytokine. For
this  reason, its actions are exquisitely controlled at
multiple levels. The first level of control is exerted as TGF-
beta is secreted. During secretion, a small latent,
biologically inactive TGF-ß complex is formed by the non-
covalent association of LAP and mature TGF-beta (Figure
6)(2). This complex, in turn, gets linked by disulfide bonds
to one of four isoforms of latent TGF-beta binding proteins
(LTBP). LTBPs, facilitate TGF-beta secretion and promote
its fixation to the ECM by a transglutaminase (TG)
dependent mechanism  (Figure 6). This form of TGF- beta
acts as a reservoir. TGF-beta can be released from the ECM
by proteinases, most notably the plasminogen-plasminogen
activator-plasminogen activator inhibitor system. The
function of the Smad transcriptional regulators of TGF-beta
function is controlled by a number of factors that either
enhance or suppress the transcriptional output (Figure
5)(120). The membrane-anchored proteoglycan betaglycan
which is also known as the TGF-beta type III receptor by
binding to TGF-beta increases its affinity for the signaling
receptors. The protein, Smad Anchor for Receptor
Activation (SARA), binds Smad2 and Smad3,  and
facilitates their interaction with TGF-beta receptors.

Among the negative regulators are Smad partners
which are required to prevent the inappropriate activation
of TGF-beta signaling, or turn off the signaling pathway
following normal activation. Two Smads, Smad6 and
Smad7, inhibit TGF-beta signaling. Smad6 by binding to
receptor-activated Smad1, forms Smad1-Smad6 complex
which appears to be inactive while a second inhibitory
Smad, Smad7, stably binds to activated TGF-beta type I
receptor, blocking the association, phosphorylation, and
activation of Smad2 (120). The immunophilin, FKBP12,
binds to the GS domain of the receptor I, and prevent it
from ligand-independent receptor phosphorylation. BAMBI

acts as a pseudo-receptor and prevents signaling by forming
inactive dimers with type I receptor. TGF-beta dependent
interaction of Smad2, 3, and 4 with Ski and Sno results in
transcriptional repression of several different Smad
responsive promoters (122-126). Moreover, calmodulin, the
primary mediator of calcium signaling physically interacts
with R-Smads and Co-Smads in vitro, and inhibits Smad
mediated trans-activation of multiple TGF-beta responsive
promoters. The classical mitogen-activated protein kinase
(MAPK) pathway has also been implicated in both positive
and negative regulation of TGF-beta signaling (127-129).
Erk kinases which are activated via the Ras pathway
phosphorylate R-Smads in the linker region, and inhibit
nuclear accumulation of the Smad complex. The Smad1
ubiquitin ligase, Smurf1, regulates the basal levels of
Smad1. The function of Smad2 is terminated by
ubiquitylation which leads effectively to the degradation of
the protein. The cross-talk among different signaling
pathways also either specify, enhance, or inhibit TGF-beta
responses. For example, IFN-gamma inhibits TGF-beta
signaling by direct STAT mediated transcriptional
induction of Smad7 (130).

10. LEFTY IS AN INHIBITOR OF TGF-BETA
SIGNALING

Lefty and its related proteins are poised to act as
inhibitors of TGF-beta family members (3, 131-133). Thus, it
can be hypothesized that lefty might cause extracellular matrix
remodeling by inhibiting TGF-beta actions. A number of
carefully executed studies have shown the validity of this
hypothesis (134). Lefty perturbs the TGF-beta signaling by
inhibiting the phosphorylation of Smad2 following activation
of the TGF-beta receptor (134). Moreover, lefty inhibits the
events which lie downstream from R-Smad phosphorylation
including hetero-dimerization of R-Smads with Smad4 and
nuclear translocation of R-Smad-Smad4 complex. Lefty
opposes the effect of TGF-beta on the expression of reporter
genes for major cell cycle factors p21, and Cdc25. Smad3 and
Smad4, both have domains that bind the 5'-TCTGAGAC-3'
termed Smad Binding Element or (SBE). Lefty inhibits the
TGF-beta induced promoter acitivity driven by SBE or
promoter activity of a constitutively active TGF-beta RI (134).
Moreover, it was recently shown that the expression of CTGF
that induces proliferation of fibroblasts and collagen synthesis
is mediated by Smad3 and Smad4 (135). Lefty is also capable
of inhibiting the promoter activity of CTGF mediated by
TGF-beta (134). Thus, lefty provides a repressed state of
TGF-beta responsive genes and participates in negative
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Figure 7. Reduced collagen deposition in stroma by lefty
visualized in trichrome stained sections. A: The control
transformed GP+E86 fibroblasts transduced with LG
retroviral particles have extensively laid down collagen
fibers (arrows) at the periphery of the tumor and have
invaded surrounding muscle tissue. B: The LEIG
transduced fibroblasts have no discernible stroma and show
no evidence of collagen fibers. Collagen fibers are seen at
the tissues surrounding the tumor (arrows). Bar=250
micrometers.

modulation of TGF-beta signaling by inhibition of
phosphorylation of R-Smads (134).

11. LEFTY INHIBITS DEPOSITION OF COLLAGEN
IN VIVO

The gene coding for the alpha2 chain of the type I
collagen (Coll1A2) is one of the best characterized TGF-
beta induced genes studied so far. Careful analysis of the
promoter of the gene has shown that stimulation of the
alpha2(I)-collagen transcription is a result of synergistic
cooperation between Sp1 and Smad3-Smad4 transcription
factors (136-137). Action of lefty as an inhibitor of TGF-
beta signaling suggests that lefty is able to inhibit induction
of collagen by TGF-beta for several reasons. First, lefty
inhibits the phosphorylation of Smad2 and therefore, is a
good candidate to inhibit the TGF-beta induced Smad3
phosphorylation since receptor mediated phosphorylation

occurs, at serine residues in the C terminal motif SS(V/M)S
of Smad2, which is shared by Smad2 and Smad3 (120).
Second, lefty inhibits the activity of CTGF-promoter which
is transcriptionally up-regulated by TGF-beta by a pathway
which involves Smad3 and Smad4 combination). Third,
lefty inhibits the TGF-beta mediated reporter activity of a
Smad Binding Element (SBE). Since R-Smads have the
same affinity to SBE, lefty is likely to also inhibit the
transcriptional activities that are driven by Smad3 (120).
Consistent with this thesis, lefty inhibits the TGF-beta
mediated promoter activity driven by SBE (134).

TGF-beta is a pro-fibrogenic cytokine that its
actions are mediated by induction of collagen synthesis and
suppression of MMP expression. Since lefty inhibits TGF-
beta signaling, the possibility exists that lefty might oppose
the TGF-beta actions in vivo and lead to the loss of ECM.
Lefty is markedly expressed in endometrial stromal
fibroblasts around the time of menstrual bleeding (1). To
simulate this in vivo expression for characterizing the lefty
actions, two retroviral vectors, a control vector (LG)
enabling cells to express GFP and the vector, LEIG, that
transduces the expression of both GFP and lefty-A have
been used (138). The success of these transduction
experiments was assessed by analysis of GFP fluorescence,
immunostaining and demonstrating that lefty is secreted by
the LEIG transduced and not LG transduced cells (138).
These cells were then subcutaneously introduced into
athymic mice and the amount of collagen deposited in the
stroma of the tumors developed from the fibroblasts was
quantitated. As expected, the LG tumors contained
abundant collagen fibers. In contrast, in the LEIG tumors,
there was little intervening stroma containing collagen
(Figure 7). To further validate that the extracellular matrix
observed in these tumors was collagen, sections were
stained with trichrome, which in view of its affinity, casts a
blue color onto collagen fibers. While collagen fibers were
detected in large amounts both at the center and periphery
of the LG tumors, the LEIG tumors exhibited a paucity of
these fibers. These findings show that lefty suppresses
collagen synthesis and prevents collagen deposition.

11.1. Lefty inhibits collagen and CTGF mRNA
expression in vivo

The RNA from LG and LEIG transduced
cultured cells and tumors derived from them were subjected
to reverse transcription (RT) followed by polymerase chain
reaction for mouse collagen type I (138). Although the pro-
collagen type I mRNA was detected in both LG and LEIG
transduced cells in vitro, the LG tumors had more
collagen mRNA that found in the LEIG tumors (138).
The lack of effect of lefty in vitro, might be attributable
to absence of any stimulating signal such as TGF-beta
that lefty is able to inhibit. The inhibitory actions of lefty can
be observed in presence of a stimulating signal such as TGF-
beta which is ubiquitously expressed in vivo. Real time
quantitative RT-PCR confirmed the results of RT-PCR and
showed 4.7 fold reduction in the expression of collagen type I
mRNA in the tumors derived from lefty+ cells. Moreover, there
was 2.8 fold reduction of CTGF mRNA expression in the
same tumors as compared with the control tumors. These
results are consistent with the histologic data on reduced
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Table 2.  Potential therapeutic strategies based on antagonism of TGF-beta
Mechanisms of action Factor References
Suppression of TGF-beta
expression/Synthesis

Perindopril (ACE inhibitor), and Camostat mesilate (Serine protease
inhibitor)

155,156

Transduction of hepatocyte growth factor (HGF) and antisense against TGF-
beta

18,64,148-
150,157,158

Pirfenidone 69,159
Single-stranded 27-mer phosphorothioate oligodeoxynucleotide (ssPT)
containing the TGF-beta response element

67,160

alpha2-Macroglobulin, decorin 161-162TGF-beta binding proteins
Dominant-negative TβR-II 141,163
Soluble TGF-beta receptor 73,140,164
Soluble betaglycan 63
TGF-beta antibody 66,74-75,154

Suppression of plasmin
activity

Serine protease inhibitor, camostat mesilate 154-155

Antioxidants Glutathione, alpha-tocopherol, Resveratrol, Quercetin, N-acetylcysteine 165-167
TGF-beta signal inhibitor Smad7 72
Inhibition of R-Smad
phosphorylation

Lefty  138

deposition of collagen in tissue sections of lefty+ tumors
and show that such reduction is the result of reduced CTGF
and collagen mRNA transcription. Collectively, the
available data support the hypothesis that lefty inhibits
collagen deposition in vivo. The findings show that lefty,
by acting on the CTGF promoter, inhibits expression of
CTGF and consequently reduces the deposition of collagen
by a mechanism which includes transcriptional control of
collagen type I mRNA expression.

11.2. Lefty induces collagenolytic and elastolytic
activities in vivo

A critical step in building the hypothesis that
lefty is involved in tissue dissolution would be induction of
collagenolytic activity by lefty. Proteolytic activities, was
not significantly different in the tissue culture media of LG
and LEIG transduced cells. However, in vivo, there was a
significant increase in the proteolytic activities in the LEIG
transduced tumors. This difference was noted using
collagen, gelatin or elastin as substrates (138). At least five
different species of enzyme, induced by lefty causing
collagenolysis and caseinolysis was seen by zymography.
These findings show that lefty actively participates in the
dissolution of ECM by inducing collagenolysis and
elastolysis.

12. LEFTY IS OVER-EXPRESSED IN HUMAN
CANCERS

Lefty is expressed at a low level in endometrium
and other tissues but its expression is markedly increased in
endometrium immediately prior to menstrual shedding or
during menstrual bleeding and abnormal uterine bleeding
(1). Despite the low expression of lefty in normal tissues,
its expression is increased in certain forms of human
cancers including cancers of colon, ovary, testis and
pancreas (139). The biologic consequence of this over-
expression remains to be determined. However, in an
experimental form of fibrosarcoma, over-expression of
lefty was associated with suppression of tumor growth
(unpublished data) suggesting that lefty might be part of the

molecular repertoire that regulates tumor growth
presumably by its actions on the stroma.

13. POTENTIAL TREATMENT STRATEGIES

The negative regulators of the TGF-beta that
perturb production of extracellular matrix including
collagen might be utilized to cause a negative balance in
production of ECM proteins. Many different strategies are
being used to antagonize the effects of TGF-beta in vivo
(table 2). Inhibition of the TGF-beta activities by a number
of experimental approaches such as administration of
soluble betaglycan, anti-sense TGF-beta, and antibody to
TGF-beta all led to decreased accumulation of extracellular
matrix in vitro  and in vivo (64-66). In line with the role of
TGF-beta in liver fibrosis, blockade of the TGF-beta actions by
soluble TGF-beta receptor type II (140), or dominant negative
type II receptor (141) prevented liver fibrosis.

Several lines of evidence show that the tumor
promoting effects of TGF-beta can be halted by restoring the
TGF-beta signaling in tumor cells. Over-expression of TGF-
beta receptor I, in a highly malignant rat bladder carcinoma,
abolished their malignant phenotype (142) and induction of
expression of TGF-beta receptor type II restored the TGF-beta
mediated growth inhibition in hepatoma cells (143), reduced
malignancy in MCF-7 human breast cancer cells (144) and
decreased the tumorigenecity of human gastric cancer cells
(145). Moreover, expression of soluble TGF-beta type III
receptor (sRIII) in human breast cancer, MDA-MB-231 cells,
which antagonizes the tumor-promoting activity of TGF-beta
by sequestering active TGF-beta isoforms produced by the
cancer cells led to the formation of tumors that grew slowly
and lost their ability to metastasize. (146). These findings make
it clear that the tumor promoting activity of TGF-beta is due to
its effects on stroma rather on cancer cells.

For treatment of cancer, in principle, targeting the
tumor stroma circumvents the need to tailor the therapy to
the unique genetic makeup of an individual cancer type.
Moreover, the tumor stroma is comprised of genetically
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stable normal cells which are less likely than tumor cells to
become drug resistant. Thus, it might become possible to
control tumor growth by regulating the formation of
tumor stroma.

Novel approaches of this kind would be
expected to substitute or significantly augment the
efficacy of traditional therapies. The importance of
cancer-stroma interaction is being realized and the
understanding that targeting tumor stroma is a valid and
reasonable treatment approach is gaining a considerable
support.  The strategy to inhibit endothelial cell
proliferation of the tumor stroma by factors such as
angiostatin and endostatin have already shown great
promise in the treatment of cancers and three drugs that
block VEGF receptor signaling and angiostatin have
found their way to clinical trials  (147).

Since formation of tumor stroma is required for tumor
growth, elimination of the TGF-beta response in tumors should
subside the tumor growth, invasion and metastasis. Blocking the
TGF-beta action, should lead to tumor suppression by
inhibition of the formation of tumor stroma since all solid
tumors, regardless of their cellular lineage, require stroma to
grow beyond a minimal size of 1-2 mm. Consistent with this
thesis, the tumor growth, invasion and metastasis are
inhibited when the effect of TGF-beta is interrupted by
inhibition of endogenous TGF-beta, expression of soluble
TGF-beta type III receptor (sRIII) which sequesters active
TGF-beta isoforms, transfection of tumor cells with
dominant negative mutant type II TGF-beta receptor
(TβRII? cyt), or by administration of antibody to TGF-beta
(146, 148-154). These findings show that inhibition of
TGF-beta activity can be used as a means for reducing the
malignant potential of the tumor cells in terms of growth,
invasion and metastasis.

14. CONCLUSIONS

Virtually all normal tissues have a stroma that
physically and bio-chemically supports the parenchyma.
Under normal circumstances, fibroblasts are quiescent but
become active upon tissue injury to restore the stroma of
damaged tissues. This form of activation is self limiting. In
other instances, however, for unknown reasons, fibroblasts
become active and they continue to deposit a collagen rich
stroma in a number of fibrotic conditions, and fibromatosis.
Formation of stroma is also essential to tumor growth.
Growth regulatory molecules of the transforming growth
factor-beta family (TGF-beta) are one of the few classes of
proteins that provide the necessary signals that support the
formation of a fibrovascular stroma. The available evidence
shows that generally, there is a marked increase in the
expression of TGF-beta mRNA and protein during tissue
repair and in fibrotic diseases, fibromatosis and in neoplasms.
TGF-beta supports growth of stroma by increased
proliferation of fibroblasts and enhancement of collagen
deposition. This view is supported by the evidence that
TGF-beta increases collagen mRNA synthesis and prevents
the degradation of collagen by suppression of specific
matrix metalloproteases that digest collagen. Factors such
as lefty, that specifically perturbs the TGF-beta mediated

growth of fibroblasts, inhibits the synthesis of collagen and
enhances degradation of a collagenous stroma, would be an
ideal candidate as a therapeutic target.
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