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1. ABSTRACT

Neurons are exquisitely sensitive to the duration, amplitude
and localization of transient increases in intracellular Ca2+

concentration ([Ca2+]i).  Modulation of Ca2+ uptake into the
mitochondrion and endoplasmic reticulum, and efflux via
the plasma membrane Ca2+ pump and Na+/Ca2+ exchange
profoundly affect the shape of [Ca2+]i signals. Ca2+

clearance mechanisms are modulated by other signaling
pathways, are sensitive to metabolic state and have a
memory of the recent history of cell activation.  We present
here examples of pharmacologic and endogenous
regulation of Ca2+ sequestration and efflux in neurons.
Ca2+ clearance mechanisms differentially shape [Ca2+]i
signals based on their affinity, capacity and location; their
modulation alters specific neuronal functions.  The
increasingly apparent diversity of the molecular entities
that make up the [Ca2+]i regulatory system reveals new sites

for modulation.  Specialized Ca2+ clearance mechanisms
participate in unique cellular functions and thus, are
important targets for pharmacological and physiological
regulation of the neuron.

2. INTRODUCTION

Transient increases in the intracellular Ca2+

concentration ([Ca2+]i) trigger many neuronal functions
including excitability, neurotransmitter release, gene
expression and neurotoxicity (1). The rate at which Ca2+ is
cleared from the cytoplasm following excitation affects the
duration, amplitude and spread of [Ca2+]i signals.  This
article focuses on the modulation of the processes
responsible for removing Ca2+ from the cytoplasm of
neurons primarily using results from studies with sensory
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neurons as examples.  Modulation of Ca2+ influx and
release is well established and recent reviews discuss
pharmacologic and second-messenger-dependent
modulation of Ca2+ channels gated by voltage (2, 3),
ligands (4), temperature (5) and second messengers (6, 7).
We examine here the processes that shape transient
increases in [Ca2+]i such as uptake into the mitochondrion
and endoplasmic reticulum (ER) and efflux via the plasma
membrane Ca2+ ATPase (PMCA) and Na+/Ca2+ exchanger.
It is increasingly apparent that Ca2+ clearance mechanisms
are not simple housekeepers of Ca2+ homeostasis but are
modulated by cross talk with other signaling pathways, are
sensitive to metabolic state and have a memory of the
recent history of cell activation.  Specialization of function
and state-dependence of activation are central to
understanding the modulation of Ca2+ clearance
mechanisms in neurons. This review will provide examples
demonstrating that regulation of sequestration and efflux
processes is far more dynamic than previously thought.

The versatility of Ca2+ as a second messenger is
made possible by the varied and complex Ca2+ regulatory
system.  Each cell expresses a set of Ca2+ transporters
tailored to suit its specialized function (8).  The
mitochondrion acts as a low affinity [Ca2+]i buffer.  The ER
has a high affinity for [Ca2+]i, limited capacity and
depending on refilling state can either take up or release
Ca2+.  The PMCA has a high affinity for [Ca2+]i, has an
infinite capacity and predominantly influences [Ca2+]i
recovery near basal levels.  The Na+/Ca2+ exchanger has a
low affinity for [Ca2+]i, is sensitive to electrical and Na+

gradients, and is responsible for rapid reduction in [Ca2+]i
following intense stimulation.  Sequestration and efflux
processes play different roles in shaping [Ca2+]i signals
based on their affinity, capacity and location.

Ca2+-activated processes display a complimentary
sensitivity to the amplitude and duration of changes in
[Ca2+]i.   A number of enzymes are exquisitely sensitive to
the duration of increases in [Ca2+]i.  For example,
prolonged elevation of [Ca2+]i enables the autocatalytic
activation of Ca2+/calmodulin-dependent protein kinase II
(9) enabling subsequent long lasting effects on synaptic
plasticity (10).  The neurosecretory machinery has both
high and low affinity components.  The Ca2+-dependent
initiation of membrane fusion has a low affinity for Ca2+

and is very sensitive to the amplitude of [Ca2+]i increases
(11, 12).  In contrast, the size of the readily releasable pool
of vesicles is regulated by calmodulin, is sensitive to
modest increases in [Ca2+]i and is thus, very sensitive to
[Ca2+]i recovery kinetics and residual [Ca2+]i (13).  Thus,
modulation of Ca2+ clearance alters important functional
responses in neurons.

3. MITOCHONDRIA

3.1. Mitochondria damp the amplitude and prolong the
duration of [Ca2+]i increases

Mitochondria have a tremendous capacity to take
up Ca2+.  The low affinity of isolated mitochondria for Ca2+

was thought to limit their participation in Ca2+ signaling to
toxic processes.  It is now clear that mitochondrial Ca2+

buffering shapes physiological [Ca2+]i transients in neurons

(14, 15). This more physiological role may be due to a
higher affinity for Ca2+ in vivo relative to isolated
mitochondria or exposure to higher [Ca2+]i near the mouths
of Ca2+ channels than previously realized (16-19).
Mitochondria do not appear to retain Ca2+, at least not as
free cation, but instead, slowly release Ca2+.  The net result
is a powerful buffer that attenuates the amplitude and
increases the duration of the [Ca2+]i response.  As shown in
Figure 1A, this places a ceiling on [Ca2+]i such that
increasing stimulus strength lengthens the duration of a
shoulder in the recovery phase of the [Ca2+]i transient (14).
In sensory neurons, this shoulder forms a distinct plateau
following application of large Ca2+ loads.  Rapid
mitochondrial uptake followed by slow release has also
been observed in adrenal chromaffin cells (20, 21),
sympathetic neurons (15), central neurons (22-24) and
motor nerve endings (25).  Thus, the mitochondrion acts as
a powerful buffer to shape physiological [Ca2+]i signals.

Changes in mitochondrial Ca2+ uptake and
release affect Ca2+-sensitive processes both within and
outside the mitochondrion.  Changes in matrix Ca2+

regulate Ca2+-sensitive dehydrogenases, coupling the
increased metabolic demand signaled by elevated [Ca2+]i to
increased aerobic metabolism (26, 27).  Ca2+ buffering by
the mitochondrion alters [Ca2+]i gradients, which affects
secretory processes (18, 28) and the refilling and release of
Ca2+ from the ER (29-31).  The mitochondrial contribution
to Ca2+ regulation is location specific.  Slow, prolonged
Ca2+-release from mitochondria provides the residual
[Ca2+]i necessary for post-tetanic potentiation at the
crayfish neuromuscular junction (32). In contrast,
mitochondria at a ribbon synapse only affect synaptic
transmission indirectly, by supplying ATP (33).
Mitochondrial Ca2+ uptake seems to play a dual role during
bursts of activity. Increases in [Ca2+]mt activate metabolism,
while rapid Ca2+ uptake preserves the phasic nature of
individual action-potential-induced increases in [Ca2+]i (34,
35). When elevated [Ca2+]i reaches toxic levels,
neurodegenerative processes are triggered by the resulting
Ca2+ overload (36, 37).  It was previously thought that
mitochondrial Ca2+ buffering protected the cell from Ca2+

triggered cell death, however, it is now clear that
mitochondria are targets for Ca2+ overload and are capable
of initiating both necrotic and apoptotic processes (38).  In
summary, mitochondria play an important physiological
role in shaping the amplitude and duration of transient
increases in [Ca2+]i and in so doing, link excitation to
metabolism.  Ca2+ overload triggers cell death and the
excessive accumulation of Ca2+ within the mitochondrial
matrix is an early event in Ca2+-induced toxicity.

3.2. Modulation of mitochondrial uptake, storage and
release of Ca2+

Mitochondrial Ca2+ uptake and release occur by
different pathways (Figure 1B).  The mitochondrial
membrane potential (∆ψ) provides the driving force for
Ca2+ uptake via the uniporter (39, 40).  Within the matrix,
free Ca2+ is in equilibrium with Ca bound to an anion,
mostly phosphate (41).  Free Ca2+ is removed from
neuronal mitochondria primarily by a Na+/Ca2+ exchange
process (42-45).  In addition, under certain conditions
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Figure 1.  Mitochondria decrease the amplitude and increase the duration of depolarization-induced increases in [Ca2+]i.  A.
Trains of action potentials with the indicated number of spikes (APs) were elicited by electric field stimulation (s) of a single
sensory neuron.  The same neuron was depolarized for 30 s with 50 mM K+ (ϒ).  [Ca2+]i was recorded with indo-1-based
photometry as previously described (14).  B.  Scheme shows important sites for modulation of mitochondrial Ca2+ regulation: 1,
uniporter; 2, ∆ψ; 3, Ca2+ phosphate complex formation; 4, Na+/Ca2+ exchange; and 5, PTP.  C.  Depolarization induced (50 mM
K+, 30 s, ϒ) increases in [Ca2+]i displayed a marked plateau in the recovery to baseline. Antimycin A1 (1 µM) applied at the time
indicated by the horizontal bar increased the amplitude and decreased the duration of the mitochondrial-mediated plateau.  D.
CGP37157 (10 µM) applied after depolarization (ϒ) accelerated recovery to basal [Ca2+]i.  Removal of the drug evoked a rebound
increase in [Ca2+]i as Ca2+ trapped in the matrix was allowed to enter the cytoplasm.  Figures A and C, and D were reproduced
with permission from references (14) and (87), respectively.

matrix Ca2+ is released via the mitochondrial permeability
transition pore (PTP) (46-48) or via a Na+-independent
Ca2+ efflux pathway (49).  Thus, sites for modulation
include the uptake mechanism, including the uniporter and
∆ψ, capacity, and release via Na+/Ca2+ exchange and the
PTP (Figure 1B).  An abbreviated list of agents that act at
these sites is presented in Table 1.

Changes in ∆ψ alter Ca2+ uptake into the
mitochondrion.   Agents that poison electron transport (50),
such as antimycin A1, provide a clear demonstration of
how mitochondria shape transient increases in [Ca2+]i.  As
shown in Figure 1C, when ∆ψ was dissipated by treatment
with antimycin A1, the amplitude of the evoked [Ca2+]i
response increased and the plateau phase was absent,
dramatically shortening the duration of the response.
Proton ionophores such as p-
trifluoromethoxyphenylhydrazone (FCCP) uncouple
electron transport to dissipate ∆ψ and produce similar
changes in [Ca2+]i buffering (14).  FCCP is a particularly
useful agent for inhibiting mitochondrial Ca2+ uptake in
intact cells because it is potent, membrane permeant and
reversible.  It is not, however, selective for mitochondrial
membranes (51).  Agents that activate ATP-sensitive K+

channels such as diazoxide also decrease the potential

across the inner membrane and reduce Ca2+ uptake into
the matrix; diazoxide affords protection from
ischemia/reperfusion injury in cardiac myocytes (52,
53).  The primary complication from dissipating ∆ψ is
reduced ATP production and in some circumstances the
actual consumption of ATP via reversal of the ATP
synthase (54).  ∆ψ is also changed by endogenous
factors.  Weak lipophilic acids such as palmitic acid
produce a proton leak that decreases ∆ψ (55).  Neurons
express uncoupling proteins homologous to those
responsible for thermogenesis in brown fat cells (56).
Uncoupling proteins reduce mitochondrial production of
reactive oxygen species, which may be their primary
function in neurons.  The availability of metabolic
substrates alters Ca2+ uptake into the mitochondrion in a
manner predicted by effects on ∆ψ (57, 58).  Thus, the
energy status of the cell modulates mitochondrial Ca2+

uptake.  The actual transport of Ca2+ across the inner
membrane requires energy and large Ca2+ loads
depolarize mitochondria and reduce further Ca2+ uptake
(59, 60).  In contrast, modest increases in [Ca2+]mt
increase the proton motive force by stimulating Ca2+-
sensitive dehydrogenases (61).  Generally, metabolic
stress impairs and aerobic metabolism enhances, Ca2+

uptake into mitochondria.
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Table 1. Selected modulators of mitochondrial Ca2+ uptake and release
Target1/modulator Concentration2

(µM)
Effect References

1. uniporter
Ruthenium Red 0.007 Inhibit 64
Ru360 0.0002 Inhibit 64
Spermine 100-400 Increase 67, 68
2. ∆ψ
Uncouplers – e.g. FCCP 0.1 Decrease 296
e- transport inhibitors – e.g. antimycin A1 0.024-1.0 Decrease 14, 50
MitoKATP channel opener – e.g. diazoxide 100 Decrease 52, 53
Substrates - e.g. pyruvate/malate 10000 Increase 57, 58
3. matrix capacity
pHmt ↓ Decrease 41
phosphate 250 Increase 41
4. Na+/Ca2+ exchange
CGP37157 4 Inhibit 87
[Na+]i ↓ Inhibit 42, 44
5. PTP
Bongkrekic acid 1 Inhibit 45, 297
Atractylate 500 Induce 45, 298
Cyclosporins – e.g. cyclosporin A 0.005-0.1 Inhibit 78, 299
Prooxidants – e.g. t-butylhydroperoxide 600 Induce 48, 300
SH reagents – e.g. N-ethylmaleimide 5 Inhibit 301
↑[Ca2+]mt 1000 Induce 83, 302
ADP 4-40 Inhibit 300
pHmt  ↓ Inhibit 45
Pi 5000 Induce 300
∆ψ ↓ Induce 45

1Numbers preceding targets refer to figure 1B. , 2 Concentrations are approximate values that were shown effective for the
conditions cited.

Ca2+ enters the mitochondrion via the uniporter, a
Ca2+ permeable channel of unknown molecular identity
(39).  The channel is activated by elevated [Ca2+]i and in
some cells displays a rapidly desensitizing high-
conductance mode (62).  ATP and Mg2+ inhibit the
uniporter by acting on its cytoplasmic face (63). Ruthenium
red and a purified component, RU360, will block this
channel preventing Ca2+ entry (64, 65).  The use of these
agents is limited due to their lack of specificity, the poor
membrane permeability of ruthenium red and the poor
stability of RU360.   Cobalt complexes inhibit Ca2+ uptake
by isolated mitochondria similar to ruthenium red and may
prove more stable and cell permeant (66).  Polyamines,
particularly spermine, increase the rate and affinity of Ca2+

uptake into mitochondria (67, 68).  Polyamine levels in
brain fluctuate during stress, intense electrical activity and
development (69, 70).  Taurine also appears to enhance
mitochondrial Ca2+ uptake by acting on the uniporter at
millimolar concentrations (71).  As noted above, there are a
number of physiologic and pharmacologic agents that
modulate the uniporter, providing a direct mechanism to
alter [Ca2+]mt.  A clear demonstration of the endogenous
modulation in intact neurons is lacking.

Once inside the mitochondrion, Ca2+ is reversibly
bound as a phosphate complex (72).  Recent speculation
concerning the dynamic nature of this interaction focuses
on the effects of pH and phosphate (28).  A decrease in
matrix pH or a decrease in phosphate concentration reduced

complex formation in isolated mitochondria (41), although
experiments testing this hypothesis in situ have not been
performed.  An adjustable capacity for Ca2+ uptake could
have significant effects on the role of the mitochondrion in
shaping physiological signals and coping with potentially
toxic Ca2+ loads.

The PTP is an inner membrane channel of
unknown structure (45, 48). Opening of the large
conductance PTP is enhanced by decreases in ∆ψ, elevated
[Ca2+]mt, increased matrix pH and oxidants (73).  Because
these changes accompany Ca2+ overload combined with
metabolic stress, this channel is thought to contribute to the
collapse of ∆ψ and release of mitochondrial factors that
trigger apoptosis (74, 75).  Arachidonic acid (76) and
cytotoxic agents, such as doxirubicin (77), also activate the
PTP.  Agents that interact with cyclophillins inhibit the
PTP (78).  Cyclosporin A inhibits the PTP and calcineurin;
N-Me-Val-4-cyclosporine is more selective for the PTP and
FK506 selectively inhibits calcineurin aiding in the
differentiation between the two cellular targets (79, 80).
Carboxyatractylate promotes and bongkrekic acid and ADP
inhibit opening of the PTP (45).  Because these agents
modulate the adenine nucleotide translocase, it has been
suggested that the translocase forms the pore (81). The PTP
appears to have a small conductance state that participates
in physiological signaling in the form of Ca2+-induced
Ca2+-release (46) and may underlie channel activity
recorded from mitochondria in situ during synaptic
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transmission (82).  Mitochondrial Ca2+-induced Ca2+-
release is activated by increases in matrix pH making it
very sensitive to Ca2+-induced increases in respiration (83).
The Ca2+-induced Ca2+-release mode of the PTP is
inhibited by the cyclosporin analog, SDZ PSC833.  This
drug decreased the amplitude of IP3-mediated [Ca2+]i
responses, suggesting that under certain conditions
mitochondrial Ca2+ release will amplify cytosolic [Ca2+]i
increases (84).  Changing from this physiological small-
conductance state to the large conductance state is triggered
by an increase in [Ca2+]mt and is associated with
mitochondrial toxicity (83).  Inhibition of the high-
conductance PTP affords neuroprotection in some
excitotoxicity models (85).

Ca2+ release from mitochondria in sensory
neurons is primarily via a Na+/Ca2+ exchange process (44).
Derivatives of the calcium channel blocker diltiazem, the
most specific being CGP37157, inhibit this process (86,
87).  As shown in Figure 1D, application of CGP37157 at
the start of the mitochondrial Ca2+ release phase of the
[Ca2+]i transient traps Ca2+ within the matrix, allowing
[Ca2+]i to fall to basal levels.  Removal of the drug
produced a rebound increase in [Ca2+]i as release resumed.
Modulation of Na+/Ca2+ exchange produces concentration-
dependent modulation of the duration and amplitude of the
plateau phase of the [Ca2+]i response.  Of more
physiological importance are the similar effects produced
by reduced intracellular Na+ concentration ([Na+]i).
Reduced [Na+]i decreased the amplitude of the plateau
phase and increased its duration, consistent with slowed
Ca2+ release from the matrix (44).  Thus, the large Na+ load
that accompanies intense bursts of action potentials or
activation of ligand-gated Na+ channels reduces the ability
of the mitochondrion to retain Ca2+ (88, 89).

In summary, the separation of Ca2+ uptake,
storage and release mechanisms provides a high degree of
flexibility to mitochondrial control of [Ca2+]i, enabling this
organelle to differentially affect the amplitude and duration
of [Ca2+]i increases and to adjust [Ca2+]mt levels.
Identification of the proteins that actually transport Ca2+

across the inner membrane will be an important step in
furthering our understanding of the modulation of Ca2+

handling by mitochondria and will aid in developing agents
to selectively control mitochondrial Ca2+ uptake and
release.

3.3. Modulating mitochondrial Ca2+ buffering alters
neuronal function

Mitochondrial Ca2+ buffering inhibits Ca2+-
dependent processes triggered by intense stimuli that
produce large increases in [Ca2+]i and enhances processes
activated by prolonged exposure to modest increases in
[Ca2+]i.  For example, modulation of mitochondrial Ca2+

uptake and release alters Ca2+-mediated toxicity and
neurosecretory responses.  Mitochondria within a cell form
a surprisingly heterogeneous group in terms of ∆ψ, shape
and distribution (90).  Assuming this heterogeneity affects
Ca2+ buffering then it seems likely that mitochondria are
modulated individually by their local environment, for
example by polyamines, [Na+]i or the availability of

metabolic substrates, enabling them to create local Ca2+

signaling domains.

Inhibition of Ca2+ uptake into mitochondria with
metabolic poisons will actually delay cell death triggered by
glutamate-induced Ca2+ loads (91, 92).  Protection likely
results from a decrease in ∆ψ leading to decreased [Ca2+]mt and
reduced formation of reactive oxygen species (93, 94).  Bcl-2
and Bax are members of a family of proteins that inhibit and
activate apoptosis, respectively (95).  Bcl-2 is localized to ER,
mitochondrial and nuclear membranes (96).  Bcl-2 increases
mitochondrial Ca2+ uptake (97), prevents the release of
proapoptotic factors such as cytochrome C (98, 99) and affords
protection from Ca2+-triggered toxicity (100).  Bax binds to
Bcl-2 on the mitochondrial membrane (101) and may activate
apoptosis by oligomerization to form ion channels (102).

Microdomains of [Ca2+]i on the order of 200-300
µM occur near the mouths of Ca2+ channels (103) and the
vesicular release machinery in nerve terminals is linked to
these channels (104).  Inhibition of mitochondrial Ca2+ uptake
increases secretion of catecholamines from adrenal chromaffin
cells (18) and increased hormone release from pituitary
gonadotropes (28), consistent with the idea that lost buffering
capacity allows [Ca2+]i to reach higher levels and thus, more
effectively trigger exocytosis.  In nerve terminals the role of
the mitochondrion is less clear.  At some synapses
mitochondria seem to affect [Ca2+]i indirectly by supplying
ATP (33), while in other preparations inhibition of Ca2+ uptake
with ruthenium red or by dissipating ∆ψ, reduces residual
[Ca2+]i and impairs post-tetanic potentiation of
neurotransmitter release (32, 105).  Peptide release from
sympathetic neurons is proportional to the time-integral of
[Ca2+]i above a threshold, providing an example of exocytosis
that is especially sensitive to the duration of elevated [Ca2+]i
(106).  The precise spatial relationship between the Ca2+

source, the mitochondrion and the affinity of the
neurosecretory machinery for Ca2+ determines the role of
mitochondria in a given exocytotic process.  Mitochondria
damp exocytosis of fast neurotransmitters triggered by large
localized increases in [Ca2+]i.  In contrast, release activated by
prolonged elevation of [Ca2+]i to more modest levels is actually
enhanced by the prolongation of the [Ca2+]i increase produced
by mitochondrial Ca2+ buffering.

In summary, the specialized role of mitochondria in
buffering large [Ca2+]i increases makes this organelle an
important target for modulating processes activated by intense
stimulation.  The special role of mitochondria in damping
amplitude and prolonging the duration of [Ca2+]i increases
enables mitochondria to modulate rapid Ca2+-induced
exocytosis and the availability of vesicles for release. Thus,
mitochondria are poised to influence the synaptic enhancement
that follows repetitive presynaptic activity (105).  While clearly
an important regulator of physiological [Ca2+]i responses, some
of the most significant roles for mitochondrial Ca2+ uptake are
seen in response to toxic stimuli.  Excessive accumulation of
matrix Ca2+ triggers processes that lead to cell death.  The
exciting prospects of neuroprotective drugs or agents that
modulate synaptic plasticity by acting on mitochondria
must be balanced with the hazards of adversely affecting
cellular energy supplies.
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Figure 2.  ER Ca2+ stores amplify or attenuate [Ca2+]i increases depending on the refilling state of the store.  A.  Schematic shows
ER Ca2+ regulation by 1, SERCA; 2, luminal binding proteins; and 3, Ca2+ release channels.  B.  Regenerative [Ca2+]i transients
were evoked in a rat sensory neuron with full Ca2+ stores.  [Ca2+]i transients were measured with indo-1 and elicited by 2 Hz
trains of action potentials (APs) in the presence of 5 mM caffeine.  Action potentials were evoked in current-clamp, and the
number of action potentials in each stimulus train is indicated above the voltage trace.  The horizontal dashed line indicates the
threshold for [Ca2+]i for triggering regenerative Ca2+-induced Ca2+-release.  Trains of action potentials were evoked every three
minutes.  C.  Action potential-induced [Ca2+]i transients were elicited in indo-1 AM-loaded sensory neurons under three states of
Ca2+ store refilling.  [Ca2+]i transients are compared before (full), after application of 5 mM caffeine (empty) and after application
of 5 µM cyclopiazonic acid (CPA).  The recovery phase of the [Ca2+]i transients were well fit by a monoexponential equation
with time constants of 6, 13 and 29 s for empty, full and CPA, respectively.  D.  Application of 5 µM cyclopiazonic acid to a
sensory neuron evoked an increase in [Ca2+]i.  Figures B, C and D were reproduced with permission from (107), (109) and (223),
respectively.

4. ER

4.1. ER Ca2+ buffering and release – a capacity-
dependent switch

ER Ca2+ stores, in contrast to mitochondria, are
poised for rapid release of Ca2+ via ligand gated ion
channels and take up Ca2+ via a relatively slow ATP
dependent Ca2+ pump.  The sarcoplasmic or endoplasmic
reticulum Ca2+ ATPase (SERCA) has a high affinity for
Ca2+ enabling the ER to retain Ca2+ at high concentration
(100 µM), even while [Ca2+]i is low (100 nM).  Stored Ca2+

can be rapidly released upon activation of ligand gated ion
channels.  The capacity of the ER to store Ca2+ is limited;
this confers a marked state-dependence on the Ca2+ uptake
and release process such that immediately following release

the store is a powerful Ca2+ clearance mechanism, in contrast
to full stores that are incapable of taking up Ca2+ and instead,
are poised to amplify increases in [Ca2+]i (107-111).

The SERCA, luminal buffering and Ca2+ release
channels are all sites of modulation, and because of their
interdependence, exert complex effects on the Ca2+ uptake
properties of the ER as a whole (Figure 2A 1-3 respectively).
Agents acting on these targets are listed in Table 2.  The 1,4,5-
inositol trisphosphate receptor (IP3R) and ryanodine receptor
(RyR) are Ca2+ release channels on the ER membrane.  A full
description of the pharmacology and modulation of these
proteins is beyond the scope of this article and has been
reviewed elsewhere (6, 112, 113).  The feature of these
channels that is of particular relevance to
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Table 2. Modulation of ER Ca2+ uptake and release
Target1 Modulator 2 EC50, µM Effect References
1. SERCA
(all isoforms) thapsigargin 0.01-0.02 Inhibit 129

cyclopiazonic acid 0.4 Inhibit 134
tBHQ 0.4 Inhibit 131-133
CaM kinase Stimulate 148

SERCA2b calnexin
(PKC-dependent)

Inhibit 155

SERCA2b calreticulin Inhibit 153
2. Capacity

oxalate 4 mM Increase 170
pyrophosphate 5.8 mM Increase 171

3. Ca2+ release channels2

IP3R IP3 0.24 Sensitizes to
Ca2+

303

[Ca2+]i

(in 2 µM IP3)
<0.2
>0.2

Increase
Decrease

304

xestospongin 0.36 Inhibit 305
RyR ryanodine 0.01-10

>10
Sensitizes to
Ca2+

Inhibits

306, 307

caffeine 20 mM Sensitizes to
Ca2+

308

dantrolene 25 Inhibit 309, 310
[Ca2+]i

(in 500 µM ATP)
0.01-100
>100

Increase
Decrease

304

1Numbers preceding targets refer to figure 2A., 2 Modulators of release channels were limited to a few key examples.

[Ca2+]i clearance mechanisms is sensitivity of the release
process to Ca2+ within the lumen of the ER.  The release
channels are modulated by luminal Ca2+, possibly by Ca2+

binding proteins within the lumen (114-116).  The degree
to which the store refills alters the coupling of release
channels by Ca2+-induced Ca2+-release.  As shown in
Figure 2B, action-potential-induced Ca2+ influx triggers
regenerative Ca2+ release from ryanodine-sensitive Ca2+

stores in sensory neurons (107).  This all-or-none response
displays a discrete threshold for activation.  The refilling
state of the store is one factor that determines threshold and
presumably results from the ability of Ca2+ released from
one channel to activate neighboring sites.

When the ER is depleted of Ca2+ it can act as a
powerful and highly localized Ca2+ clearance mechanism
changing both the amplitude and duration of [Ca2+]i signals.
In Figure 2C, action potential-evoked increases in [Ca2+]i
from the same sensory neuron are superimposed.  Each
trace was recorded with the ER under a different state of
refilling.  When empty, the ER acted as a powerful Ca2+

clearance mechanism, consistent with increased Ca2+

uptake when Ca2+ levels in the lumen were low (109, 117-
119).  When the ER was allowed to refill, uptake was
greatly reduced and [Ca2+]i recovery kinetics were slowed.
Thus, a loss of ER Ca2+ storage capacity inhibited SERCA-
mediated Ca2+ uptake resulting in slowed [Ca2+]i clearance
kinetics.

In summary, the ER can act to buffer or amplify
[Ca2+]i increases depending on refilling state.  Modulation
of Ca2+ uptake into the ER will favor a particular state and

the resulting effect on [Ca2+]i will depend on whether the
predominant influence of the ER was as a source or sink for
Ca2+.

4.2. Modulation of SERCA
The SERCA-type Ca2+ pumps are responsible for

Ca2+ uptake into the ER.  The three SERCA genes display
tissue-specific expression with type 2 and 3 expressed in
brain (120-123).  Alternative splicing of SERCA2 primary
transcripts results in two isoforms (124, 125) of which only
the “b” isoform is expressed in neurons (126).  Both
SERCA isoforms found in brain (2b and 3) are equally
sensitive to currently available pharmacologic inhibitors.

Several membrane-permeant inhibitors of SERCA
type Ca2+ pumps are available. They are highly selective
for SERCA relative to PMCA type Ca2+ pumps.
Thapsigargin is a sesquiterpene lactone isolated from the
plant, Thapsia garganica.  This compound is an irritant,
probably resulting from its ability to activate mast cells
(127).  Thapsigargin is also a weak tumor promoter,
although it does not activate protein kinase C (128).
Thapsigargin inhibits SERCAs with a half-maximal
potency of approximately 10-20 nM by binding irreversibly
to stabilize the Ca2+-bound state of the enzyme (129).
Because this drug titrates available SERCA in one to one
stoichiometry, potency is affected by pump density,
exposure time and whether it is bath applied or perfused
through a recording chamber (130).  It is a highly lipophilic
compound and has a tendency to adsorb to glass and plastic
recording chambers.  2,5-Di(tert-butyl)hydroquinone
(tBHQ) also inhibits SERCA-type Ca2+ pumps, although
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this compound appears to be less selective than other
SERCA inhibitors (131-133).  The mycotoxin
cyclopiazonic acid is a selective inhibitor of SERCA type
Ca2+ pumps having no detectable effects on Na+/K+

ATPase, H+/K+ ATPase or PMCA type pumps (134).
Cyclopiazonic acid is less potent than thapsigargin, but is
readily reversible, has fewer adsorption problems and has
become a widely used tool for SERCA inhibition.   Other
non-specific inhibitors of SERCAs include vanadate and
fluoride (124, 135-138).

When SERCA inhibitors are applied to resting
cells with a full ER Ca2+ load, the compounds evoke a
transient elevation of [Ca2+]i (Figure 2D).  The [Ca2+]i
increase results from slow release of stored Ca2+ followed
by influx of Ca2+ triggered by depletion of the store.  This
capacitative Ca2+ influx (139, 140) is pronounced in non-
excitable cells and is mediated by a family of store-
operated channels; some of these channels are homologues
of the Drosophila transient receptor potential protein (141).
In neurons, this secondary Ca2+ influx is small.  In Figure
2D, capacitative Ca2+ influx contributed to the elevated
basal [Ca2+]i observed in the presence of cyclopiazonic acid
(109, 142, 143).  Interestingly, neurons expressing certain
mutant presenilin proteins exhibit greatly enhanced
capacitative Ca2+ entry (144, 145).  Presenilins are
localized to the ER and are known to modulate γ secretase
activity to yield mis-processed β amyloid proteins in
Alzheimer’s disease (146, 147).  How presenilins modulate
capacitative Ca2+ influx is an open question.

SERCA inhibitors are useful tools for studying the
Ca2+ clearance properties of the ER in neurons.  Inhibition
of SERCAs in sensory neurons with cyclopiazonic acid
greatly slowed the recovery of [Ca2+]i following a train of
action potentials (Figure 2C).  Thus, depending on the
refilling state of the ER Ca2+ store and the pattern of
stimulation, cyclopiazonic acid can reduce [Ca2+]i due to
impaired Ca2+-induced Ca2+-release or increase [Ca2+]i due
to lost Ca2+ uptake.

Physiological modulation of SERCA type pumps
results from phosphorylation, inhibition by accessory
proteins, inhibition by Ca2+ within the lumen of the ER and
possibly by cyclic ADP ribose (cADPr).  SERCA isoforms
exhibit differential modulation by endogenous signaling
pathways.  SERCAs are modulated by phosphorylation
directly and by phosphorylation of accessory proteins.
SERCA type 2 is phosphorylated directly by calmodulin-
dependent protein kinase, which causes an increase in
pump activity without affecting affinity (148).
Phospholamban, a homopentamer of 6 kDa proteins binds
to and inhibits SERCA isoforms 1 and 2 (149).
Phosphorylation of phospholamban by protein kinase A, C
or G or Ca2+/calmodulin-dependent protein kinase inhibits
phospholamban binding to SERCA resulting in stimulation
of the pump (150).  It appears that this type of modulation
does not occur in nervous tissue because phospholamban is
expressed exclusively in muscle.  However, a peptide of
unknown function with homology to phospholamban is
expressed in developing brain (151).  Calnexin and
calreticulin are Ca2+-sensitive lectin chaperones that assist

protein folding in the ER (152).  SERCA2b differs from
other Ca2+ pump isoforms in that it has a carboxyl-terminal
glycosylation site that faces the lumen of the ER enabling
this isoform to interact with lectins.  Calreticulin and
calnexin modulate the Ca2+ pumping activity of mature
SERCA2b.  Calreticulin inhibits Ca2+ pumping activity by
interacting with SERCA2b from the lumen of the ER (153).
Calnexin is localized to the ER membrane and has a
luminal Ca2+ binding domain and a cytosolic site available
for phosphorylation (154).  When phosphorylated by
protein kinase C, calnexin binds to SERCA2b and inhibits
Ca2+ pump activity (155).  Ca2+ release from the store leads
to dephosphorylation of calnexin and relief of inhibition of
SERCA2b.  Calnexin and calreticulin bind N-glycosylated
proteins in a manner sensitive to luminal [Ca2+] and are
expressed in brain (156-158).  The work described above
was performed with muscle preparations or heterologous
expression systems; direct observation of endogenous
modulation of SERCAs in neuronal preparations has not
been reported.

cADPr lowers the threshold for Ca2+-induced
Ca2+-release from ryanodine sensitive Ca2+ stores (159-
162).  The molecular site of action of cADPr is not known,
but a recent study of cardiac myocytes found evidence that
cADPr increased Ca2+ accumulation by cardiac
sarcoplasmic reticulum microsomes suggesting an
enhancement of SERCA activity (163).  Because increased
luminal [Ca2+] enhances regenerative Ca2+ release,
increased SERCA-mediated Ca2+ uptake into the ER could
lower the threshold for Ca2+-induced Ca2+-release from
ryanodine-sensitive stores.

In summary, selective inhibitors of SERCA such
as thapsigargin and cyclopiazonic acid are useful tools for
studying ER Ca2+ uptake.  SERCAs are regulated
endogenously by protein-protein interactions and signaling
cascades.  Modulation of SERCAs by endogenous signals
likely occurs in neurons, although it has not yet been
reported.

4.3. Modulation of ER Ca2+ storage capacity
Ca2+ within the lumen of the ER is in the

millimolar range (164), a concentration well above the
dissociation constant for Ca2+ release from the SERCA
Ca2+ pump (165).  Thus, as luminal [Ca2+] increases Ca2+

pump activity decreases, reducing the rate of Ca2+

clearance from the cytoplasm.  In neurons, luminal Ca2+

binds to reticular proteins such as calreticulin (166).
Expression levels of these proteins are affected by many
factors, including stress and disease (167, 168). However,
dynamic post-translational regulation of their Ca2+

buffering properties does not appear to occur.  The anionic
composition of the ER lumen affects Ca2+ uptake capacity
with weak organic acids increasing capacity by binding
Ca2+ (169).  Agents such as oxalic acid have been used as
tools to increase the stored Ca2+ available for release (170).
Similarly, pyrophosphate will reversibly bind Ca2+ within
the ER to regulate Ca2+ uptake and release (171).   We have
noted that the anionic composition of solutions used in
whole-cell patch-clamp recording has a significant effect
on the Ca2+ store (Usachev and Thayer, unpublished
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observations).  Luminal Ca2+ levels determine whether the
store will act in release or uptake mode.

4.4. Functional consequences of switching between Ca2+

release and uptake
As described above, there are multiple

mechanisms that regulate ER Ca2+ signaling by acting on
SERCAs to alter Ca2+ accumulation.  Changes in the ER
luminal Ca2+ concentration directly affect the folding and
trafficking of proteins within the ER (152, 172).  Indeed,
prolonged blockade of SERCAs results in neuronal death
(173) and massive release of Ca2+ stores mediates necrotic
cell death (174).  Ca2+ dysregulation associated with altered
Ca2+ stores may contribute to the neurotoxicity associated
with Alzheimer’s disease (175).  Ca2+ release in peripheral
neurons regulates cell excitability (176, 177) and the Ca2+

content of the ER also affects nuclear transport (178).
Ca2+-release from IP3R and RyR contribute to
neurotransmitter release in peripheral neurons (179-181).
In contrast, glutamate release from presynaptic terminals in
several brain regions is not sensitive to thapsigargin (182).
Depletion of Ca2+ stores enhances neurotransmitter release
from chromaffin cells and hippocampal synaptic boutons
by activating Ca2+ influx via store-operated Ca2+ channels
(143, 183).  Oscillations in [Ca2+]i, produced by release
from Ca2+ stores, play an important role in neurite
outgrowth (184, 185).

Long-term potentiation and depression (LTP and
LTD) of synaptic strength are both initiated by transient
increases in [Ca2+]i.  Ca2+ stores have been implicated in
both processes although their precise role is controversial
(6, 186, 187).  The parallel fiber input to Purkinje neuron
dendrites in the cerebellum illustrates the type of role Ca2+

stores might play in synaptic plasticity.  Repetitive
stimulation of parallel fibers produces IP3-dependent
elevation of [Ca2+]i in Purkinje neuron dendritic spines
(188, 189).  Blockade of metabotropic glutamate receptors
or treatment with thapsigargin prevents Ca2+ release and
long-term depression (190).  The release of Ca2+ from the
store provides a spatially restricted increase in [Ca2+]i
required for long-term changes in synaptic plasticity.  LTD
evoked in acutely dissociated cells or cell culture
preparations did not require IP3-mediated Ca2+ release
(191), indicating that a complete understanding of the role
of Ca2+ stores in synaptic plasticity has not been achieved.

Linking ER Ca2+ uptake to specific physiological
processes has not been straightforward.  Inhibition of
SERCA-mediated Ca2+ uptake reduces neurotransmitter
release at some synapses and impairs certain forms of
synaptic plasticity, but these effects are thought to result
from loss of Ca2+ release rather than impaired Ca2+

clearance.   Indeed, Ca2+ stores preferentially refill with
Ca2+ from the extracellular pool, a process aided by
activation of capacitative Ca2+ entry (109, 192).  However,
there are several examples in which Ca2+ uptake by the ER
does appear to be important in the control of Ca2+ in
spatially restricted spaces within neurons.  SERCA-
mediated Ca2+ uptake reduces mitochondrial Ca2+ uptake of
small [Ca2+]i increases, possibly as a result of competition
with the uniporter at ER-mitochondrial junctions (193).  In

dendritic spines, ER Ca2+ pumps play a major role in
clearing Ca2+ following stimulation (194). The hair cell
efferent synapse provides an illustration of SERCA
modulation of neuronal function (195).  Ca2+ influx via
postsynaptic nicotinic receptors leads to a rapid activation
of Ca2+-activated K+ channels.  A second, slower
hyperpolarization follows.  This slow phase is potentiated
by inhibition of SERCA with either cyclopiazonic acid or
thapsigargin.  SERCA inhibition also prevents the
inactivation of the slow, Ca2+-activated K+-conductance,
suggesting that Ca2+ uptake by SERCAs is necessary to
terminate the response.  Sridhar et al (195) hypothesize that
prolonged stimulation of the cholinergic terminal leads to
sufficient postsynaptic Ca2+ influx to trigger Ca2+-induced
Ca2+-release that spreads to other sub-plasmalemmal
cisternae, activating additional K+ channels.  SERCA-
mediated Ca2+ uptake appears to terminate the response.
The slow response may protect the hair cell from over
stimulation.  Thus, when stimulation exceeds threshold, the
Ca2+ influx that mediates the rapid response, also initiates
Ca2+ release from the ER that is orders of magnitude slower
and spreads to activate extra-synaptic K+ channels.  The ER
changes both the temporal and spatial properties of the Ca2+

signal.

Inhibition of SERCAs can inhibit [Ca2+]i
responses resulting from blocked Ca2+-induced Ca2+-release
or enhance [Ca2+]i responses due to lost uptake and
increased capacitative Ca2+ influx.  Thus, the physiological
response to modulation of ER Ca2+ uptake depends on the
Ca2+ content of the ER.

5. Ca2+ BINDING PROTEINS

Rapid [Ca2+]i buffering is primarily accomplished
by Ca2+ binding proteins (196, 197).  A large super family
of proteins with the EF hand Ca2+ binding motif is of
particular importance and includes calmodulin,
parvalbumin, calbindin, S100 as well as many others (198-
204).  Mobile buffers account for over 80% of the Ca2+

binding sites in the nerve terminal (205).  Because rapid
modulation (sec to min) of Ca2+ binding has not been
described, further discussion of this aspect of Ca2+

buffering will not be presented here.  We note however,
that altered expression of these proteins will have marked
effects on the [Ca2+]i transients with consequences ranging
from altered synaptic transmission (205) to neurotoxicity
(206).  Thus, pharmacologic or second-messenger
modulation of Ca2+ binding affinity could theoretically
have significant effects on neuronal function.

6. PMCA

6.1. Alternative splicing generates Ca2+ pump isoforms
with unique properties

The large number of PMCA isoforms suggests
unique and specialized roles for the Ca2+ pumps.  All four
PMCA gene products are expressed in brain (207-209) and
PMCAs have been localized to dendritic spines of
cerebellar Purkinje neurons (210).  PMCA gene products
are alternatively spliced to yield at least 30 Ca2+ pump
isoforms.  Alternative splicing affects the localization,
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Figure 3.  Phosphorylation elicits isoform-specific effects on Ca2+ pump activity.  A.  Scheme shows the general structure of the
4 PMCA gene products.  Site C is within the calmodulin-binding domain (yellow) and has been expanded to show alternative
splicing.  The a variants include an exon (hatched box) that produces a frameshift.  Alternative splicing alters the presence and
position of phosphorylation sites for PKA and PKC resulting in isoform-specific effects on pump activity (↑ - stimulation, ↓ -
inhibition).  A consensus site for phosphorylation by PKA is present in isoforms 1b and 2b (218, 234).  PKA stimulation of Ca2+

efflux from red blood cells and cardiac myocytes has been observed, but has not been demonstrated with well-defined samples of
these isoforms.  The exon included in isoforms 2a, 3a and 4a encodes a site that when phosphorylated by PKC, inhibits
calmodulin binding in isoforms 2a and 3a but does not affect activity in isoform 4a (218, 232).   Phosphorylation of PMCA4b at a
site outside of the calmodulin-binding domain stimulates Ca2+ pump activity (295).  B.  Ca2+ efflux rate was studied in indo-1
AM loaded sensory neurons.  Small Ca2+ loads were elicited in cyclopiazonic acid-treated (5 µM) cells before (control) and after
treatment with 0.5 µM phorbol dibutyrate (PDBu).  Recordings are from non-transfected cells (naive) and cells expressing
antisense to PMCA4 (AS4).  C.  Membrane potential was recorded from rat sensory neurons using the perforated-patch technique.
Depolarizing current injections (3-5 s, 5-10 Hz) evoked a burst of action potentials (truncated) followed by a Ca2+-dependent
slow afterhyperpolarization.  Bradykinin (300 nM) accelerated the recovery of the afterhyperpolarization.  The PKC antagonist,
GF109203x (GF, 5 µM), blocked this effect.  D.  A model for acceleration of Ca2+ efflux by bradykinin and ATP.  Binding of
bradykinin to B2 or ATP to P2Y1 receptors activates Gq and phospholipase C.  This leads to production of diacylglycerol and
activation of PKC.  PKC phosphorylates PMCA4b near the carboxyl terminus, resulting in acceleration of Ca2+ transport by the
pump.  Changes in Ca2+ efflux alter activation of [Ca2+]i-dependent K+ channels.  Reproduced with permission from (223).

modulation and basal activity of the pump (211, 212).
PMCA isoforms are heterogeneously expressed in the
nervous system, suggesting specialized functions unique to
particular cell types (213).  The discussion here will focus

on the results of splicing that alters the sequence of the
calmodulin binding domain, referred to as site C (214,
215)( Figure 3A).  In the absence of Ca2+/calmodulin, the
carboxyl tail of the PMCA protein acts as an autoinhibitory
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Table 3.  The a and b isoforms of PMCA4 have different sensitivities to Ca2+/calmodulin
Isoform Basal activity

(Vmax, %)
Ca2+ affinity
(K1/2, µM)

Ca2+/Calmodulin
activation rate (t1/2, s)

Inactivation
rate (t1/2, min)

CaM affinity
(K1/2, nM)

4a 39 0.84 20 <1 126
4b 8.1 0.29 60 20 18

Basal activity data are from (239), Ca2+ and calmodulin affinity data from (214) and activation/inactivation rates from (217).

domain that blocks Ca2+ translocation (216).   The binding
of Ca2+/calmodulin to the carboxyl tail prevents this
intramolecular interaction, stimulating Ca2+ pumping
activity.  Alternative splicing of site C affects the affinity of
the resulting PMCA isoform for Ca2+/calmodulin (Table
3)(217).  Phosphorylation by protein kinases A and C
affects Ca2+ pump activity in an isoform specific manner
(Figure 3A) (218, 219).

6.2. PMCAs provide high affinity Ca2+ extrusion
PMCAs are the predominant mechanism for

returning [Ca2+]i back to basal levels following modest Ca2+

loads, such as those produced by short trains of action
potentials (220, 221).  In sensory neurons, the PMCA
appears to be the primary mechanism for extruding Ca2+

from the cell and its role in [Ca2+]i recovery kinetics is
particularly apparent during recovery from small Ca2+

loads.  The kinetics of [Ca2+]i recovery varies considerably
between preparations, due to factors that include Ca2+

pump density, surface to volume ratio and method of Ca2+

measurement.  PMCAs are located near neurotransmitter
release zones (222) and are the principal means for [Ca2+]i
recovery at ribbon presynaptic terminals (33), sensory
neuron varicosities (223) and in motor nerve terminals
(224).    This high affinity Ca2+ transport sets the resting
[Ca2+]i and determines the duration of small amplitude
[Ca2+]i transients.

6.3. Pharmacologic modulation of PMCAs
Agents acting directly and selectively on the

PMCA to modulate Ca2+ pumping are limited.  Lanthanum
acts at an intracellular site to inhibit PMCA function, but
this cation is not specific and inhibits many Ca2+-dependent
processes including Ca2+ channels (225, 226).
Carboxyeosin is more selective and inhibits PMCA
function at micromolar concentrations (IC50=0.2-1 µM).  It
acts at an intracellular site; thus, for studies on intact cells,
the esterified form is more effective, but also more difficult
to reverse (227-230). Screening of a peptide library
identified caloxin, an apparently selective PMCA inhibitor
(231).  Caloxin acts on an extracellular site at millimolar
concentrations.  Clearly, potent and selective inhibitors of
PMCA function will be useful tools for research and, if
isoform-selective agents were developed, might have
therapeutic potential.

6.4. Selective modulation of PMCA isoforms by
endogenous signaling pathways

Recent work from our laboratory has examined
the influence of signaling cascades on PMCA function in
sensory neurons.  An example of modulation of PMCA
mediated [Ca2+]i recovery is shown in Figure 3B.  With
SERCA type Ca2+ pumps blocked, small increases in
[Ca2+]i recovered to basal levels via PMCAs 2 and 4, the
predominant isoforms expressed in these cells (223).

Activation of PKC accelerated [Ca2+]i recovery kinetics via
a process that was blocked by PKC inhibitors and absent in
cells expressing antisense to PMCA4.  Thus, activation of
metabotropic receptors that couple to phospholipase C,
with subsequent activation of PKC, would be predicted to
stimulate Ca2+ efflux.  We found this to be true for sensory
neurons in which bradykinin and ATP accelerated
PMCA4b-mediated Ca2+ efflux kinetics via activation of
PKC.

Other potential interactions for the a and b
PMCA isoforms with signaling cascades are summarized in
Figure 3A. PKC-dependent phosphorylation inhibits the
activity of the 2a and 3a isoforms by decreasing the affinity
of the pump for calmodulin (232, 233).  Phosphorylation of
PMCA4a does not alter pump activity, presumably because
this site is within a hairpin structure that does not
participate in calmodulin binding to this isoform (218).
The 1b isoform is phosphorylated by PKA and the 2b
isoform also contains a consensus sequence for
phosphorylation by PKA (218, 234).   Phosphorylation of
these isoforms may contribute to enhanced Ca2+ efflux
from cAMP-stimulated red blood cells and cardiac
myocytes (235-237).  Protein kinases A and C
phosphorylate PMCAs in the CNS in a region specific
manner (238).  Ca2+/calmodulin stimulates all PMCAs
expressed in neurons (211).  However, alternative splicing
of the particular gene products influences the association
and dissociation kinetics of calmodulin binding to the
PMCA (Table 3).  For example, PMCA isoform 2a rapidly
binds Ca2+/calmodulin, enabling its activity to closely track
changes in [Ca2+]i (239).  Alternatively, calmodulin
dissociates very slowly (t1/2= >20 min) from isoform 4b
enabling the pump to “remember” an increase in [Ca2+]i
(240).  In sensory neurons, PMCA activity remains
enhanced for as long as an hour following a large increase
in [Ca2+]i (241).

6.5. PMCAs are sites where signaling pathways
converge

The heterogeneous expression of PMCA
isoforms that differ in sensitivity to modulation by Ca2+,
diacylglycerol, and cAMP signaling cascades identify
plasma membrane Ca2+ pumps as dynamic regulators of
[Ca2+]i recovery kinetics in neurons.  PMCA isoforms
specialize in particular neuronal functions, especially those
triggered by sub-plasmalemmal increases in [Ca2+]i such as
neurotransmitter release and membrane excitability.  For
example, sensory neurons exhibit a pronounced slow
afterhyperpolarization following bursts of action potentials
that is mediated by Ca2+-activated K+ channels (242, 243).
Bradykinin, which acts on metabotropic receptors to
stimulate PKC, accelerated PMCA activity.  The reduced
duration of the [Ca2+]i increase produced a corresponding
decrease in the duration of the afterhyperpolarization
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(Figure 3B-D).  This excitatory effect may underlie the
inhibition of spike frequency accommodation produced by
bradykinin (243).  Thus, neuronal PMCAs are susceptible
to cross talk with other signaling pathways and modulation
of a particular splice variant controls a specific Ca2+-
sensitive neuronal function.  PMCAs are poised to integrate
diverse input signals to alter the duration of [Ca2+]i-
sensitive membrane events.

7. PLASMALEMMAL Na+/Ca2+ EXCHANGE

All three Na+/Ca2+ exchange gene products
(NCX) are expressed in brain with NCX1 most abundant
(244).  At least three isoforms of the K+-dependent
Na+/Ca2+ exchanger (NCKX) are also expressed in brain
(245, 246), although little is currently known about their
functional role in neuronal Ca2+ regulation.  Alternative
splicing of NCX1 transcripts can yield 12 isoforms (247).
The alternatively spliced NCX transcripts display tissue
specific expression suggesting functional specialization of
the NCX proteins.  However, unique roles for most
isoforms have not yet been identified.

7.1. Na+/Ca2+ exchange provides low affinity high
turnover Ca2+ extrusion

The Na+/Ca2+ exchanger has an approximately
10-fold lower affinity for Ca2+ and an approximately 10-50-
fold higher turnover rate than the PMCA (244).  Thus, the
Na+/Ca2+ exchanger is well suited to the rapid removal of
large Ca2+ loads.  Pioneering work on the squid giant axon
showed that Ca2+ and Na+ transport across the membrane
were coupled and reversible (248).  Subsequently, Na+-
dependent modulation of [Ca2+]i recovery has been reported
in neuronal somata (249), including sensory neurons (250),
although separating the role of Na+/Ca2+ exchange across
the plasma membrane from that resulting from exchange
across the mitochondrial inner membrane complicates
interpretation of many studies.  Immunohistochemistry has
shown particularly high levels of NCX-like protein in nerve
terminals, consistent with the most robust demonstration of
neuronal Na+/Ca2+ exchange in preparations of nerve
endings (224, 251, 252).  Catecholamine release from
adrenal chromaffin cells is an established model for
studying neurosecretory processes with properties similar
to adrenergic nerve terminals. Figure 4A shows an example
from Tang et al (253) in which Na+/Ca2+ exchange operates
to lower [Ca2+]i in a chromaffin cell. The recording shows
recovery from depolarization-induced increases in [Ca2+]i
in the presence and absence of extracellular Na+.  Na+-
dependent Ca2+ efflux plays a significant role in removing
Ca2+ from the cytoplasm of these cells (253).   Factors that
modulate Na+/Ca2+ exchange in neurons are presented in
Table 4.

7.2. Thermodynamic modulation of Na+/Ca2+ exchange
The Na+/Ca2+ exchanger is electrogenic; 3 Na+

are transported in exchange for each Ca2+ moved across the
membrane.  Thus, changes in [Na+]i and membrane
potential (Vm) provide an important means to modulate
Ca2+ flux via Na+/Ca2+ exchange.  Indeed, because Na+

influx accompanies intense electrical activity, Na+/Ca2+

exchange is reduced and even reversed following high

frequency stimulation in crayfish neuromuscular junction
(224).  Na+ loads introduced by activation of ligand-gated
channels contribute to Ca2+ influx and impair [Ca2+]i
recovery in central neurons (23, 254, 255).  Thus,
modulation of [Na+]i can profoundly affect Ca2+ clearance
in neurons.   

7.3. Modulation of Na+/Ca2+ exchange by second
messengers

Intracellular ATP levels modulate Na+/Ca2+

exchange even though ATP hydrolysis is not required for
catalytic activity of the exchanger (256).  Phosphorylation
of the Na+/Ca2+ exchanger by protein kinase C accelerates
both Ca2+ efflux and influx in rat brain synaptosomes (257).
Activation of PKC with phorbol esters stimulates Na+/Ca2+

exchange in a number of tissues, including heart (258).
However, phorbol esters failed to stimulate Na+/Ca2+

exchange in some neuronal preparations (259), possibly
because of differential sensitivity of splice variants to
phosphorylation (260).  Nitric oxide donors and cGMP
analogs stimulate Na+/Ca2+ exchange in rat brain slices and
synaptosomes (261).  A neuronal isoform of NCX1 is
stimulated by PKA when expressed in Xenopus oocytes
(262).  In some tissues, modulation of Na+/Ca2+ exchange
by kinases appears to be mediated by phosphorylation of an
accessory protein (263, 264); it is not clear whether this
indirect mechanism occurs in mammalian neurons.
Genistein inhibited Na+/Ca2+ exchange in cortical neurons
in culture, suggesting stimulation by tyrosine
phosphorylation as well (259).  Clearly, phosphorylation
modulates Na+/Ca2+ exchange in neurons.  The sensitivity
of each isoform varies and likely accounts for some of the
discrepant reports.  Phosphatidylinositol-4,5-bisphosphate
(PIP2) also modulates Na+/Ca2+ exchange.  In heart,
elevated ATP increases the formation of PIP2 with
subsequent stimulation of Na+/Ca2+ exchange (265).  PIP2
may bind directly to the autoinhibitory domain on the
exchanger (266).  In summary, ATP stimulates Na+/Ca2+

exchange by direct phosphorylation of the exchanger and
indirectly via phosphorylation of accessory proteins and
phospholipids.

Ca2+ and Na+ binding to high affinity regulatory
sites also modulate Na+/Ca2+ exchange.   As mentioned in
section 7.2, elevated [Na+]i stimulates Ca2+ entry via the
Na+/Ca2+ exchanger due to thermodynamic effects.  The
outward current produced during Ca2+ entry rapidly
inactivates to a new steady state as a result of a Na+- and
time-dependent process (267).    [Ca2+]i also exerts both
thermodynamic and regulatory effects on Na+/Ca2+

exchange.  [Ca2+]i is required for Ca2+ entry via Na+/Ca2+

exchange demonstrating a regulatory role (268).  A large
intracellular loop of the exchanger is required for regulation
by both Na+ and Ca2+ (258).  Ca2+ binds to a regulatory site
on the loop; a discrete binding site for Na+ has not been
identified.  In summary, increases in [Ca2+]i and [Na+]i
produce opposite regulatory effects on Na+/Ca2+ exchange,
[Ca2+]i stimulates and [Na+]i inhibits.

7.4. Pharmacologic modulation of Na+/Ca2+ exchange
Chemical analogs of amiloride, such as 3’,4’-

dichlorobenzamil will inhibit the exchanger at micromolar
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Figure 4.  Na+ dependence of [Ca2+]i decay and catecholamine release from chromaffin cells.  A.  Depolarization (75 mM K+, 1
s, ϒ) induced [Ca2+]i increases in Oregon Green loaded chromaffin cells.  Recordings in the presence (+Na) and absence of
extracellular Na+ (-Na; Na+ replaced with N-methylglucamine) recovered with half times of 5.6 and 12.7 s, respectively.  B.
Amperometric detection of rate of catecholamine release in the presence of Na+.  Exocytotic current spikes are shown from a
single chromaffin cell stimulated five times at 90-s intervals with 75 mM K+ in the presence of Na+ (top).  Current traces in upper
panel were integrated to show charge as a function of time (bottom).  C.  Same as B above but in the absence of extracellular Na+.
Note the different scales in B versus C and the increase in catecholamine release with repetitive stimulation in the absence of
Na+.  Reproduced with permission from author and publisher of (253).
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Table 4.  Modulation of Na+/Ca2+ exchange
Modulator EC50, µM Effect Mode References
Pharmacologic
KB R7943 0.3-2

17-30
Inhibit
Inhibit

Ca2+ entry
Ca2+ efflux

275, 276

3’,4’-dichlorobenzamil 17 Inhibit Ca2+ entry & efflux 269, 270
bepridil 30 Inhibit Ca2+ entry (partial) & efflux 274
Zn2+ 15

>30
Inhibit
Inhibit

Ca2+ influx
Ca2+ efflux

278

Thermodynamic
depolarize Vm Inhibit

Stimulate
Ca2+ efflux
Ca2+ entry

244

↑ [Na+]i Inhibit
Stimulate

Ca2+ efflux
Ca2+ entry

244

Signaling
PKC - Stimulate Ca2+ entry & efflux 257
PKA - Stimulate Ca2+ efflux 262
PIP2 <50 Stimulate Ca2+ influx 265
[Ca2+]i 0.01-1 Stimulate Ca2+ influx & efflux 268
[Na+]i >40 mM Inhibit Ca2+ influx 267

concentrations (269, 270).  These compounds inhibit both
Ca2+ entry and Ca2+ efflux modes of the exchanger (271)
and have additional non-selective inhibitory effects on ion
channels at high concentrations (272, 273).  The
antiarrhythmic drug bepridil also inhibits Na+/Ca2+

exchange (274).  KB R7943 preferentially inhibits
Na+/Ca2+ exchange in the Ca2+ entry mode (275, 276).  The
selectivity of this compound for inhibition of Ca2+ entry
versus Ca2+ efflux mode depends on the experimental
conditions (277).  Inorganic cations such as Zn2+ also
inhibit Ca2+ efflux via Na+/Ca2+ exchange (278).  La3+ is
not effective at concentrations that spare other influx and
efflux mechanisms (226).  Currently available drugs that
inhibit Na+/Ca2+ exchange are effective but neither potent
nor selective.

7.5. Functional consequences of modulating Na+/Ca2+

exchange in neurons
Na+/Ca2+ exchange appears to play a major role

in excitation-secretion coupling in neuronal tissue,
analogous to its role in excitation-contraction coupling in
heart.  The Na+/Ca2+ exchanger acts in either of two modes
depending on the activation state of the cell.  It serves as a
low affinity, high capacity Ca2+ extrusion mechanism when
[Na+]i is low.  When [Na+]i is high and/or the membrane
depolarized, the Na+/Ca2+ exchanger provides a route for
Ca2+ entry.

Blockade of Ca2+ efflux via Na+/Ca2+ exchange
enhances neurotransmitter release from rat brain
synaptosomes (252), adrenal chromaffin cells (253, 279)
and cultured hippocampal neurons (280, 281).  For an
extensive list of studies that demonstrate Na+-dependent
modulation of synaptic transmission see Blaustein and
Lederer (244).  Figure 4 shows an example from Tang et al
(253) in which Na+/Ca2+ exchange operates to lower [Ca2+]i
in a chromaffin cell.  Thus, its inhibition by removal of
extracellular Na+ resulted in a slowed return to basal [Ca2+]i
following a depolarizing stimulus.  Depolarization-induced
release of catecholamines was greatly enhanced in the
absence of extracellular Na+ (Figure 4B and C).  Repetitive

application of depolarizing stimuli in the absence of Na+,
evoked progressively more release of catecholamines
measured by cyclic voltametry.  This is consistent with
impaired Ca2+ efflux allowing [Ca2+]i to accumulate and
more effectively trigger secretion. This result is consistent
with the prominent role of Na+/Ca2+ exchange in clearing
Ca2+ from active secretory zones.

In crayfish motor terminals, the Na+/Ca2+

exchanger actually mediates Ca2+ influx.  Thus, inhibition
of Ca2+ entry with KB R7943 reduced the accumulation of
Ca2+ during tetanus, resulting in decreased post-tetanic
potentiation of the neuromuscular junction (224).  In
amacrine cells, prolonged depolarization induces Ca2+

influx via the Na+/Ca2+ exchanger and evokes GABA
release; repolarization induces Ca2+ efflux via the
exchanger and terminates neurotransmitter release (282,
283).  There are clearly situations in which Ca2+ enters the
nerve terminal via Na+/Ca2+ exchange; however, it remains
unclear whether these findings can be generalized broadly.

Because Na+/Ca2+ exchange mediates Ca2+ entry
during intense stimuli that depolarize and/or elevate [Na+]i,
drugs such as KB R7943 that selectively block Ca2+ entry may
prove effective in preventing excessive excitation in neuronal
systems.   KB R7943 reduced phospholipase activity following
cerebral ischemia (284) and protected hippocampal slices from
hypoxic/hypoglycemic injury (285).  The neuroprotective
effects of some Na+ channel blockers may also result in part
from reduced Ca2+ influx via Na+/Ca2+ exchange (286).
However, KB R7943 did not protect cortical neurons from
glutamate-induced neurotoxicity (255), suggesting that during
prolonged glutamate exposure Ca2+ influx via the Na+/Ca2+

exchanger is not a major factor.  Other studies have found that
inhibition of Na+/Ca2+ exchange potentiates neurotoxicity,
suggesting that the exchanger operating in Ca2+ efflux mode
helps to protect neurons from Ca2+ overload (287-289).  The
role of the Na+/Ca2+ exchanger in neuronal injury varies with
the preparation and type of insult.  Thus, the utility of drugs
that modulate Na+/Ca2+ exchange as neuroprotective agents
is not clear.
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In summary, the low affinity, high turnover rate,
and reversibility of the Na+/Ca2+ exchanger make it well
suited to participate in the control of neurosecretion.   The
relative contribution of the exchanger to both Ca2+ entry
and Ca2+ efflux appears to vary between release sites.
Although the role of Na+/Ca2+ exchange in neurotoxicity is
presently unclear, further investigation may determine
conditions in which Na+/Ca2+ exchange inhibitors improve
neuronal survival.

8. PERSPECTIVES

8.1. Competing for Ca2+ - the integrated response
The various Ca2+ uptake and efflux processes

compete for cytoplasmic Ca2+.  The predominant process is
determined by affinity, rate, capacity and location relative
to the Ca2+ source.   Drugs and second messengers
principally modulate the affinity and rate with resulting
effects on the amplitude, duration, and spatial distribution
of the [Ca2+]i signal.  The inherent redundancy in Ca2+

clearance mechanisms can make these effects subtle.  The
cell’s ability to compensate for the reduced function of one
element of the Ca2+ clearance machinery complicates study
of the modulation of these processes (290).  Sorting out the
overlapping and dynamic contributions of Ca2+ regulatory
processes will be important for determining the specific
roles of the individual processes and how their modulation
by drugs and second messengers affect the cellular
response.

8.2. Future directions
The increasingly apparent diversity of the

molecular entities that make up the [Ca2+]i regulatory
system reveals new sites for modulation and links particular
[Ca2+]i clearance processes to specific cellular functions.
The diversity and specialization of the PMCA isoforms
created by alternative splicing was the specific example
discussed here, but heterogeneity in Na+/Ca2+ exchange
(247), SERCAs (124, 125), RyR and IP3R (291, 292) and
mitochondria (60, 90, 293) have been described.  These
Ca2+ regulatory mechanisms are expressed in combinations
tailored to the needs of specific cell-types and even
particular regions within a cell.  Future elucidation of the
types of signaling in which these molecular targets
participate will identify means to modulate specific
functions.  For example, drugs that reduce mitochondrial
Ca2+ uptake might protect neurons from Ca2+-induced
apoptosis (38, 91).  In failing heart, decreased SERCA
activity can be restored by ectopic expression of SERCA1a,
enhancing contractility and providing a potential
therapeutic approach to heart failure (294).  As shown in
Figure 3, phosphorylation of a particular PMCA isoform
alters the excitability of sensory neurons (223).  Inhibition
of Na+/Ca2+ exchange impaired short-term plasticity of the
crayfish neuromuscular junction (224).  These recent
findings support our contention that specialized Ca2+

clearance mechanisms participate in unique cellular
functions and thus, represent important targets for
pharmacological and physiological regulation of the
neuron.

Modulation of [Ca2+]i clearance mechanisms can
influence cell functions ranging from excitability to death.

The complex array of proteins that make up the Ca2+

clearance system would seem to present attractive
pharmacologic targets for modulation of neuronal function.
However, compounds discovered to date tend to be toxic
and their use limited to research applications.
Development of highly selective agents could yield drugs
with the potential to alter synaptic transmission, to adjust
electrical excitability and afford neuroprotection.
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