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1.  ABSTRACT 
 

Many reviews have been written on protein 
kinase B/Akt focusing on its history dating back from the 
isolation of the Akt8 transforming murine leukemia virus 
by Staal in 1977, to the co-discovery of the Akt1 gene by 
the three groups in 1991 (reviewed in 7). There are 
currently over 22,000 publications in the PubMed database 
with “Akt” as a keyword - these publications describe a 
wealth of diverse data on the physiological functions of Akt 
isoforms. Many of these publications describe roles of Akt 
ranging from its requirement for cellular processes such as 
glucose uptake, cell survival and angiogenesis to roles in 
diseases such as cancer and ischaemia (22). This review 
will focus on the evidence for Akt signaling in different 
kidney cells during diabetes, or diabetic nephropathy (DN).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. INTRODUCTION 

Akt belongs to subfamily of serine/threonine 
protein kinases called AGC protein kinases and is involved 
in numerous signaling circuits. Akt is a downstream 
effector of the phosphatidylinositol 3-kinase (PI3K) 
pathway, where generation of PtdIns-3,4,5-P3 recruits Akt to 
the plasma membrane (2, 9, 24). Full activation of Akt requires 
phosphorylation on Thr308 by PDK1 (1) and Ser473 by the 
TORC2 complex (51), in addition to DNA-dependent protein 
kinase (DNA-PK) in genotoxic stressed cells (23). 
Downstream targets of Akt control multiple cellular processes 
such as glucose uptake, cell proliferation, gene transcription, 
protein synthesis and cell survival (7, 19, 60, 61). 

 
The mammalian Akt gene family consists of 

three highly homologous genes coding for the three Akt 
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isoforms termed Akt1, Akt2 and Akt3 (5, 8, 12, 15, 32, 43, 
45). The three Akt proteins are very similar in sequence 
and structure and are thought to be activated by a common 
mechanism (7). The distinct phenotype of transgenic mice 
lacking individual Akt isoforms however, suggests that 
there are well-defined physiological roles for each Akt 
protein in mammals.  Both Akt1 and Akt2 are widely 
expressed in mammalian tissues (66). Mice lacking Akt1 
display growth retardation and increased (~40%) neonatal 
mortality (11, 65). Akt2 homozygous knockout mice 
develop a metabolic disorder, exhibiting a mild type 2 
diabetes-like phenotype due to insulin resistance (13). Akt3 
is predominantly expressed in the brain and was shown to 
be important in brain development and size (21, 57). More 
complex double and even triple knockout strategies have 
been employed to determine the minimal Akt “unit of 
activity” required for cellular and embryonic survival. 
Yang and colleagues identified that Akt1-/-; Akt3-/- mice 
died in utero at E11-12. Interestingly, Akt1-/-; Akt3+/- 
mice developed severe defects in thymus and heart and 
died several days after birth, whereas Akt1+/-; Akt3-/- 
survived normally, suggesting a dominant role for Akt1 
(65). These experiments were further extended by the 
demonstration that Akt2-/-;Akt3-/- mice survived normally, 
and indeed a single functional allele of Akt1 was all that 
was required for mouse development and survival (20). Liu 
and colleagues used Akt1-/-;Akt2-/- mouse embryo 
fibroblasts (MEFs) to transfect Akt3 siRNA. The data 
showed that apoptosis of these cells was only increased 
when approximately 80 % reduction of Akt3 expression 
was achieved (39). Together, these data suggest that only a 
small amount of Akt activity is required for normal cellular 
survival and mammalian development. 
 
3. AKT SIGNALING IN DIABETIC NEPHROPATHY 
 

Diabetic nephropathy (DN) is a progressive 
fibrotic disease of the kidney as a result of chronic 
hyperglycaemia during diabetes. The pathogenesis of 
DN is characterised by progressive loss of kidney 
function due to glomerulosclerosis (thickening of the 
glomerulus due to deposition of ECM) and 
tubulointerstitial fibrosis leading to scarring of the 
kidney tubules and impaired reabsorbtive capacity (40). 
The cellular mechanisms of both glomerulosclerosis and 
tubulointerstitial fibrosis have been extensively 
reviewed (37, 40). Particular focus has been given to the 
cellular events driving tubulointerstitial fibrosis, as the 
degree of fibrosis appears to correlate tightly with the 
severity of renal disease (47). Epithelial-mesenchymal 
transition is thought to contribute to renal fibrosis in 
DN, as cytokines such as TGF-beta1 that drive EMT are 
elevated in the diabetic kidney (6, 59). However, recent 
evidence has suggested that the source of myofibroblasts 
in kidney may arise not from renal epithelial cells 
undergoing EMT, but rather from pericytes (29). In vitro 
and in vivo, EMT is characterised by loss of epithelial 
proteins such as E-cadherin and ZO-1, signifying loss of 
epithelial tight junctions and barrier integrity, leading to 
compromised renal tubule function. Additionally, EMT 
features increased expression of fibroblast proteins such 
as α-smooth muscle actin and vimentin, which leads to 

altered cell shape and increased motility (4, 31). TGF-
beta1 is the primary cytokine that drives EMT in vitro 
and in vivo, and utilises both canonical and non-
canonical signaling pathways to mediate its effects. 
TGF-beta1-mediated activation of Smad2/3 
phosphorylation leads to a range of gene expression 
changes such as decreased E-cadherin expression and 
increased alpha-smooth muscle actin that characterise 
EMT (58, 59). In addition, TGF-beta1 activates other 
pathways such as the PI3K Akt pathway, and this non-
canonical cascade has also been implicated in renal 
damage during diabetes and other fibrotic conditions. 
Evidence for the involvement of Akt in diabetic kidney 
disease and other fibrotic conditions of the kidney will 
be discussed below. 

 
Akt has been implicated in diabetic 

nephropathy using a wide range of cell and animal 
models. Early reports identified that extracellular matrix 
production, a hallmark of glomerulosclerosis, is 
regulated by Akt. Krepinsky and colleagues 
demonstrated that both mechanical stretch and high 
glucose-induced collagen 1 production in mesangial 
cells required Akt activity (35). Akt activity may also be 
required for high-glucose induced increases in TGF-
beta1 expression in diabetic tubular epithelial cells (36). 
One of the earliest events in DN is glomerular 
thickening as a result of mesangial cell hypertrophy. 
Several publications have identified that Akt signaling 
contributes to mesangial cell hypertrophy in diabetic 
kidney disease. Nagai and colleagues identified that 
growth arrest specific gene-6 (Gas6) signaling through 
its Axl receptor drives mesangial cell hypertrophy in 
type 1 diabetic rodent models in an Akt-dependent 
manner (44). Consistently, hyperglycaemia decreased 
the expression of the lipid phosphatase PTEN, an 
inhibitor of Akt activation, leading to hypertrophy of 
mesangial cells (42). These authors also showed that 
TGF-beta1 treatment of mesangial cells also decreased 
PTEN expression with concomitant increases in Akt 
activation (42). Importantly, Kato and colleagues 
showed that TGFbeta1 increased the levels miR-216a 
and miR-217 in mesangial cells. These miRNAs target 
PTEN, reducing its expression leading to Akt activation 
(33) Recent findings from Zhang et al demonstrate that 
micro RNA-21 (miR-21), which targets PTEN, also 
protects from glomerular mesangial cell proliferation in 
DN (68). Thus, the regulation of miRNAs by high 
glucose and TGF-β1 further support the role of Akt 
signaling in early cellular hypertrophy associated with 
diabetic nephropathy.  

 
Diabetic nephropathy is associated with loss of 

renal cells, particularly glomerular podocytes which 
form the glomerular filtration barrier (3, 55). Akt 
signaling has been implicated in this process. Levels of 
Akt phosphorylation are elevated in the kidney tubules 
of the Goto Kakizaki type 2 diabetic rat (34) and 
streptozotocin-treated type 1 diabetic mice (46). Chuang 
and co-workers identified that advanced glycation end-
products generated as a result of chronic 
hyperglycaemia increased apoptosis in vitro (14). 
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Murine podocytes exposed to AGE-modified BSA were 
more apoptotic, and also displayed decreased Akt 
phosphorylation (14). This decrease in Akt activity led 
to the “liberation” of FOXO4 from the inhibitory 
constraint mediated by Akt phosphorylation, leading to 
FOXO4 nuclear translocation and increased expression 
of the pro-apoptotic Bim protein (14). In vivo, the db/db 
experimental mouse model of DN displayed early 
diabetic nephropathy at 12 wk which was accompanied 
by decreased Akt phosphorylation in the glomeruli (56). 
Podocytes isolated from db/db mice did not display Akt 
phosphorylation in response to insulin, whereas db/+ 
mice did. Podocyte viability was reduced in db/db mice, 
and this was linked to reduced Akt-mediated survival 
signaling (56). These two reports implicate changes in 
Akt signaling as a key event in podocyte loss during 
early diabetic nephropathy. A recent report from Rane 
and colleagues focussed on renal tubular epithelial cell 
apoptosis in response to high glucose, an event 
regulated by p38MAPK activation (50). Rane et al 
showed that p38MAPK induced apoptosis of renal 
proximal tubular epithelial cells (RPTCs) could be 
inhibited by expression of constitutively active Akt. 
Consistently, PI3Kinase inhibitors or siRNA targeting 
Akt led to p38MAPK activation in the absence of high 
glucose (46). Others have suggested that IGF1 Akt 
signaling may be important for mesangial cell survival 
in diabetic nephropathy (53).  

 
Crosstalk between different signal transduction 

cascades downstream of TGF-beta1 is a feature of 
diabetic nephropathy. Ghosh Choudray and co-workers 
showed that TGF-beta1 increased fibronectin production 
in mesangial cells in an Akt-dependent manner (27). 
Other reports indicate that that Akt can enhance Smad3-
mediated collagen I expression in mesangial cells 
treated with TGF-beta1 (49), a process that may also 
involve the small GTP binding protein Rac1 (28). In 
contrast, two reports demonstrated that Akt inhibited 
Smad3 mediated transcription by direct binding and 
sequestration of Smad3 in the cytosol (16, 48). Akt 
kinase activity was not required for this inhibition, and 
the association of Akt and Smad3 was stimulated by 
insulin but inhibited by TGF-beta1 (16, 48). Similarly, 
Seong and co-workers demonstrated that proteins such 
as Smad3 could interact with PDK1, (the Thr308 kinase 
of Akt), an association that was also facilitated by 
insulin stimulation but inhibited by TGF-beta1 (52). In 
contrast to Akt, binding of Smad proteins to PDK1 (the 
Thr308 Akt kinase) increased its kinase activity (52).  
Akt has also been implicated in actin disassembly and 
mesangial cell dysfunction in mesangial cells. In 
response to connective tissue growth factor (CTGF), a 
secreted mediator of many TGF-beta1 effects, mesangial 
cells undergo a rapid change in actin cytoskeleton 
structure, a process regulated by Akt p27Kip1 
signaling (17). Furthermore, in the diabetic milieu, 
mesangial cell Akt activation in response to CTGF is 
blunted, suggesting that chronic hyperglycaemia may 
alter Akt signaling in vivo (25). Furlong and colleagues 
also noted that incubation of high-glucose treated 
mesangial cells with an inhibitor of PKCbeta could 

restore cellular responses to CTGF (25). Work from the 
Krepinsky laboratory has identified 
EGFR PLCgamma PKCbeta Akt pathway that is 
activated by hyperglycaemia to drive extracellular 
matrix production (62, 63). Thus, complex signal 
transduction pathways downstream of TGF-beta1 and 
other factors integrate Akt signaling with other 
molecules such as Smad3 and p38MAPK to regulate 
kidney cell function. 

 
Akt has also been implicated in TGF-beta1-

induced damage to renal epithelial cells during diabetic 
nephropathy. Both PI3kinase and Akt activation are 
required for TGF-beta1 induced epithelial-mesenchymal 
transition (EMT) in NRK52E tubular epithelial cells 
(34). Recent evidence from the cancer field suggests 
that Akt isoforms regulate miRNA production and EMT. 
Iliopoulos and co-workers identified that knockdown of 
Akt1, but not Akt2 decreased miR-200 abundance, 
promoting EMT in MCF10A breast cancer cells (30). 
Zeng et al showed that biliverdin reductase may serve as 
an upstream activator of PI3K and Akt to drive EMT in 
response to hypoxia in HK-2 renal epithelial cells (67). 
Pharmacological inhibition of integrin-linked kinase 
(ILK) inhibits Akt phosphorylation and attenuates TGF-
beta1-induced EMT in renal tubular epithelial cells (38). 
Together, these data suggest that Akt signaling is an 
important regulator of TGF-beta1 mediated cellular 
events during diabetic nephropathy.  

 
Since inappropriate Akt activation has been 

reported in many models of diabetic nephropathy, 
strategies to intervene pharmacologically to alleviate 
DN in human patients have been explored. In particular, 
the nutrient sensing mTOR (target of rapamycin) has 
been the subject of several reports in this area. mTOR is 
activated by the small GTPase Rheb, which is inhibited 
by tuberous sclerosis complex1/2 (TSC1/2), which act 
as a GAP protein to inactivate Rheb (18, 26). TSC1/2 
activity is inhibited by Akt, leading to Rheb, and mTOR 
activation. Song and colleagues present data showing 
that Akt-mediated inhibition of Smad3 activation 
requires mTOR activity in prostate epithelium cells (54). 
Nagai and colleagues identified that Gas6-mediated 
mesangial cell hypertrophy required both Akt and 
mTOR activity (Nagai K et al, 1999). Treatment of 
diabetic rats with the mTOR inhibitor rapamycin 
(siroliumus) for 4 wk decreased mesangial matrix 
production and attenuated the severity of DN (41, 64). 
Other pharmacological strategies that affect Akt activity 
have also been shown to reduce indices of damage in 
DN in various models. Troglitazone (an insulin-
sensitizer) was shown to attenuate high-glucose induced 
EMT in renal proximal tubule cells, a process that 
involved Akt signaling (36). Bussolati and colleagues 
showed that statins could rescue ox-LDL induced 
podocyte apoptosis, a process requiring statin-mediated 
Akt activation (10). Thus, inhibition of Akt and its 
downstream targets such as mTOR may provide future 
therapeutic benefit for the treatment of diabetic 
nephropathy.  
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Figure 1. Summary of Akt signaling in kidney cell types. Activation of Akt downstream of the TGF-beta1 receptor triggers 
multiple signaling cascades impinging on Smad signaling, mTOR regulation and other pathways that regulate multiple processes 
in diverse kidney cells. Regulation of miRNAs provide additional complexity to the system. 
 
4. CONCLUDING REMARKS 
 

A summary of current knowledge of Akt signaling 
in the kidney is given in Figure  1. The complexity of these 
signaling networks emphasises the diverse control of kidney 
cell processes, be it podocytes, mesangial cells or tubular 
epithelial cells, regulated by Akt. Future experiments will 
provide further fascinating insights into the role of the Akt 
kinase family in kidney physiology and disease. 
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