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1. ABSTRACT 
 

Mast cells have gained increased recognition as 
immunomodulators playing a role in a variety of 
physiological and pathological processes. They were first 
described in 1879, but their origin remained controversial 
for almost a century. Today, it is known that mast cells are 
present in the bone marrow as committed mast cell 
precursors.  They leave the bone marrow as progenitors and 
complete their maturation at peripheral sites. Investigations 
on the maturation of bone marrow derived mast cells 
focused on bone marrow cultured in the presence of 
interleukin-3 (IL-3) and stem cell factor (SCF). SCF is 
essential for mast cell survival and mice that lack either 
SCF or the receptor for SCF are mast cell deficient. It is the 
microenvironment surrounding the mast cell that 
determines its mature phenotype.  SCF, IL-3 and IL-9 have 
been identified among the most important cytokines for 
regulation of mast cell growth and differentiation. Several 
factors have been identified as chemoattractants for mast 
cells, but their exact mechanism of action remains unclear. 
Mast cell recruitment is most likely a combination of the 
direct effect of mast cell mediators on the mast cell 
progenitor as well as the indirect effect of these mediators 
on other cell types. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Mast cells (Figure 1) have long been known to 
play a pivotal role in inflammatory and allergic reactions 
(1-3). Recently they have gained increased recognition as 
immunomodulators playing a role in a wide variety of 
physiological processes (4-8). Mast cells respond to stimuli 
of innate and adaptive immunity with the immediate and 
delayed release of inflammatory mediators. Due to their 
ability to instantly release a wide variety of mediators, mast 
cells are essential for optimal responses during 
inflammatory processes (9, 10). Mast cells also direct the 
development of Th2 responses to allergens, especially 
when exposure occurs simultaneously with exposure to 
pathogens and their products (11-13). In addition to allergy 
and inflammation, mast cells have been shown to be 
involved in a number of normal and pathological conditions 
including wound healing, tissue remodeling, cancer, 
diseases of the nervous and cardiovascular systems, and 
autoimmune diseases (5, 6, 9, 14-17). Mast cells are located 
in connective tissue at the interface between the host and 
the environment and under normal conditions their 
numbers remain relatively constant.  Mast cell numbers 
increase during hypersensitity reactions, infections, and in 
response to various disease processes (7). During
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Figure 1.  Peritoneal Mast Cell.  By electron microscopy, 
mature mast cells are characterized by a cytoplasm replete 
with electron dense secretory granules (SG), a centrally 
located nucleus (N), and few cytoplasmic organelles. The 
surface is covered with fine microvilli. 

 
recruitment, mast cells are thought to leave the bone 
marrow as progenitors and migrate to peripheral sites 
where they complete their maturation (1, 18). It is the 
microenvironment surrounding the mast cells that 
determines their mature phenotype. Two types of mature 
mast cells, mucosal mast cells (MMC) and connective 
tissue type mast cells (CTMC), have been described for 
rodents and humans (19-22). The specific homing 
mechanism that leads to mast cell recruitment is poorly 
understood and much still remains to be learned about mast 
cell development and recruitment.   

 
3. ORIGIN OF MAST CELL COMMITTED 
PRECURSORS 

 
Although mast cells were first described by Paul Erlich 

in 1879 (23), their origin remained controversial for almost a 
century. Several possible candidates for mast cell precursors 
were suggested, among them mesenchymal cells, 
lympohocytes, macrophages, mononuclear phagocytes and 
myeloid cells (24, 25).  Because of their association with 
connective tissue, it was initially suggested that mast cells were 
derived from primitive mesenchyme (26, 27). Other studies 
have suggested that mast cells could be derived from 
lymphocytes (28). In the gut, a novel type of granulated 
lymphocyte was described that was thought to have the ability 
to differentiate into mast cells (29). The presence of both 
macrophages and mast cells was noted in soft agar cultures of 
rat peripheral blood suggesting that mast cells and 
macrophages may have a common precursor (30). Other in 
vitro studies using rat peritoneal exudates also suggested that 
mononuclear phagocytes give rise to mast cells (31-33). 

 
 The pioneering work of Kitamura et al. (34) in 
1977 was the first to demonstrate that tissue mast cells are 

derived from bone marrow precursors. Normal C57Bl (+/+) 
mice and Beige (C57Bl BgJ/BgJ) mice which have large, 
easily distinguished, abnormal mast cell granules (35) were 
used in this study. When bone marrow from Beige mice 
was grafted into irradiated normal C57Bl mice, it took 
approximately 40 days for the donor mast cells to appear in 
the tissue of the host animal.  This suggested that the mast cells 
found in the host tissues are derived from precursors from the 
donor bone marrow.  This hypothesis was further strengthened 
by subsequent experiments using W/WV mice (36).  Russell 
(37) extensively reviewed the available literature on both 
W*/W* and Sl*/Sl* mutant mice and concluded that the W 
locus encodes a receptor expressed by the affected cells in the 
W*/W mice. Examination of various tissues revealed that the 
W/Wv mice were deficient in mast cells and that this mast cell 
deficiency could be corrected by bone marrow transplantation 
from wild type mice.  On closer examination of the mast cell 
distribution in the transplanted W/WV, it appeared that, 
especially in the skin and mesentery, the mast cells may be 
developing in clusters.  In order to test the possibility that these 
mast cell groups were clonal in nature, W/Wv mice were 
injected with a mixture of bone marrow cells from Beige and 
normal C57Bl mice. When the resulting clusters of mast cells 
were examined over 95% of the clusters consisted of either 
Beige-type mast cells or normal-type mast cells.  These results 
indicated that the mast cell clusters were clonal in nature being 
derived from a single bone marrow derived mast cell precursor 
(38). Additional studies demonstrated that in comparison to the 
bone marrow, the thymus, lymph node, and Peyer's patch have 
less than 0.1% of the number of mast cell precursors.  
Furthermore, T lymphocytes and the thymus are not essential 
for precursor differentiation into mature mast cells (39). 
 
 Other investigations examined the maturation and 
function of tissue resident mast cell precursors using 
various in vitro methods.  Early studies focused on mast 
cells derived from rat and mouse thymus (40-43) and 
mouse lymph nodes (44).  Mast cell suspensions were 
prepared from the thymus or lymph nodes, plated onto 
embryonic fibroblast feeder layers and cultured in medium 
supplemented with horse serum.   Under these conditions it 
was possible to establish long-term cultures of clonally 
derived mast cells that contained metachromatic granules 
and bound IgE.  When lymph nodes were obtained from 
mice that had been immunized with horse serum and then 
cultured on embryonic skin-derived feeder layers in the 
presence of horse serum, the differentiation of the mast 
cells was more complete (45). Moreover, two types of mast 
cell clones could be identified in these cultures, one 
originating from the lymphoid tissue and the other from the 
embryonic skin monolayer (24).  The mast cells originating 
from precursors in the lymph node and thoracic duct cell 
suspensions have the characteristics of MMC (46). While 
the mast cells arising from embryonic skin fibroblast 
monolayers have the characteristics of CTMC. These 
studies demonstrated that mast cell progenitors (MCp) for 
both MMC and CTMC exist in the peripheral tissues could 
develop into mature mast cells in vitro. 
 
 In the course of investigating the development of 
mature mast cells from rat peritoneal exudates,  it was 
reported that spleen and bone marrow also contain MCp 
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Figure 2. Bone Marrow Derived Mast Cells after 21 Days in vitro. Mouse bone marrow was placed in culture in the presence of 
SCF and IL-3.  A. By light microscopy after 21 days, only the mast cells survive and many already contain metachromatic 
granules (arrows). Inset. Mast cell after 21 days in culture containing metachromatic granules. Toluidine Blue. B. By electron 
microscopy, the cells have a typical mast cell morphology.  The cytoplasm is full of electron dense secretory granules (SG) and 
the nucleus (N) is centrally located.  The cell surface is covered with fine microvilli.  
 
that are capable of maturing into mast cells in vitro (32), 
thus confirming the in vivo results of Kitamura (34, 39, 47) 
showing that the bone marrow is the major source of MCp. 
With the ability to culture bone marrow derived mast cells 
the search for the mast cell committed precursor (MCcp) 
accelerated (25). The capacity to successfully culture bone 
marrow derived mast cells independent of feeder layers, 
depended upon the addition of factors to the media that 
specifically simulated growth and differentiation of mast 
cells. In 1981, several groups described media supplements 
that supported growth of pure mast cell populations.  
Cloned Ly1+2- inducer T cells produced a factor that 
selectively supports the growth and differentiation of 
mouse mast cells from hematopoetic tissue (48). Addition 
of WEHI-3 conditioned medium to mouse bone marrow 
cultures permitted the establishment of non-adherent mast 
cell lines (49).  Growth of mouse bone marrow cells with 
conditioned medium from pokeweed mitogen- or 
Concanavalin A-stimulated splenocytes also yielded a pure 
population of mast cells (50-53). These cells were  termed 
P cells because of their persistent growth in liquid culture 
(51). The cells that arose with culture in conditioned 
medium from Concanavalin A-stimulated splenocytes were 
characterized and considered to be mucosal mast cells 
(MMC) (54). 
 
 Attention then turned to identifying the exact 
nature of the growth factor(s) that were responsible for 
mast cell survival and differentiation in mouse bone 
marrow cultures (Figure 2). Initial attempts to characterize 
these factors identified a mast cell growth factor (MCGF) 
in conditioned medium from Concanavalin  A-stimulated 
splenocytes (55). While this factor was distinct from T cell 

growth factor its relationship to granulocyte colony-
stimulating factor (G-CSF) remained unclear. Further 
characterization revealed that MCGF was a separate and 
distinct growth factor from G-CSF (56). P cell stimulating 
factor (PSF) was also isolated from T lymphocytes and PSF 
and MCGF were found to share many similar properties.  
MCGF was purified from Concanavalin A-stimulated 
splenocytes and termed interleukin-3 (IL-3) (57). Since the 
WEHI-3 cell line was found to constitutively produce IL-3 at 
levels that were 100 times those seen with Concanavalin A-
stimulated splenocytes (58), WEHI-3 conditioned medium was 
used to purify IL-3 to homogeneity (59).  The purified IL-3 
gave the same dose-response curve as WEHI-3 growth factor, 
MCGF and P cell stimulating factor (60), indicating that IL-3 
was responsible for the biological activities of the other 
factors. Murine IL-3 was subsequently cloned (61).  In 
cultures of murine bone marrow IL-3 supports the growth of 
almost all hematopoetic lineages (62-64). Although IL-3 
would support the growth of MMC in vitro another factor, IL-
4, was necessary to support the growth of CTMC (65, 66). The 
other growth factor that is essential for maintaining mast cell 
colonies in vitro is stem cell factor (SCF) (67). Russell (37) 
also examined the data available for the Sl*/Sl* mutant 
mice and concluded that that the Sl locus encodes for the 
ligand and that the receptor is encoded by the W locus. 
SCF or c-kit ligand binds to the c-kit receptor on mast 
cells and other hematopoetic cells (68-76) and induces 
mast cell proliferation in vitro (77-80). In primates 
injection of SCF resulted in the expansion in the number 
of mast cells at many sites.  When administration of SCF 
was stopped, the number of mast cells returned to normal. 
Again, indicating a critical role for SCF in regulation of the 
mast cell population in vivo (81)
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Figure 3. Mouse Mast Cell Committed Precursor.  The 
MCcp was sequentially immunomagnetically isolated using 
two mast cell specific antibodies (mAb AA4 and mAb 
BGD6).  By electron microscopy the MCcp is a small 
undifferentiated cell with a large centrally located nucleus 
(N), little cytoplasm and no cytoplasmic granules. (IB, 
immunomagnetic bead conjugated with mAb BGD6).  
 
3.1. Mouse bone marrow derived mast cell committed 
precursor 

The identification of IL-3 as a growth factor for 
mast cells stimulated the search for a MCcp.  In liquid 
cultures of  mouse bone marrow supplemented with IL-3, 
after 7 days mast cells and granulocytes were the 
predominant cell types (82).  In another set of experiments, 
at one week approximately one third of the cells now have 
receptors for IgE (63, 64) and by 3 weeks all of the cells in 
the culture had IgE receptors. By electron microscopy the 
cells had a typical mast cell morphology (64). In vitro 
velocity sedimentation and buoyant density studies further 
suggested that the mast cell precursors are low density cells 
(82). Flow cytometry investigation of surface markers 
showed that there were transient subpopulations of Thy1.2 
positive cells that also expressed IgE receptors, CR3 
receptors or neither receptor. The data from this study 
suggested a differentiation pathway in which the Thy 1.2 
positive precursor cells give rise to granulocytes and mast 
cells (83).  In mouse IL-3 dependent bone marrow cultures, 
transcripts for high-affinity receptor for immunoglobulin E 
(FcεRI) subunits as well as the membrane receptors are 
present by 1 week of culture (84).  These cells do not have 
granules, and have few morphological characteristics of 
mature mast cells. With time in culture, there is an increase 
in the number of FcεRI positive mast cells, and an increase 
in the expression of FcεRI subunits, as well as an increase 
in histamine content. Agarose cultures at one week showed 
that the majority of the cells were MCp (25). It was further 
noted that various cytokines could influence mast cell 
maturation.  When BMMC were cultured in the presence of 
rIL-3 with or without SCF, the cells did not stain with 

safranin and produced virtually no 35S-labeled heparin 
proteoglycans. They did, however, contain higher levels of 
mouse MC protease (MMCP)-5 mRNA and mast cell 
carboxypeptidaseA (MC-CPA) mRNA than MNCP-6 
mRNA. In contrast BMMC cultured in the presence of 
rSCF alone or in a sequential culture, first with rSCF 
followed by IL-3 expressed high levels of MMCP-4 and 
MMCP-6 mRNA as well as transcripts that encoded 
MMCP-5 and MC-CPA (85). Additional studies with 
BMMC showed that IL-10 could modify the expression of 
MMCP-2 (86) and that IL-4 synergistically enhanced the 
growth of mast cells when IL-3 was present (87, 88).  
Taken together, these results demonstrated that the MMC 
phenotype is not fixed, but is dynamic and appears to be 
regulated by the cytokines present in the various 
microenvironments surrounding mast cells. 

 
Although these in vitro studies pointed to the 

existence of a MCcp in the bone marrow, it remained 
difficult to identify.  A MCp was identified in fetal mouse 
blood at only 15 days of gestation (89).  This promastocyte 
was Thy-1lo, c-kithi, FcεRIneg, contained cytoplasmic 
granules, and expressed mRNA for MC-CPA, MCP-2 and 
MCP-4. Using sequential immuno-isolation with two mast 
cell specific antibodies (mAb AA4 and mAb BGD6), 
Jamur et al. (90) were successful in purifying a MCcp from 
the bone marrow of Balb/c mice (Figure 3). These 
undifferentiated cells were small with a large nucleus, little 
cytoplasm and no cytoplasmic granules.  The cells were 
CD34+, CD13+, and c-kit+. The MCcp were negative for 
Sca-1, Ly-6G/Ly-6C, CD11b (Mac-1), Thy-1, CD40, 
CD45R/B220 and FcεRI.  However, they did contain 
message for the α and β subunits of FcεRI, mouse-MCP-5, 
mouse-MCP-7 and mouse-CPA.  When the MCcp were 
cultured in the presence of SCF and IL-3 they gave rise 
only to mast cells. Moreover, these cells had the ability to 
reconstitute the mast cell population in lethally irradiated 
mice. This and additional studies have shown that mAb 
BGD6 is a lineage marker for mast cells (18, 91). Using 
FACS analysis Chen et al. (92) identified a MCcp in adult 
C57BL/6 mouse bone marrow that was Lin-, c-Kit+, Sca-1-, 
Ly6c-, FcεRIα-, CD27-, β7+ and T1/ST2+. These cells gave 
rise only to mast cells in culture and could reconstitute mast 
cells in C57BL/6-KitW-sh/KitW-sh c-kit mutant mast cell-
deficient mice. These authors further suggested that the 
MCcp is derived directly from multipotential progenitors in 
the bone marrow.  The MCcp isolated from mice (90, 92) 
has many of the same characteristics as the MCcp 
previously described in human bone marrow (93). 
 
3.2. Human Bone marrow derived mast cell committed 
precursor 
 The identification of a MCcp from human bone 
marrow was stimulated by the finding that mouse bone 
marrow cultured in the presence of IL-3 gave rise to mast 
cells (60). However, in initial attempts to culture human 
bone marrow in liquid cultures with IL-3, the bone marrow 
gave rise to basophils (94). By modifying the culture 
conditions, it proved possible to culture mast cells from 
human bone marrow on the interface between soft agar and 
liquid medium supplemented with human rIL-3 (95, 96). 
Further studies showed that when bone-marrow derived 
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Figure 4. Mast Cell Maturation in Rat Bone Marrow. Rat bone marrow was immunostained with anti-IgE (arrowhead) and 
examined by electron microscopy.  Mast cells in all stages of maturation, including very immature (MCp), immature and mature, 
could be identified. (N, nucleus; arrows, secretory granules). 
 
CD34+ cells were cultured in liquid culture in serum free 
medium in the presence of rhIL-3, rhIL-6 and rhSCF they 
gave rise to mast cells, thus indicating that the bone-
marrow derived mast cell precursor is CD34+/c-kit+ (97). It 
was also observed that CD13 is expressed on the surface of 
rodent mast cells (98), on cultured human mast cells from 
liver (99) as well as being expressed at several different 
stages of myeloid differentiation (100). When FACS sorted 
CD34+/c-kit+/CD13+  cells were cultured in the presence of 
various cytokines only mast cells and monocytes grew from 
this population, indicating that the human MCcp was 
included in a population of cells that was CD34+/c-kit+/ 
CD13+(93). The human MCcp was similar to the MCcp 
identified in murine bone marrow (90, 92).  The cells were 
lymphoid-like, had a large nucleus, little cytoplasm, no 
cytoplasmic granules and were FcεRI negative. 
 
4. MAST CELL MATURATION  
 
4.1. Maturation of mast cells at peripheral sites 
 

Identification of mast cells in the early stages of 
maturation, especially in vivo, has been limited (101), and 
the process of mast cell differentiation and maturation is 
still poorly understood (102, 103). The majority of the 
studies to date on mast cell maturation have been done with 
experimental animal models (104-106), or in young 
animals (107, 108). The majority of in vivo studies on mast 
cell maturation have relied on the presence of granules or 
granule content to identify the stage of mast cell maturation 
(101). However, cytoplasmic granules are not present in 
sufficient quantity in the very immature mast cells to 
permit their use as an identifying characteristic. A number 
of previous investigations have attempted to use antibodies 
to identify immature mast cells, but their usefulness has 
been limited due to the fact that these antibodies were not 
mast cell-specific and recognized other cell types in the 
preparation. Another limitation of the use of antibodies to 
detect granule contents in immature mast cells is that the 
immature cells do not yet express the full complement of 
granule components (103). By immunoelectron 
microscopy, using antibodies that mark the mast cell 
surface (109), it was possible to characterize a very 
immature mast cell containing only one or two small 
cytoplasmic granules that is positive for both FcεRI and 
binds IgE (110). It is likely that these very immature cells 

represent MCp. These MCp appeared to have the same 
morphological characteristics as small lymphocyte-like 
cells previously reported to be MCp (110-113). 
 
4.2. Maturation of bone marrow derived mast cells 

The initial differentiation of MCcp is presumed to 
occur in the bone marrow.  However, few studies have 
examined the maturation of mast cells in the bone marrow.  
Initial investigations focused on the culture of mouse or 
human bone marrow in the presence of growth factors, 
especially IL-3 and SCF.  Using bone marrow cultures 
enriched for hematopeotic progenitors cultured in the 
presence of IL-3 and SCF, it was demonstrated that the 
expression of FcεRI on the mast cell surface occurs at 
about 3 days in culture and is correlated with the initiation 
of secretory granule formation (112, 114). When murine 
bone marrow cells were cultured in the presence of IL-3 for 
1 week, the cells contained few, if any, granules, but they 
did contain transcripts for FcεRI subunits and the majority 
of the cells bound IgE.  However, only 25% of the cells 
could be recognized as mast cells. The expression of 
transcripts and the number of receptor-positive cells 
continued to increase with time in culture. This was 
accompanied by a progressively larger number of cells that 
were granulated and by week 3 ~90% of the cells could be 
recognized morphologically as mast cells (25, 84).  

 
Using the mast cell specific mAb AA4 as well as 

panel of other antibodies it has been shown that mast cells 
can completely differentiate in the bone marrow into 
connective tissue-type mast cells (Figure 4) (115). The 
stages of maturation of the bone marrow-derived mast cells 
agree with those described for other granulocytes in the 
bone marrow (116-119). In addition to the MCcp, three 
distinct stage of mast cell maturation, very immature, 
immature, and mature, were seen in the bone marrow. The 
very immature mast cells contained few granules and 
would not be recognized as mast cells without the use of 
specific cell surface markers. Pure populations of mast cells 
were also isolated from the bone marrow using mAb AA4-
conjugated magnetic beads. The same three stages of 
maturation that were seen in the unfractionated bone 
marrow could be identified in the isolated mast cell 
population. All of the cells were α subunit-FcεRI+, c-kit+ 
and bound IgE, thus confirming their identity as mast cells. 
By flow cytometry, mast cells represent approximately 
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2.4% of the cells in the bone marrow. Staining with 
toluidine blue and berberine sulfate, as well as RT-PCR 
indicated that the mast cells are connective tissue-type mast 
cells. Therefore, all of the factors necessary for mast cell 
maturation are present in the bone marrow. These studies 
have indicated that mast cell maturation in the bone 
marrow occurs with the same sequence as that seen at 
peripheral sites, such as the peritoneal cavity (105, 106). 

 
4.3. Major factors affecting mast cell proliferation and 
maturation 
  The microenvironment surrounding a mast cell 
determines its mature phenotype (62, 120). In many of the 
early studies, the cultures were mixed consisting mainly of 
mast cells and macrophages.  Thus, contradictory findings 
for a given cytokine may result from the fact that in 
response to the cytokine, macrophages were producing 
other factors that act on mast cells.  In the 
microenvironment, SCF, IL-3, and IL-9 have been 
identified among the most important cytokines for 
regulation of mast cell growth and differentiation (121-
124). The most critical requirement for mast cell growth 
and maturation is the ligand SCF secreted by fibroblasts, 
stromal cells and endothelial cells, and its receptor c-kit 
(CD117) on the mast cell itself (125).  This was clearly 
shown in SCF deficient mice such as WCBF1-KitSl/KitSl-d 
(Sl/Sld) (126, 127) and in c-kit deficient mice such as 
WBB6F1-kitW/KitWv (W/Wv) (36, 69, 75).  As 
demonstrated by many studies (see section 3), SCF is also 
required for survival of mast cells in vitro.  Other cytokines 
and growth factors in combination with SCF can also 
modulate mast cell maturation. IL-3 has been shown to play 
a key role in the survival and development of mast cells 
from mouse bone marrow (128-130) and either SCF or IL-3 
alone can support diffentiation of mast cells from 
unfractionated mouse bone marrow (60, 85). In cultures of 
human mast cells IL-3 as well as IL-4 also promotes mast 
cell survival (131, 132). In murine bone marrow cultures 
IL-4 in the presence of SCF induced the differentiation of 
CTMC (133). IL-4 also acts synergistically with IL-3 to 
promote murine mast cell growth and survival (128, 129). 
However, culture of mouse bone marrow derived and 
peritoneal mast cells in the presence of IL-3, IL-4 and IL-10 
leads to apoptosis (134). In isolated human intestinal mast cells 
IL-4 in combination with SCF promoted mast cell proliferation 
and induced the expression of Th2-type cytokines (IL-3, IL-5 
and IL-13) (135). IL-4 attenuated the number of mast cells, 
especially the population that expressed only tryptase in 
cultures of human fetal liver-derived mast cells (136). IL-5 has 
also been shown to influence human mast cell proliferation and 
maturation (93, 132). IL-6 has been shown to stimulate 
development of splenic mast cells (137). IL-6 in combination 
with SCF and IL-10 was also able to induce the development 
of a MCp from bone marrow (138). In cultures of human mast 
cells, depending on the subset of mast cells, IL-4 inhibits mast 
cell growth and differentiation (136, 139, 140) and may lead to 
apoptosis (141). IL-6 has also been shown to prolong survival 
and to stimulate mast cell growth in the presence of SCF (93, 
131, 132, 142-145) and can protect mast cells from apoptosis 
induced by IL-4 (141).  In contrast, in cultures of CD34+ SCF 
derived mast cells from human cord blood IL-6 inhibited mast 
cell growth and the reduced the expression of c-kit (146). 

However, in another study, human mast cells derived from 
cord blood proliferated and matured in the presence of SCF, 
IL-6 and IL-10 (132).  In vitro IL-9 can also act as a potent 
mast cell growth factor in murine and human systems, alone or 
in synergy with IL-3 (147, 148). IL-9 transgenic mice that over 
express IL-9 displayed an infiltration of both MMC and 
CTMC in the gut, trachea and kidney (122). IL-10 is another 
co-factor that in combination with SCF stimulates mast cell 
proliferation (129, 149, 150). However, IL-10 also inhibits IL-
6 production (151), and reduces the surface expression of 
FcεRI (150, 152). On the other hand, cultures of total murine 
bone marrow with SCF, IL-3 and IL-10 leads to mast cell 
apoptosis (153). Limited studies have been done on the effect 
of IL-13 on mast cells.  When IL-13 is added to human lung 
mast cells cultured in the presence of SCF, IL-6 and IL-10, 
mast cell proliferation and FcεRI expression increased (154). 
In murine mast cells IL-13 in the presence of IL-4 can also 
stimulate mast cells proliferation (124). IL-15 (155, 156) and 
IL-16 (157) both increase the proliferation of mast cells in 
conjunction with other cytokines. 
 

 In addition to the cytokines cited above various 
other factors can affect mast cell growth and differentiation. 
Using both in vitro and in vivo systems, nerve growth factor 
(NGF) has been shown to induce murine mast cell 
development, survival and function (158-160). In vitro in the 
presence of NGF, murine mast cells up regulate mast cell 
specific characteristics such as FcεRI, histamine and tryptase 
(161). NGF also induces the differentiation of CTMC in the 
presence of IL-3 (162). In murine peritoneal mast cells NGF 
prevents apoptosis of the mast cells (163) and NGF in 
combination with SCF prevents apoptosis in human cord blood 
derived mast cells (164). Tumor necrosis factor-α (TNF-α) is 
important for mast cell survival and differentiation both in vitro 
and in vivo (137, 165).  Transforming growth factor-β (TGF-β) 
has both stimulatory and inhibitory effects on mast cells. It 
inhibits proliferation and induces apoptosis in both human and 
murine mast cells (166-174) while under other conditions it 
can have a stimulatory effect, promoting murine MMC 
development (175, 176) and the transcription of mast cell 
proteases (177, 178). Activin A, a member of the TGF-β 
superfamily, in a dose dependent fashion stimulated the 
differentiation of MCp into mature mast cells (179). 
Thrombopoeitin (TPO) also has differential effects in human 
and murine mast cells. The effect on human mast cells is to 
induce mast cell development (180, 181), while TPO 
inhibits differentiation in murine mast cells (182, 183). 
Further studies have shown that TPO is important in 
selectively increasing dermal mast cells as compared to 
mucosal mast cells (184).  Other cytokines such as 
interferon-γ (IFN-γ) (132, 185, 186), granulocyte-
macrophage-colony stimulating factor (GM-CSF) (144, 
187) and retinoic acid (188-190) all inhibit mast cell 
proliferation. 
 
5.  MAST CELL RECRUITMENT  
 
 There are two distinct steps in mast cell 
recruitment that must be considered.  First is the 
recruitment of MCp/MCcp from the bone marrow into the 
circulation and second is the exit of mast cells from the 
circulation into peripheral tissues where they mature 
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Figure 5. Mast Cell Recruitment to Peripheral Sites.  MCcp arise in the bone marrow and mature in situ into MCp.  It is the MCp 
which leaves the bone marrow and travels via the circulatory system to peripheral sites.  At these sites, stimulated by the local 
microenvironment the MCp matures into a mature mast cell. 
 
(Figure 5).  Because of the lack of markers that could 
distinguish between the MCp and the MCcp it was unclear 
which cell was actually recruited to peripheral sites. 
Recently, using mast cell specific markers that distinguish 
between the MCp and MCcp, it was demonstrated that it is 
the MCp and not the MCcp that is present in the circulation 
and is responsible for repopulation of peripheral sites (18).  
Using osmotic lysis of peritoneal mast cells by distilled 
water (104, 106), twenty-four hours after intraperitoneal 
injection of distilled water no mast cells were present in the 
peritoneal lavage and only a few mast cells could be seen in 
the mesentery, near adipose tissue.  At 12 hours after i.p. 
injection of distilled water MCp could be isolated from the 
blood, and by 48 hours could be identified in mesenteric 
blood vessels.  During this time the percentage of MCcp 
increased in the bone marrow.  During infection with the 
intestinal nematode Trichinella spiralis there is a loss of 
MCp that are c-kit+/β7+ from the bone marrow that 
correlates with their appearance in the blood and their 
appearance  3 days after infection in the gut (191). 
Additionally, at least a portion of the repopulation of the 
mesentery and peritoneal cavity can be attributed to mitosis 
of MCp(18).  
 
 In order to repopulate peripheral sites, MCps 
must leave the bone marrow. Although the exact 
mechanism(s) by which this occurs remain to be elucidated, 
the initial steps appear to be recruitment of MCp by 
adhesion to the microvascular endothelium and transport 
via the circulatory system (18) to peripheral sites.  Rodent 
mast cells express α4, β1 and β7 integrins (192). The 
importance of β7 integrin for mast cell recruitment to the 
small intestine during helminth infection was demonstrated 
using knockout mice for β7 integrin (193). The homing of 
MCp to the small intestine proved to be dependent upon the 
interaction of α4β7 integrin with the  mucosal addressin 
cellular adhesion molecule-1(MAdCAM-1) (194). This 

homing of MCp to the small intestine relied on the presence 
of CXC chemokine receptor 2 (CXCR2) and on vascular 
cell adhesion molecule-1 (VCAM-1). Mice deficient in the 
chemokine receptor CXCR2 also have reduced numbers of 
intestinal MCp, suggesting that chemokines, such as 
CXCL1 (KC) and CXCL2 (MIP-2), are involved in MCp 
trafficking (195, 196).  In the lung, VCAM-1 interactions 
with both α4β1 and α4β7 integrins are essential for MCp 
recruitment and expansion during antigen-induced 
pulmonary inflammation (197) CXCR2 appears to regulate 
endothelial VCAM-1 expression, MCp migration, as well 
as the level of intraepithelial MCp in the lungs of 
aerosolized, antigen challenged mice (198). Mac-
1(CD11b/CD18, CR3) a β2 integrin has also been shown to 
be required for normal levels of mast cells in the peritoneal 
cavity, peritoneal wall, and certain areas of the skin (199). 
 
 Although several factors have been identified as 
chemoattractants for mast cells their exact mechanism of 
action remains unclear (6). Mast cell recruitment to 
peripheral sites is most likely a combination of the direct 
effect of the release of mast cell mediators on the MCp 
itself as well as the indirect effect of these mediators on the 
activation of other cell types. These other cells can then 
also release mediators that have chemoattractant activity 
for mast cells (6, 200-203).  One of the most potent 
chemoattractants for mast cells is TGF-β1 (204-207). TGF-
β1 is stored in mast cell granules in an inactive form and 
upon release it is activated by cleavage with chymase 1 
which is also stored in mast cell granules (208). Another 
member of the TGF-β superfamily, Actinvin A, also 
induces migration of MCp (179). Leukotriene B4 obtained 
from activated mast cells also induces pronounced mast cell 
chemotaxis (209, 210) in immature, but not mature mast 
cells. Other eicosanoids, such as prostaglandin E2 may also 
be involved in mast cell migration, but are effective at a 
different stage of maturation (211). SCF which is critical to 
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mast cell survival (see section 3) is also known to be an 
important chemotactic factor for mast cells, especially for 
MCp (125, 212-215) and its action is potentiated by IL-3. IL-3 
alone is also a chemoattractant for mast cells (215, 216).The 
CC chemokine Regulated upon Activation, Normal T cell 
Expressed and Secreted (RANTES) has also been well 
characterized as a mast cell chemotatic factor that has 
pathological implications especially in asthma (205, 217-221). 
Monocyte chemotactic protein-1 (MCP-1), macrophage 
inflammatory protein-lα (MIP-l) and  platelet factor-4 (PF-4) 
were also shown to be chemotactic for mast cells (221). While 
RANTES and MCP-1 had potent chemotactic activity on both 
IgE activated and unactived cells, PF-4 and MIP-1α were 
chemotactic for IgE activated cells. Tumor necrosis factor 
(TNF) is another potent chemotactic factor for mast cells 
(218). In rat peritoneal mast cells the response was biphasic.  
At lower concentrations, there was significant mast cell 
migration, but at higher concentrations, migration was 
inhibited. NGF has been shown to induce chemotactic 
movement of peritoneal mast cells in a dose dependent manner 
(222). Chemokine receptors also play a role in mast cell 
migration. The presence of CXCR2 on the surface of human 
mast cells is necessary for the mast cell migratory response to 
IL-8 (223). CXCR3 has also been shown to be important for 
the migration of lung mast cells in response to chemokines 
secreted by airway smooth muscle cells in asthmatic patients 
(224). The anaphylatoxins C3a and C5a are also capable of 
inducing mast cell migration (225).  Serum amyloid A (SAA), 
an acute-phase protein, has been shown to induce mast cell 
migraton through a pertussis toxin-sensitive signal transduction 
pathway (226). Canine mast cells can be activated by C 
Reative Protein (CRP) in a G-protein mediated activation 
(227). The human cathelicidin-derived antibacterial peptide, 
LL-37 has been shown to induce mast cell chemotaxis through 
specific receptors coupled to the G protein-phospholipase C 
(PLC) signalling pathway (228). The same group also 
demonstrated that human β-definsin-2 (hBD-2) also induced 
mast cell migration by binding to specific receptor(s) that are 
coupled to G protein-phospholipase signaling (229). Laminin, 
a component of the extracellular matrix, has also been shown 
to have chemotactic properties for mast cells.  The chemotaxis 
of mast cells for laminin increases when the cells are 
activated via FcεRI (230). 
 
6. CONCLUSIONS 
 
 While mast cells were first described over a 
century ago, they remained an enigma until recently.  
Today, they have taken center stage as an 
immunomodulator and are assuming an increasingly 
important role in many disease processes. It is now known 
that MCcp originate directly from multipotential 
progenitors in the bone marrow.  It is the MCp not the 
MCcp that leaves the bone marrow to repopulate peripheral 
sites.  The microenvironment at the peripheral site 
determines the phenotype of the mature mast cell.  Many of 
the factors required for mast cell development, maturation 
and recruitment have been identified, at least in vitro. In 
vivo, the interaction of mast cells with other cells makes 
these processes much more complicated. Additional 
research is needed to characterize mast cell physiology both 
in vitro and especially in vivo. A greater understanding of 

the maturation, recruitment and function of mast cells will 
lead to the development of new therapeutic strategies for 
controlling mast cell function. 
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