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1. ABSTRACT 

 
Tissue and cell sources for cartilage repair are 

revised, including: 1) cartilage and subchondral bone (auto 
and allografts; single or multiple/mosaicplasty grafts), 2) 
cultured chondrocytes (autologous/ACI, characterized/CCI, 
matrix assisted/MAC, or allogenic), 3) adult mesenchymal 
stem cells (MSCs), 4) progenitor cells from perichondrium 
and periosteum, 5) embryonic and prenatal stem cells, 6) 
induced pluripotent stem cells, and 7) genetically modified 
cells. We consider the biological mechanisms that explain 
usage and possible complications, advantages and 
limitations, emerging technologies and possible 
modulations on extracellular matrix properties and on 
migration, proliferation, de-differentiation, re-
differentiation, morphology, function and integration of the 
cells. The study of MSC role involve: a) identification, b) 
location (perivascular niche hypothesis, pericytes as 
progenitor cells), c) lineage (myoadipofibrogenic system: 
transit amplifying cells, fibroblast/myofibroblasts, 
chondrocytes, osteoblasts, odontoblasts, vascular smooth 
muscle cells and adipocytes), and d) use in cartilage repair, 
comprising: 1) MSCs recruited from neighbouring tissues 
(bone marrow stimulation, MSCs based “in situ” cartilage 
repair, microfracture) and 2) MSCs cultured and expanded 
from bone marrow, adipose tissue, synovial membrane or 
granulation tissue.  

2. INTRODUCTION 
 
Since spontaneous healing of the articular 

cartilage (an avascular tissue with very limited capacity for 
repair - 1) is practically non-existent, the treatment of 
cartilage damage (traumatic injuries or chondropathies) 
involves: 1) cartilage transplantation or 2) cell-based repair 
(stimulating new hyaline cartilage growth, in the main by 
tissue engineering procedures). The possible cell sources 
for cell-based cartilage repair (hyaline-like cartilage 
formation, providing durability and normal, pain-free 
articular function) include: a) chondrocytes, b) adult 
mesenchymal stem cells (MSCs), c) perichondrial and 
periosteal cells, d) embryonic and prenatal stem cells, e) 
induced pluripotent stem cells (IPS), and f) genetically 
modified cells. In any case, cartilage repair requires 
obtaining: a) the best possible tissue (hyaline-like cartilage 
formed by chondrocytes embedded within an extracellular 
matrix of collagens, non-collagenous proteins, and 
proteoglycans), which resists compression and shearing 
forces (the fibrocartilage mainly withstands tensile forces, 
while the hyaline cartilage resists compression forces), b) 
good tissue integration with the native cartilage, preventing 
additional cartilage deterioration, and c) smooth surfaces of 
the joint, allowing for movement of bones within the 
articulation, with the least possible friction. Our goal is to 
present potential tissue and cell sources in cartilage repair 
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and the biological mechanisms that explain usage and 
possible complications. 

 
3. TISSUE BASED -REPAIR. CARTILAGE AND 
SUBCHONDRAL BONE TRANSPLANTATION 

 
When the graft only consists of cartilage, the 

results are ineffective, since the cartilage has very limited 
capacity for repair due to its avascular nature and its matrix 
encapsulated chondrocytes, which are unable to initiate an 
effective repair and to recruit local sources of progenitor 
cells. To avoid these difficulties, the graft must contain 
cartilage and subchondral bone (a firm carrier that allows 
revascularization), and must be implanted in an 
osteochondral defect (to reach a zone of vascularization). 
Indeed, as the receptor subchondral bone is penetrated, the 
healing response allows for revascularization of the osseous 
part of the graft, its overlying cartilage remaining viable 
and well attached. Therefore, the source of tissues in this 
procedure is the subchondral bone tissue and the four 
articular cartilage zones (superficial, transitional, radial, 
and the interphase calcified cartilage zone). These zones 
contain their respective collagen networks (Type II 
collagen, as principal component, and smaller amounts of 
collagen III, VI, IX, X, XI, XII, and XIV) and 
proteoglycans (aggrecan, syndecans, glypican, decorin, 
byglican, fibromodulin, lumican, perlecan, and epiphycan). 
This procedure includes autograft or allograft 
transplantation of cartilage and subchondral bone. In 
osteochondral autograft transplantation, the graft is 
transferred from one part of the joint (non-weight bearing 
so as to prevent weakening the joint, which limits the size 
of the graft) to another (only small focal chondral defects 
because of the limited availability of autologous 
osteochondral graft). Single or multiple (mosaicplasty) 
grafts may be undertaken. Osteochondral allograft (cadaver 
donor, with more osteochondral tissue available) 
transplantation may be considered when the cartilage defect 
is extensive, prior procedures have failed, or in the older 
patient population. Survival of more than 80% of allografts 
at 3-10 years has been demonstrated (2, 3), although there 
are concerns about histocompatibility.  

 
4. CELL-BASED CARTILAGE REPAIR (CBCR). 
CHONDROCYTES 

 
Although cartilage has poor intrinsic capacity for 

regeneration, its cells can be cultured and expanded “in 
vitro”. Indeed, the chondrocytes may be arthroscopically 
harvested from the healthy articular cartilage (e.g. from a 
non-weight-bearing area of the medial trochlear groove of 
the knee or the superior ridge of the femoral condyles), 
cultured, and expanded to obtain a sufficient amount (over 
a 3-6 week period), and applied to the cartilage defect 
during a second arthroscopic procedure (4). At the recipient 
site, re-implantation takes place in “bioactive chambers”, 
covered by autologous periosteum (currently replaced by 
other materials because of periosteum hypertrophy) or 
tissue-engineered membranes (e.g. collagen or hyaluronic 
acid-based membranes) sealed with fibrin glue. The cells 
thrive in their bioactive chambers (either with a simple 
membrane or with a matrix structure) forming a new 

cartilage. Growth factors may stimulate the implanted cells 
to proliferate, re-differentiate, and form specific matrix 
cartilage. Second-generation tissues in cartilage repair 
include matrix-assisted chondrocyte implantation to create 
a cartilage-like tissue in 3-D culture systems (5). 

 
In this way, the most commonly used cell source 

in cartilage repair is the implantation of “ex vivo” expanded 
chondrocytes (4, 6-9), principally the autologous 
chondrocyte implantation (ACI) and the characterized 
chondrocyte implantation (CCI). Allogenic chondrocyte 
implantation has occasionally been used. 

 
ACI does not always form hyaline cartilage, but 

does form fibrocartilage or mixed hyaline/fibrocartilage 
(10, 11). In CCI, expanded chondrocytes expressing 
molecular markers predictive of the ability to form hyaline-
like cartilage “in vivo” are used, optimizing the hyaline 
cartilage-like formation (better structural repair, compared 
with microfracture) (12-14), with clinical improvement (15, 
16). Indeed, CCI is associated with less fibrous tissue, more 
chondrocyte-like cells, and a higher content of the 
physiological extracellular matrix components (collagen 
type II, aggrecan and hyaluronic acid, and in minor 
concentration collagens types VI, IX, XI, fibromodulin, 
decorin, biglycan, and cartilage oligomeric matrix protein) 
(15). Autologous chondrocytes may be harvested from 
other regions (non articular cartilage, such as costal and 
auricular) with lower morbility and greater capacity of 
proliferation and chondrogenic potential.  

 
Since chondrocytes are immunoprivileged when 

surrounded with extracellular matrix, allogenic chondrocyte 
implantation (alginate-based scaffolds containing human 
mature allogenic chondrocytes) has been used with clinical 
and histological outcomes that are equal but not superior to 
those of other cartilage repair techniques (17).  

The advantages and limitations of these 
procedures have been widely reviewed (5, 18, 19). A major 
limitation of all the methods previously outlined is due to 
the fact that chondrocytes “in vitro” lose their differentiated 
phenotype and their chondrogenic potential 
(dedifferentiation to a fibroblast-like phenotype during 
expansion). However, culture techniques to preserve the 
expression of the transcription factor Sox9, which 
maintains the chondrogenic lineage (20), have shown good 
results. In monolayer cultures, chondrocytes lose their 
phenotypes (they dedifferentiate, change their morphology 
and surface receptors, and develop a non-specific synthesis 
profile with different expression of the matrix components, 
such as presence of collagen type I, III, and IV, and 
reduction of collagen type II, aggrecan, cartilage 
olygomeric matrix protein, chondromodulin, 
chondroadherin, and factor Sox-9) (9, 21-23). Chondrocyte 
de-differentiation is not observed in 3-D cultures (24) and 
re-differentiation (re-expression of cartilage-specific genes) 
of the de-differentiated chondrocytes occurs in 3D matrices 
(24-26), including those cultured in alginate beads (25, 27) 
or when adding chondrocytes to a 3D collagen matrix (28). 
In this regard, emerging technologies and new generation 
issues in cartilage repair have been considered and 
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developed (5, 29), such as matrix-assisted autologous 
chondrocyte transplantation (MACT) in which autologous 
chondrocytes are implanted with their own pre-formed 
extracellular matrix after using biodegradable and 
biomechanically favourable biomaterials.   

 
5. CBCR. ADULT MESENCHYMAL STEM CELLS 

 
Adult mesenchymal stem/stromal cells (MSCs) 

may be used for cartilage repair. In this section we will 
briefly consider the following aspects of MSCs: a) MSCs, 
adult stem cells (ASCs), and transit amplifying cells 
(TACs), b) differentiation and functional role, c) criteria for 
identification, d) location, and e) use in cartilage repair.  

 
5.1. MSCs, ASCs and TACs 

The ASCs are able to self renew, to intervene in 
maintaining the structural and functional integrity of their 
original tissue, and to adopt functional phenotypes and 
expression profiles of cells from other tissues, expressing 
greater plasticity than traditionally attributed to them (30-
52). TACs are committed progenitors among the ASCs and 
their terminally differentiated daughter cells and, with more 
rapid though limited proliferation, increase the number of 
differentiated cells produced by one ASC division. These 
cells intervene in the replacement of damaged or dead cells 
with new healthy cells using repair mechanisms. Repair 
includes two types of processes: regeneration and repair 
through granulation tissue. Regeneration occurs when dead, 
degenerated, or damaged cells are replaced by other cells of 
the same type (e.g. chondrocyte transplantation). In repair 
through granulation tissue (a provisional tissue), MSC 
lineage develops, proliferates, and differentiates together 
with angiogenesis and recruitment of macrophages. At first, 
the MSC lineage shares findings between ASCs and TACs. 
Finally, the transition is between TACs and terminally 
differentiated cells.  

 
5.2. Differentiation and functional role of MSCs 

MSCs may differentiate into a complex 
myoadipofibrogenic line, an apparently heterogenous 
population (a number of mesenchymal phenotypes) that 
shows various activities and may predominantly express 
some of them, such as extracellular matrix 
synthesis/fibrogenesis (e.g. fibroblasts/myofibroblasts, 
pericytes, chondrocytes, osteoblasts, and odontoblasts), 
contractility (e.g. vascular smooth muscle cells and 
pericytes), or lipid storage (adipocytes). Indeed, the adult 
mesenchymal stem cells may differentiate 
phenotypically into adipose, cartilage, bone, vascular 
smooth muscle, skeletal and cardiac muscle, and 
hematopoietic-supportive stromal cells (MSCs may even 
lead to hepatocytes and neural elements) (30, 33, 39, 46, 
53-62). Furthermore, MSCs secrete large quantities of 
bioactive factors that are both immunomodulatory 
(inhibit lymphocyte surveillance of the injured tissue, 
thus preventing autoimmunity) and trophic (inhibit 
apoptosis and stimulate angiogenesis and the mitosis of 
tissue-specific and tissue-intrinsic progenitors) (63). 
Therefore, MSCs can be used in tissue engineering 
therapies and as inductive or instructive delivery 
vehicles (64).  

5.3. Criteria for identification of MSCs 
The criteria for identification of human MSCs 

include the following: a) adherence to plastic in standard 
culture conditions, b) expression of at least CD-73, CD-90, 
and CD-105, while CD-11b, CD-14, CD-19, CD-34, CD-
45, and CD-79a are negative, and c) “in vitro” 
differentiation into chondroblasts, adipocytes, and 
osteoblasts (65).  

 
5.4. Location of MSCs (perivascular/pericytic niche for 
MSCs) 

MSCs have been isolated from numerous 
locations, such as bone marrow, periosteum and trabecular 
bone, muscle, adipose tissue, tendon, brain, liver, spleen, 
kidney, thymus, lung, pancreas, heart, ovary, dermis, 
synovium, and deciduous teeth (66-68).  

 
Pericytes are considered by some authors as 

progenitor cells with great mesenchymal potential and as a 
source of undifferentiated mesenchymal cells (52, 69-78). 
In postnatal life, retaining considerable mesenchymal 
potentiality, pericytes isolated from different tissues may 
have the capacity to differentiate into other cell types (69-
79), such as fibroblasts/myofibroblasts (75, 80-82), 
chondroblasts (83), osteoblasts (72, 75, 81, 84-88), 
odontoblasts (89, 90), preadipocytes (82, 91), vascular 
smooth muscle cells (the reverse conversion, SMCs to 
pericytes, as also pointed out - 69, 92-), myointimal cells 
(69, 74, 92-96), and phagocytes (97). Ultrastructural 
findings demonstrating transitional cell forms between 
pericytes, myofibroblasts, and arterial myointimal cells 
have been known since 1985 (95). 

 
It has therefore been demonstrated “in vivo” that 

pericytes are the target of cartilage and bone growth or 
induction factors, which switch on the development 
pathway of pericytes to prechondroblasts and 
preosteoblasts (70,72). Subsequently, it was confirmed that 
vascular pericytes undergo osteogenic differentiation “in 
vitro” and “in vivo” (76, 98).  

 
In this way, a perivascular (periendothelial) niche 

for MSCs has been suggested, based on pericyte plasticity 
and on the demonstration that MSCs and pericytes share 
the expression of some molecular markers. Interest in this 
hypothesis has increased in recent years (68, 77, 79, 90, 99-
113) and MSC expression of pericyte markers is among the 
complementary studies that suggest the perivascular niche 
hypothesis (114). These studies point out the following: a) 
stem cells expressing STRO1 display positivity for alpha 
SM actin and CD146, and variable expression for the 
pericyte marker 3G-5 (90), b) co-expression of RgS5 (a 
marker for pericytes) and Notch3 (Notch signalling 
pathways regulate stem cell fate specification and express 
in perivascular cells) (115), c) immunohistochemical 
expression of Sca-1+/Thy/1+/ CD31- (67), d) co-expression 
of annexin A5 gene (a marker for perivascular cells 
expressed during early stages of vasculogenesis) and NG2, 
SM actin protein, PDGFR beta, FLK-1 kit, Sca 1, CD-34 
(77, 103), e) the isolated perivascular cells have the 
capacity to differentiate into mesenchymal stem cell 
lineages (adipose and osteoblastic cells) and also display 
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Figure 1. MB-labelled microvasculature. The labelled microvasculature is observed “in vivo” by stereoscopic microscopy, 
immediately after MB administration (Figure 1A, x 25) and, in processed tissues, by light (Figure 1B and 1C) and electron 
(Figure 1D) microscopy. The marker is observed as blue dots by light microscopy and as a dark deposit by electron microscopy. 
The marker impregnates the postcapillary venule walls (Figure 1A) and appears trapped (arrows) in the walls of postcapillary 
venules (Figures 1B, 1C and 1D). Note that the marker is not present outside the microvasculature. In Figure 1C activated mast 
cells are seen around a postcapillary venule. In tissues obtained 36 hours after MB administration, the marker is observed in the 
cytoplasm of pericytes (arrows) by light (Figure 1E and 1F) and electron (Figure 1G) microscopy. P: pericyte; EC: endothelial 
cell; A: adipocyte; L: vessel lumen; M: mast cell. Figure 1B -H&E, x 250. Figure 1C, 1E and 1F: Semithin sections, Toluidine 
blue, x 460, x 800, and x 800, respectively. Figures 1D and 1G: Ultrathin sections, Uranyl acetate and lead citrate, x 12000 and x 
16000, respectively. 

 
phagocytic activity (77, 103), f) self-renewal capacity and 
osteogenic and adipogenic potentiality have been 
demonstrated using cultures originated from glomerular 
mesangial cells (which are considered specialized 
pericytes) (68), g) human infrapatellar fat pad-derived stem 
cells expressing the pericyte marker 3G5 show enhanced 
chondrogenesis after expansion in fibroblast growth factor 
2 (110), h) mesenchymal stem cells STRO-1, CD-146, and 
3G5, exhibit a perivascular phenotype (116), i) 
demonstration of a linear correlation between the numbers 
of adipose stem cells (obtained from both highly and poorly 
vascularised sites of equine adipose tissue) and vascular 
density (107, 117), and f) freshly isolated stromal vascular 
fraction cells, expressing CD34, separated from CD31+, 
CD144+ EC, co-express mesenchymal (CD10, CD13 and 
CD90), pericytic (chondroitinsulphate proteoglycan, 
CD140a and CD 140b), and smooth muscle (alpha actin, 
caldesmon and calponin) markers (114).  

 

To check the possible relationship between 
pericytes and MSCs, we selectively labelled “in vivo” the 
postcapillary and capillary mural cells of the rat inguinal 
pad adipose tissue with an exogenous marker (Monastral 
Blue) (Figure 1). Subsequently, the pericyte cell lineage 
was followed to determine whether the marker was present 
in the expanded adherent cell population of MSCs 
(characterized by adherence to plastic in culture and 
expression of markers of MSCs.) (Figure 2). The fact that 
adipose-derived mesenchymal stromal cells, obtained from 
this labelled tissue, continue showing the exogenous 
marker confirms the perivascular (periendothelial) niche 
hypothesis for the MSCs in this tissue. After rat “in vivo” 
implantation some of the cells with the marker in their 
cytoplasms have characteristics of pericytes and 
myofibroblasts (Figure 3). Previously, we had shown that 
under certain conditions, labelled pericytes could be a 
source of new chondrocytes and osteoblasts (see below). 
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Figure 2. Presence of the marker MB (arrows) in ASCs in cultures at 2 days (Figure 2A, 2B and 2C) and 10 days (Figures 2D, 
2E, 2F and 2G). Note the variable quantity of the marker in the cytoplasm of ASCs. In Figure 2F, during an ASC mitoses, the 
marker is observed in one of the daughter cells. Figure 2G shows part of a sample of expanded and lifted ASCs used for “in vivo” 
implantation. H&E, x 800. 

 
Given the above, MSCs (pericytes, a subset of 

pericytes, or pericyte-like cells) reside in most post-natal 
tissues and organs, and their specific and physical location 
is the abluminal side of the endothelial cells, constituting a 
three-dimensional microenvironment, including endothelial 
cells, extracellular matrix and basal membrane components, 
as well as transmigrating cells (perivascular/pericytic niche 
for MSCs). In resting tissues, complex regulatory 
mechanisms, such as intimate association and bidirectional 
interactions between pericytes and endothelial cells (ECs) 
(118, 119) and microenvironment influences, contribute to 
maintenance of vascular stability and therefore to a 
quiescent stage of the perivascular mesenchymal stem cell 
niche (review in 120). During postnatal life, the regulatory 
mechanisms that facilitate vessel instability, such as 
neovascularization (as occurs in repair through granulation 
tissue), could also activate the perivascular mesenchymal 
stem cell niche (113). Indeed, in these conditions, the 
relation between the cells is modified, and the ECs and 
pericytes change from an associated, quiescent and stable 
state to another dissociated, mobile and proliferative state 
in a modulated substrate (leakage of proteins and 
disintegration of vascular basal membrane and extracellular 
matrix). In this activated state, the resident mesenchymal 
stem cells and transit amplifying cells proliferate and 
migrate toward the interstitium wherein, depending on the 
appropriate stimuli, they differentiate into certain cells of 

the complex myoadipofibrogenic line (myoadipofibrogenic 
system) (Figure 4).  

 
5.5. Use of MSCs in cartilage repair  

In cartilage repair, MSCs may be involved in the 
following: a) when a granulation tissue is originated next to 
the injured site (bone marrow stimulation) and b) after 
being obtained, cultivated, and differentiated.  

 
5.5.1. MSC recruitment from neighbouring tissues 
(bone marrow stimulation. MSC-based “in situ” 
cartilage repair. MSC action after originating a 
granulation tissue next to the injured site) 

Depending on interpretation and techniques, 
different terms are used to describe this process (based 
on the penetration of the subchondral bone plate at the 
bottom of the cartilage defect -121). These terms 
include subchondral bone perforation, osteochondral 
lesion, bone marrow stimulation, drilling (122), abrasion 
(123), and microfracture (124). The steps in this 
procedure (125) are the following: a) MSC recruitment 
to the site of damage, b) cell adhesion and proliferation, 
and c) differentiation towards osteoblasts and 
chondrocytes, with corresponding matrix production, 
integration with neighbouring subchondral bone and 
cartilage tissues, and adaptation to biomechanical 
loading and tissue homeostasis. 
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Figure 3. Labelled cells, eight days after labeled-ASC implantation. Some of the cells with the marker in their cytoplasms 
(arrows) have characteristics of pericytes (incompletely surrounding the endothelial cells, with which they establish focal 
contacts), as shown by light (Figure 3A, 3B and 3C) and electron (Figure 3D) microscopy. Labelled myofibroblasts are also 
present in the interstitium (Figure 3D and 3E), showing the usual ultrastructural characteristics (Figure 3F): presence of a 
prominent rough endoplasmic reticulum and characteristic microfilaments with dense bodies (arrowheads). P: pericyte-like cell; 
EC: endothelial cell. Figs 3A, 3B, 3C, H&E, x 800. Fig 3D and 3E, ultrathin sections. Uranyl acetate and lead citrate, x 14000 
and x 18000, respectively. 

 
Although the bone marrow is stimulated through 

this process, the principal action is to reach a zone of 
vascularization, creating a new blood supply and a healing 
response. The bone marrow microvasculature networks 
have been hypothesized as one possible niche for MSCs 
(76), coinciding with the concept that niches are highly 
vascularized sites (90, 111, 126). Indeed, in the bone 
marrow microvasculature there is a continuous layer of 
subendothelial pericytes (127), which acquires a reticular 
morphology (reticular cells) in the venous side. Therefore, 
the marrow pericytes may be the same entity as the bone 
marrow stromal cells, since they share features such as: a) 
similar location of pericytes and stromal cells, b) 
expression of similar markers, such as SMA, PDGFR beta, 
EGFR, and CD146, and c) similar response to growth 
factors (99). Generally, the authors consider that events 
triggered in the healing response after subchondral 
perforation consist of bleeding from the subchondral bone 
spaces, which yields a blood clot, stimulating recruitment, 
proliferation, and chondrogenic differentiation of MSCs 
and different precursor cell types from the bone marrow, 
from bone, and from adipose and vascular tissue (125, 128-
130). In our opinion, the healing response includes 
granulation tissue formation. Thus, the resulting provisional 
tissue (granulation tissue) is similar to that which appears 
in other vascularized regions. Indeed, the regions with the 
capacity to repair through granulation tissue have a 

common characteristic: the presence, in or near, of an 
active preexisting pericytic microvasculature, where the 
repair phenomena develop (113). Therefore, the repair 
sequence includes stages of granulation tissue formation: 
hematoma (fibrin-deposition binding of platelets), 
macrophage recruitment, angiogenesis 
(neovascularization), recruitment and proliferation of 
multipotent mesenchymal stromal cells, re-absorption of 
the fibrin clot, and development of a vascularized scar-like 
tissue (113, 131). Both the origin of the participating cells 
and the growth factors and cytokines that intervene in the 
granulation tissue have been previously reviewed (113, 
120). Subsequently (between days 10 and 14), new bone 
and overlying new cartilage are formed (in their appropriate 
location within the repair tissue). In the latter, the 
involution of the neovessels, the differentiation of the 
MSCs and their TACs into cartilage, and the regulation of 
the metabolism and homeostasis of cartilage are influenced 
by the local environment (mechanical and biological 
factors, including TGF-β family, FGFs, and Wnt -  132).  

 
Some authors report good to excellent results in 

animals (in the absence of any specific treatment - 128) and 
in 60-80% of patients treated by these procedures (131, 
133). However, spontaneous differentiation and 
remodelling mainly result in a fibrocartilaginous repair 
tissue, which may be subjected to excessive deformation 
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Figure 4. Perivascular niche hypothesis for MSCs and the myoadipofibrogenic system. The perivascular niche hypothesis for 
MSCs involve a heterogeneous population of mural cells in the pericytic microvasculature, including pericytes (1), subsets of 
pericytes, recruited bone marrow progenitors (2) and delimiting (perivascular) fibroblasts (3), together extracellular matrix and 
other transmigrating cells. This niche is the substrate of regulatory mechanisms, such as mesenchymal cell proliferation and 
differentiation control. When the complex regulatory mechanisms are modified, these cells dissociate and migrate, behave as 
transit amplifying cells (TAC), and may differentiate into the cells of the myoadipofibrogenic system. Thus, with appropriate 
stimulation, marked pericytes and pericyte-like cells differentiate “in vivo” in other pericytes (4), myointimal/vascular smooth 
muscle cells (5), adipocytes (6), fibroblast/myofibroblats (7), chondrocytes (8) or osteoblasts (9). 

 
with mechanical failure and degeneration (after 20-48 
weeks - 128, 130). Furthermore, the new collagen does not 
project into or intermingle with the native cartilage, thus 
hampering the integration and adherence of the newly 
generated cartilage. Indeed, the results after microfracture 
in the knee and their comparison with ACI demonstrate 
problems regarding the durability of the repair tissue in 
major defects and in defects located in areas other than the 
femoral condyles. Covers that trap the cells in the initial 
stages of granulation tissue formation (preventing escape of 
cells and anabolic cell mediators from the site of repair, 
since fibrin deposition contains the highest percentage of 
migrating mesenchymal stem cells) have been developed 
(e.g. collagen matrix) (121, 134). Therefore, this procedure 
protects and stabilizes the blood clot and may enhance the 

chondrogenic differentiation of the MSCs (autologous 
matrix-induced chondrogenesis - AMIC). Likewise, 
scaffolds (e.g. poli (DL) lactide-coglycoide or alginate-
gelatin biopolymer hydrogel), cell-free or seeded with 
autologous chondrocytes, with osteochondral regenerative 
potential, have been developed experimentally, with 
restoration of hyaline cartilage and bone (135-139), mainly 
in those seeded. Currently, a porous nano-composite multi-
layered biomaterial has been used and evaluated with 
promising preliminary results. No differences in healing 
were found between seeded (with autologous chondrocytes) 
and empty scaffolds (140).  

 
Thickening of the subchondral bone, formation of 

subchondral cysts, and presence of intralesional 
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osteophytes have been demonstrated in patients treated 
with microfracture (133, 141). Likewise, the increased 
failure rate of autologous chondrocyte implantation after 
previous treatment with marrow stimulation techniques has 
been described (three times more likely to fail than patients 
who had undergone marrow stimulation), limiting future 
treatment options (142). 

 
5.5.2. Use of cultured and expanded MSCs 
5.5.2.1. Tissue selected for obtaining MSCs 

The most commonly used source of MSCs is the 
bone marrow. Indeed, MSCs are located in the complex 
system of the bone marrow stroma (bone marrow stromal 
cells) (See above). Bone marrow aspirate contains very few 
MSCs, which can be isolated by means of Stro-1+ antibody 
recognition (143, 144). These cells have the capacity to 
differentiate into mesenchymal lineage cells and, with 
appropriate environmental conditions, also into cells of 
different embryonic origin, such as cells with visceral 
mesoderm, neuroectoderm, and endoderm characteristics; 
in other words, with high capacity of transdifferentiation 
and plasticity (48, 54, 145-147).  

 
The MSCs in adipose tissue have an important 

potential for use in tissue engineering, since adipose tissue 
is an abundant and easily procured source, enabling 
extraction of a voluminous quantity. Moreover, the 
frequency of these MSCs, after removing adipocytes, is far 
greater than in bone marrow. Indeed, adipose tissue 
contains MSCs and committed adipogenic and vascular 
cells (101, 148-158), with the capacity to differentiate into 
adipose (101, 151, 154, 159), cartilage (160-162), bone 
(101, 151, 163-165), endothelial (166), hematopoietic 
(167), skeletal (156, 168, 169) and cardiac (170-172) 
muscle, hepatic (173), pancreatic endocrine (174) and 
neuronal (175-177) cells. In this way, the biology, 
multilineage differentiation ability, growth kinetics, gene 
transduction efficiency, and cell senescence of multipotent 
adipose-derived stem cells are similar, although not 
identical to bone marrow MSCs, sharing the expression of 
Stro-1, CD90, CD44, SH3, and CD105.  

 
MSCs have been enzymatically released from the 

human synovial membrane, and their ability to proliferate 
and to differentiate into the chondrocyte, osteocyte, and 
adipocyte lineage has been demonstrated (178). 

 
Granulation tissue is rich in MSCs and TACs 

(120) and may be used as a source of these cells to repair 
and regenerate injured tissues (e.g. cultured and propagated 
cells obtained experimentally from granulation tissue that 
forms around perforated polivinyl tubes placed in the 
subcutaneous space) (179) 

 
5.5.2.2. Culture of MSCs (growth/expansion and 
differentiation) 

Although the MSCs isolated from various tissues 
and involved in cartilage repair are a therapeutic promise, 
their expansion and differentiation requires coordination 
and the maintenance of the regular chondrogenic capacity 
(a problem not fully resolved - paradox between “in vitro” 
promise and “in vivo” efficacy - 9, 19, 180). In this way, 3-

D supports, such as collagen, alginate, fibrin, and 
biopolymers are required for the MSCs to undergo 
chondrogenesis (181-187). Bosnakovski and cols. 2006 
(187), demonstrated that differentiation (expression levels 
of the chondrocyte specific genes Sox9, collagen type II, 
aggrecan, and cartilage olygomeric matrix protein) was 
more prominent in cells cultured in collagen type II 
hydrogel and that it increased in a time dependent manner. 
In this way, to induce and maintain chondrogenesis, 
transforming growth factors (TGF) b1 and b3, fibroblast 
growth factor, bone morphogenic proteins (BMPs)-2, -6, 
and -9, and insulin-like growth factors, may be used (188-
190) (e.g. the combined use of bioreabsorbable scaffolds 
along with gels and incorporated growth factors for 
localized delivery therapies). Likewise, physical factors can 
also participate in the regulation of MSC differentiation 
(191). Among these are the mechanical properties of the 
supports, since rigid or soft scaffolds may be used. Thus, 
rigid scaffolds are more suitable for cartilage tissue 
engineering, while soft scaffolds facilitate adipose 
differentiation (192, 193). Thus, to demonstrate the 
importance of mechanical factors in cartilage tissue repair, 
we implanted perforated rigid tubes in the rat soft tissue, 
generating a peritubular granulation tissue, which 
progresses through the holes reaching tube light. The 
granulation tissue evolved into connective (Figure 5A) and 
adipose tissues, except in the intratubular zone near the 
tube wall close to the holes (in the angle formed between 
the inner surfaces of the hole and the tube wall), where, 
during contraction, the granulation tissue presses onto the 
rigid material, the cells differentiating into chondrocytes 
(Figure 5B, 5C, 5D, and 5E). Therefore, 
mechanostimulation along with appropriate biomolecules 
(e.g. growth factors) can promote chondrocyte 
differentiation. 

 
6. CBCR. PROGENITOR CELLS FROM 
PERICHONDRIUM AND PERIOSTEUM 

 
The perichondrium and periosteum share the 

same origin, regulatory mechanisms, and some 
morphological and functional characteristics. The 
perichondrium may differentiate into the periosteum (194, 
195). Both perichondrium and periosteum produce multiple 
positive and negative factors regulating the differentiation 
of the underlying skeletal elements (196, 197) (e.g. 
regulating gene expression in the underlying chondrocytes - 
198). Both structures have two distinct morphologic layers, 
an outer fibrous layer and the cambium or inner cellular 
layer. The inner cellular layer contains fibroblasts and 
chondroprogenitor / osteoprogenitor cells (Multipotent 
periosteum cells) (199-201). Therefore, the periosteum can 
promote new cartilage and its chondrogenic potential 
decreases with age (200).  

 
In this way, the use of periosteum as a cell 

source for graft engineering in bone and articular 
cartilage repair is a therapeutic possibility. For instance, 
a rapid curing alginate gel system has shown 
periosteum-derived cartilage tissue (202) and the action 
of FGF-2 enhancing TGF- beta 1-induced periosteal 
chondrogenesis (203).  
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Figure 5. Tube implantation. Figure 4A: Partial vision in a histological section of a perforated rigid tube implanted in the rat soft 
tissue. A newly formed connective tissue (developed from a provisional granulation tissue) is observed in the periphery (P), in a 
parietal hole (H), and in an intraluminal region (I) of the tube. The empty spaces (T) correspond to the tube wall material 
dissolved during inclusion of the sample. Figure 4B and 4C: The arrows point to modified areas in which neocartilage develop, 
after 14 days of tube implantation. Figure 4D: Transmission electron photomicrograph of neochondrocytes (Ch). In the insert: 
neochondrocytes in a semithin section. Figure 4E: Diagram showing how during contraction (arrows), the granulation tissue 
presses onto the rigid material in the angles formed between the surfaces of the hole and the tube wall, with differentiation of the 
cells into chondrocytes. Figure 4A H&E, x30; 4B and 4C, Toluidine blue, x60 and x160; 4D ultrathin section, Uranyl acetate and 
lead citrate, x 14000; Insert semithin section, Toluidine blue, x220. 

 
The study of perichondrial chondrogenesis “in 

vivo” and “in vitro” revealed that perichondrocytes of the 
inner layer of the perichondrium were relatively 
differentiated cells with the potential to develop cartilage 
(204, 205). Subsequently, the growth of two types of 
cartilage after implantation of free autogeneic perichondrial 
grafts has been demonstrated (83). The location and 
characteristics of both types of cartilage suggested that one 
of the types came from perichondrocytes of the inner 
perichondrial layer, whereas the other type originated from 
the undifferentiated perivascular mesenchymal cells. When 
the perichondrium or the periosteum were activated, and 
the pericytes of the local postcapillary venules were 
labelled with an exogenous marker, the process of cartilage 
and bone formation from chondrogenic and osteoprogenitor 
cells already present in the perichondrium and the 
periosteum was augmented by proliferation and 
differentiation of the labelled pericytes, which contributed a 
supplementary population of newly formed chondrocytes 
and osteoblasts (showing intracellular particles of the 
marker - Figure 6) (70, 72. Therefore, perichondrium and 
periosteum not only provide chondrogenic and 
osteoprogenitor cells but act as inducers of proliferation 
and differentiation of cells with mesenchymal capacity.  

7. CBCR. EMBRYONIC AND PRENATAL STEM 
CELLS 

 
Embryonic stem cells (ESCs) comprise the 

zygote, the descendents of the first two divisions, and those 
from the inner cell mass of blastocytes. The zygote 
(fertilized oocyte) and the descendents of the first two 
divisions are considered to be totipotent, able to give rise to 
the embryo, placenta, and supporting tissues. Those from 
the inner cell mass of blastocytes have been attributed with 
a pluripotent potential and therefore with the capacity to 
generate all or most cell lineages derived from the three 
embryonic germ layers: ectoderm (skin and neural lineages), 
mesoderm (blood, fat, cartilage, bone, and muscle), and 
endoderm (digestive and respiratory systems) (206, 207). 
During development, ESCs divide and originate distinct 
subpopulations, including non-self-regenerating progenitors 
that undergo terminal differentiation. In this way, ESCs 
isolated from human embryos (208) could have potential to be 
used in cartilage repair. However, ASCs, which may contribute 
to the differentiated adult lineages native to other tissues and 
organs, are more useful than ESCs in regenerative medicine 
and tissue engineering, since ASCs have no ethical problems 
and are not predisposed for teratoma formation. 
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Figure 6. Transmission electron micrograph of a neochondrocyte showing particles (dense material) of the marker Monastral 
Blue B (arrows) in its cytoplasm after perichondrial implantation and pericyte labelling in the host tissue. Uranyl acetate and lead 
citrate, x14000. In the insert, a chondrocyte with blue particles (arrow) of the marker is shown in semithin section. Toluidine 
blue, x800. (Therefore, cartilage formation from chondrogenic cells present in the perichondrium was augmented by proliferation 
and differentiation of the labelled pericytes). 

 
Prenatal stem cells expressing MSC-related 

markers have been isolated from primitive tissue of the 
umbilical cord (Wharton’s jelly) (human umbilical cord 
perivascular cells - HUCPV cells) (209, 210), cord blood 
(211-216), , umbilical cord vein (217, 218), and amniotic 
fluid (amniotic fluid stem cells - AFSCs) (219). Although 
experiments have mainly demonstrated differentiation 
towards osteogenic lineage, the capacity to differentiate 
into chondrogenic lineage has also been observed (210, 
214, 215), including expression of collagen II (210)..  

 
8. CBCR. INDUCED PLURIPOTENT STEM CELLS 
(IPS CELLS) 

 
Induced pluripotent stem cells (IPS cells) can be 

derived from somatic cells by introducing a small number 
of genes in these differentiated cells (“reprogramming”), 
expanded in culture, and differentiated for transplantation 
in cell therapy, without immunological rejection concerns. 
Therefore, IPS cells may lead to advances in regenerative 
medicine (220, 221). Indeed, for example, IPS cells can be 
generated from adult human fibroblasts (221, 223).  

 
9. CBCR. GENETICALLY MODIFIED CELLS  

 
Genetically modified cells have promising 

potential in cartilage repair (221). Indeed, cells expressing 
bone formation cytokines, including over-expression of 
BMPs, have been developed (223, 224). Thus, genetically 
modified cells could act as cartilage-inducing components. 

 
10. CONCLUSION 

 
We have reviewed one of the basic aspects in 

cartilage repair: its tissue and cell sources, considering 
advantages and limitations, as well as the biological 
mechanisms that explain usage, particularly to achieve the 
structure and durability of natural hyaline-like articular 

cartilage. Although this review concentrates on tissue and 
cell sources, in the sections where the cell-based cartilage 
repair was treated, we have briefly referred to other basic 
aspects, reviewed by several authors, highlighting interest 
in this area (See 9, 15, 125, 229, 132, 221, 225, 226, 227, 
230) whose study covers: a) scaffolds that facilitate 
environment for chondrogenesis, including natural 
(collagen, fibrin, alginate, hyaluronan, agarose, chitosan) or 
synthetic materials that provide a biodegradable matrix 
with biochemical properties, supporting neomatrix 
deposition by chondrocytes, b) several signalling pathways 
and transcription factors (e.g.: Wnt, transforming growth 
factor β/bone morphogenetic protein signalling, PDGF, 
IGF-1, EGF, HGF), which act in migration (PDGF, IGF-1, 
EGF, HGF, TGF β), proliferation (EGF, PDG,F TGF β), 
and differentiation (dexamethasone, TGF β). Some may be 
locally introduced, modulating cell differentiation into 
cartilage, c) procedures to prevent escape of cells and 
anabolic cell mediators from the site of repair, d) strategies 
for cartilage integration, e) inhibition of cartilage 
degeneration and inflammation (TNF-x and IL-1 
application), and f) gene transfer for optimization of cell 
chondrogenic capacity.  

 
Further understanding of the cellular sources and 

their behaviour during proliferation and differentiation into 
cartilage open a promising new path in joint tissue 
engineering. 
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