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1. ABSTRACT

Logical models for cellular signaling networks
are recently attracting wide interest: Their ability to
integrate qualitative information at different biological
levels, from receptor-ligand interactions to gene-regulatory
networks, is becoming essential for understanding complex
signaling behavior. We present an overview of Boolean
modeling paradigms and discuss in detail an approach
based on causal logical interactions that yields descriptive
and predictive signaling network models. Our approach
offers a mathematically well-defined concept, improving
the efficiency of analytical tools to meet the demand of
large-scale data sets, and can be extended into various
directions to include timing information as well as multiple
discrete values for components.
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2. INTRODUCTION

The development of new technologies and high
throughput methods provides new insights in the structure
and function of biological units. In response to this growing
complexity, the need for structural and functional
theoretical anaysis has emerged. Relevant questions such
as predicting a cell’s response, determining suitable
intervention strategies for dysfunctions, or ssimply detecting
modeling errors require answers beyond trial-and-error.

When speaking about biological systems we refer
to any level of detail. In particular, it can mean a
mechanistic description of a cell stating al (known)
interactions on a molecular basis, or it can denote a
schematic model of the development of a disease. The
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interpretation strongly depends on the purpose of the model
and the quality of data. In accordance, we always name an
element in the biological system component and for a
reaction or biological consequence we use the term
interaction. The termini active and inhibited refer to
characteristics such as the right or wrong location for an
interaction, enzymatic activity, phosphorylated or
dephosphorylated forms, or the sufficient presence or
absence of a protein. We will not further discuss these
details, other than to state that for each individua model
they need to be carefully specified for every component.

Severa different modeling techniques were
introduced to analyze biological systems. Many approaches
utilize ordinary differential equations to describe small,
guantitative systems with respect to reaction rates and
production levels (for an overview see (1)). One famous
concept which is till widely used for quantitative analysis
is MichaglisMenten kinetics (2). Due to the high
complexity to solve differential equation systems this
approach is not appropriate for every system. Therefore, it
is often applied only to well-characterized subsystems.
However, for many biologica systems there is not
sufficient data available to allow a quantitative approach.
Often one can only distinguish between two states, e.g.
expressed or not expressed, which does not permit a
reasonable parameter estimation.

Here, we will concentrate on qualitative concepts
to model abiological units functionality. We will start with
an overview of established qualitative modeling methods,
then provide a self-contained presentation of our modeling
formalism based on logical implications and discuss its
extension to a dynamic setting: In Section 3.1 we show
how to systematically derive implication formulas from
measurements, then discuss structural anaysis of the
underlying interaction network (Sec. 3.2), and show how to
make functional predictions (Sec. 3.3 and 4). Therefore,
Sections 3 and 4 can be read as a guideline for users that
first leads the way to a logica modd of the biological
system and secondly explains the potentials of the model
including solving techniques and their complexity. Finaly,
we will introduce a new approach to the situation where
multiple activation levels are to be modeled without falling
back to areformulation with binary variables.

2.1. Propagation techniques

A first step towards qualitative modeling
techniques was accomplished by Kauffman in 1969 (3). He
represented each component in the biological unit by a
binary variable whose value is determined by a
propositional formula. Given an initial set of values for all
variables, the evolution of the system’s states is computed
by evaluating the logica formulas for one state to obtain
the next. Descriptively speaking the values are propagated
through the system just like reactions occurring one after
the other. In further work Glass and Kauffman (4)
introduce steady states of a logical system. They form an
analog of the steady state in the continuous setting, which
is defined as a state where the first derivative of all
concentration functions is 0. In the discrete case steady
states are defined as a state that has itself as an ensuing
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state, i.e. evaluating the propositional formulas for the
current setting of 0 and 1 yields the identical pattern. It has
been shown that following a certain mapping between
discrete and continuous models the two concepts coincide.
These considerations form the basis for the concept of
Boolean networks which is a widely used model. Many
extensions and applicable analytic tools have so far been
proposed (e.g. (5,6 ,7)).

2.2. Interaction graphs

Analyzing a biological system by means of
Boolean networks has two dimensions. The first is a
structural analysis which utilizes a graphical representation
of the system, the so called interaction graph (8). It is not
only used to visualize the system, but can also answer
guestions concerning connectivity, which component
influences which, and identify feedback loops, i.e
subsystems where a component influences itself positively
or negatively via several other components. Applying graph
theoretical and combinatorial optimization tools these
questions can directly beinvestigated (9 ,8). These tools are
limited in the sense that they ignore the type of interaction,
which becomes critical when multiple components are
required to activate another one, a so called AND
connection. To overcome this restriction Klamt et al. (8)
generalize their concept of interaction graphs to directed
hypergraphs. This concept alows not only arrows between
two components, but they are forked so that one arc has
severd tails leading into one component. Hence, a directed
hyperarc represents an AND connection. However, ejcient
graph theoretic methods to anadlyze the system directed
hypergraphs are rare.

The second aspect of describing biological
systems by Boolean models concerns the functionality. To
determine steady states an initia state is assumed, for
which all interactions are evaluated, yielding the next state
(8). Thisiterative processis continued until a steady stateis
reached. Therefore a steady state is an assignment of values
to each component that does not change when adl
interactions are evaluated again, just as in Kauffman’s
concept (3). A particular application are minimal
intervention sets in which the value of some components
are predetermined. Then all compatible steady states are
computed as described above and analyzed with respect to
components that do not change their value. Thus, minimal
intervention sets are a key instrument for in silico drug
development. The computation involves listing and testing
all possible sets, which implies alimited size of computable
intervention sets. In genera, the anaysis of Boolean
networks can be applied to large-scae systems, and is
therefore suitable for systems with many components
where few details about the interactions are known.

2.3. Kineticlogic and Petri nets

Another modeling paradigm is that of Petri Nets,
which will not be presented here in detail. It is a separate
field of research containing many extensions and variations
of the classical concept of Petri Nets. Often it is applied to
small and medium sized systems. More information can be
found in the PhD. thesis of Petri (11), a recent overview
with applications to systems biology isgivenin (12).
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Table 1. Overview of the basic terms of propositional logic

Symbol L ogical meaning Interpretation
component
A conjunction logical AND
\V disjunction logical OR
— negation logical NOT
A—>B implicatio
A<> B | euivalence (—=Av B) A(Av —B)
a~b logical equivalence two logical terms can be
transformed into each other

A closdly related strategy by Thomas (13) to
handle discrete data formalizes a so called kinetic logic for
gene regulatory networks. It is based on the theory of
Boolean control circuits and the difference compared to
Petri Nets is to involve reaction times and delays, which
makes it a qualitative concept closely related to the
differential equations techniques. It deals with interactions
in much more detail. Two types of logica variables are
distinguished: environmental variables, that model the
environmental influences like temperature or mutation
type, and internal variables, which serve as a memory
variable for the current level of the respective element. For
example, this can be the concentration of a product. For
each internal variab x he associates an internal Boolean

function X describing the regulation of the corresponding
gene X . As afirst step the internal functions are manually
determined. Thus, a model for the gene regulatory network
is established. As demonstrated in (14) the system can then
be simulated with all possible values for the environmental
and interna variables in order to obtain predictions and
explanations for the systems behavior. Identifying steady
states or oscillating states is the main interest rather than
structural properties as this approach is best suited for small
networks. A system can be in two different states, stable or
unstable/transient: If the given values of the internal
variables coincide with the evaluated internal function for
specific, fixed values of the environmental variables, then it
is in a stable state. Otherwise, it is in a transient state.
Biologically, the idea behind this is to include the duration
of biological processes. If a gene g is present above a
certain threshold, so that it is able to perform its function, it
will still take some time until its product p is actualy
present in functionally relevant amounts. In this case,
g=1 and the associated function P=g delivers a value

of 1. So the system isin atransient state, as g =1 but till
p=0. After a certain time, p will shift over to 1 which

brings the system back to a stable state. The evolution of
the biological system over time for a given environmental
influence can then be illustrated by a state transition graph.
Before we describe the approach by an example, we review
the basic terms of propositional logic in Table 1. For the
reader unfamiliar with the formalism of propositional logic
we aso refer to (15).

Example 1 (taken from (14)). Suppose we are given a
biological system described by two internal functions

151

X:—|yV—\O
Y ==xvt

where X,y are interna varidbles and ot are
environmental variables, say oxygen supply and
temperature. Function X states that the corresponding
gene X is active if y is absent or the repressor, which
corresponds to the site where geney represses gene X, is
inactive (0=0). Accordingly, the gene y associated with
Y isonly activeif x isabsent or the temperature is high
(t=1). Note, that 0 and t are determined by the user
depending on the experiment. Following the approach of
Thomas the system is simulated with al possible truth
values of X,Yy,0, and t which can be found in Table 2. In

the highlighted scenarios the actual value of X and Y
equal those of X and Y and therefore the system is

(xy,0,t)=(0,1,0,0)

stable. Consider, e.g. , since 0=0

X evaluates to 1 and the gene X can be switched on.
But the reaction takes some time to produce X, and
hence X will only be 1 at alater time point, bringing us

to the state (xy.01)=(1100) . Thisis again transient.

With an analogous argument Y shifts to 0, finally
yielding a stable state. Note that in the last column we
find two stable states. Which one of them is achieved
depends on the duration of the reactions and the starting
point. In Figure 1 the state transition graph for this

situation (o,t) (]"O) illustrates the competition of the

two stable states fought by the production/degradation
tpro tpro tdeg tdeg

times * 'Y "* "and Y

A detailed exposition of the kinetic logic
concept and its applications can be found in (14). Some
refinements of this approach are known (e. g. (16 ,17 ,18
,19)). On the one hand discrete quantification of the
variables are included by eg. Van Ham (20), who
encodes different levels of the variables as binary
variables for each level. Such incidence variables take
the value 1 if the gene exceeds the associated level and O
otherwise. On the other hand more detailed time
information are incorporated. Siebert and Bockmayr (21)
for example alow for specific durations of each reaction
using the framework of timed automata. However, this
approach and its extensions are limited by the size of a
system: One has to compute the values of al internal
functions for every possible scenario of internal and
environmental variables and compare them with each
other.

In general, the question which model is best
suited for a biological system depends on the available
data and the type of question studied: More detailed
models on the one hand elucidate the functionality of the
system to a higher extent, but on the other hand reduced,
qualitative models may reveal macroscopic behavior just
as well with much smaller measuring, modeling, and
computational effort.
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Table 2. Simulation of the Thomas system for all possible
vauesof X,Y,0, and .

XY 00 o1 11 10 o,t
00 11 11 11 11
01 11 11 01 01
11 10 11 01 00
10 10 11 11 10

X,y

e
g
11 10
e | "o e
L‘-EL | E}:
T
01 | e 0D
1

Figure 1. The state transition graph for (o,t) =(1,0) in

Example 1 where t”° denotes the production and t*® the
degradation time of the associated gene.

3. LOGIC FRAMEWORK FOR
NETWORKS

INTERACTION

Over the last years large-scale systems have
gained considerable importance to users as descriptive and
predictive models to improve insight into structure and
functionality (e. g. (22, 23, 24, 25, 26) or see the reviews
(27, 28)). The logic framework presented in this section is
related to the concept of Boolean networks. It aims at
strictly formalizing the concept, improving the efficiency of
analytical tools to meet the demand of large-scale data sets,
and extending the framework into various directions,
including temporal information as well as multiple discrete
values for each component. We will consider interaction
networks as bipartite graphs, introduce the qualitative, logic
framework, and expand this by including temporal
information and a discretization of activation levels.
Theoretica results concerning complexity and structure of
the developed model are displayed and are illustrated by
means of practical applications.

3.1. From blotsto formulas

The simplest model of a biological processis that
which one obtains by collecting diverse knowledge about
the various individual causal relationships of its constituent
components. This is in fact the common implicit modeling
paradigm employed by users that argue about a biological
process using their accumulated knowledge about the
relevant entities. We will follow this path in a well-
formalized way: Theintuitive model of abiological process
is to describe dl (causa) experimental statements in the
form of logical formulas, that can be written down in
propositional logic (29): Introduce component variables for
each component, and write down implication formulas for
experimentally proven knowledge statements like “MEK
activates ERK” as

152

MEK — ERK

and “In the absence of (activated) PTEN and SHIP1 we
find that PI3K generates an increased amount of PIP3” as

—PTEN A =SHIP1 A PI3K — PIP3.

In practical applications the logical implications have to be
derived experimentally. In the example “MEK activates
ERK? this is certainly easy, since the two proteins always
appear together. But, of course, there exist more complex
interactions for which the implication formulais not easily
derived by common sense. For these cases we propose the
following procedure:

1. Trandate the experimental results into a truth
table, i.e. for every stimulation tested open a new
row in the table and list 0 and 1 for the
absent/inhibited and present/activated
components involved in the experiment.

2. Assume a logicaly consistent behavior and
anticipate further truth values if possible.

3. Extract the canonical logical formula F as a
digunction of conjunctions. This is. one row is
represented as the conjunction of al its variables.
The variables occur negated if the corresponding
value is 0. The subsequent formula displays a
row in a truth table and its corresponding
canonical formula

A B C
— AA-BAaC.
1 0 1
The formula evolves as the disunction of al
rows.

4. Simplify F dtilizing the Quine-McCluskey
Method (30) and transform F to an implication
formula.

The Quine-McCluskey Method simplifies logical formulas
F obtained by truth tables to its smallest equivalent in
disunctive norma form. First, the prime implicants are
identified, i.e. those implicants that have minimal length
and imply F . The genera idea is to apply the following
fact pairwise to the non-prime implicants:

(XAY)V (XA—Y) = XA (YV—y) = X 1)

The redundant implicants are deleted in each
iteration. All prime implicants are generated by this
iterative procedure, but not all are needed to describe the
formula F . Rather only a minima subset of prime
implicants such that all cases where F becomes TRUE are
covered, is necessary. Therefore a set covering problem is
to be solved, which is generaly hard. We illustrate the
procedure with the example in Figure 2.
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Table 3. Truth table corresponding to blotsin Figure 2.

MALT1 [ BCL10 | CARD11 NF-kappaB
measured:
0 1 1 0
1 0 1 0
1 1 0 0
1 1 1 1
derived:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
card11** card11” \ 3
m = o) O
o ol "Q‘ L
a Q o Q
o =2 0O = 4‘ a&‘ Q:(}
=285 F 9 —— E—— —
E83E8 £ 2 2 2
59258 2 ag 8¢ 8¢
= 2 = 2 = 0
PSS +PSs+tEa
E0<ERLERL
NFxB®»  —— GO=EG60=50%=
3 S O 8 4 3 S
complex
NF-xB S -
AP-1 —— —— -

Figure 2. Two stylized blots presenting results of (31) and (32) which show the activation of NF-kappaB.

Example 2. Assume we are faced with the
experimental results displayed in Figure 2. The
measurements are translated into a truth table, displayed as
Table 3, by introducing one row for every distinct
measurement with one column for each measured
component. The first four rows in the Table 3 are translated
from Figure 2. For instance, in the wild type case all three
components MALT1, BCL10, and CARD11 are active and
we see an active NF-kappaB. This yields the row filled
with 1s only. The last four rows are derived from the first
four measured rows, i.e. assuming a logica implication
formula we can determine the value of NF-kappaB for the
missing patterns of the inputs. We know from the
measurements that NF-kB is active if all three inputs are
present after stimulation, but inactive if only one of them is
missing. Therefore, none of them has an inhibitory effect
and we can conclude that NF-kappaB is also inactive if any
combination of inputs is missing. Thus, we obtain a logical
formula where we abbreviate MALT1, BCL10, CARD11,
and NF-kappaB by M, B, C, and N, respectively.

F~(-MABACA=N)V(MA=BACA=N)v(MABA-CA-N)v(MABACAN)V
(M A=BA—CA=N)V (=M ABA—CA=N)V (=M A=BACA=N)V (=M A—BA—CA-N)
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Applying the idea of Equation (1) to each pair of implicants
that are possible to be combined yields

F~(MABACAN)V (=M ABA-N)V(-M ACA=N)V(MA-BA-N)V(MA=CA=N)v(~BACA-N)v
(BA=CA=N)v (=M A=BA=N)v (=M A=C A=N)v (-BA—C A=N)
~(MABACAN)V(=M A=N)v(-BA=N)v(=CA=N).

This yields not only the implication, but the
equivaence:

MALT1 A BCL10 A CARD11 <> NF-kappaB

stating that NF-kappaB is active if and only if MALTL,
BCL10, and CARD11 are al active. If one wants to stress
the necessity of a stimulus to initialize the cascade, it can
be added as an additional requirement for the activeness of
NF-kappaB.

Table 4 gives an overview of possible
implications that occur in practical applications. Recall that
activenessin this context can have any meaning you assign,
e.g. phosphorylation, presence, transport to the ‘right’
location, etc.
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Table 4. List of possible implications in practice. TCRB denotes the TCR bound to a ligand while TCRP and IL2P denote the
phosphorylated receptors. More information on the first five examples can be found in (29) and (33) while the last one is

published in (34)
statement implication formula explanation
ZAP70— LAT A—B if Aisactive, B isactive.
FYNv LCK — ABL AvB->C if A, B,orbothareactive, C isactive.
DAG AVAV1APDK1— PKCTH AABAC—>D if A,B, and C are simultaneously active,

D isactive.

(FYN ATCRB) v (LCKP1A TCRB) — TCRP

(AAB)v(CAD)—>E | activenessof A and B or C and D (or

al) impliesactive E .

MKK4v MEKK1v (IL2P A PI3K) — INK

AvBv(CAD)—> E

if A or B, or the two components C and

D (or subsets of these) are active, E is
active.

CXCR4 A CXCL12 - —ERM

if both A and B are present, thereisno C:
Absence of one of them, makes C active.

The set of formulas we obtain now describes al
currently known information about the system, which we
can then use to analyze and predict its behavior. However
in order to do so, it proves useful to specify that we are
only interested in statements that can be logically deduced
from those that we have collected, and that what cannot be
deduced should be considered false. This also avoids the
paradoxical situation that the mathematically correct logical
statement ‘FALSE — TRUE’ can lead to statements along the
lines of ‘Receptor off — Receptor cascade activation’. This
is known as a closed world assumption, see (35) (and aso
(36) for justification on the semantic level).

The way to formalize the above deduction rule is
as follows. After computing and collecting al such
implications we aggregate all formulas with an identical
right-hand-side. Following this we introduce the reverse
implication for each formula. In other words we assume
that whenever a component on the right-hand-side is
activated or inhibited there must be an explanation for it in
the set of interactions. If there is not, the model must lack
information or include incorrect data. This leads to the two
basic interaction rules

Av--vA <B @)

stating that B is active if and only if at least one of the A
isactive, and

An-AA ©B (3

where B is active if and only if al A are active. AND-

formulas (3) do occur in practica applications, but for the
mathematical modeling they are obsolete as each AND-
formula can be transformed to a logically equivalent OR-
formula (2):

S=\A©B (IFF)

jeLj

in which asubset L; of the components A,...,A €{0,1}
determine the state of the component B, €{0,1}. It is

assumed that the component B, does not appear on the

left-hand-side, i.e. no autoactivation takes place. The |FF-
formulas do not contain AND-connection but those can
always be represented by OR-formulas using artificia
variables, e.g.

AVAV(AAA)oBx(AVAVCOB)A(-AV-A < —C).

Similarly, effectors (right-hand-sides) that are connected by
alogical AND are split into separate | FF-formulas. In case,
there is an OR-connection on the right-hand-side, an
auxiliary implication is introduced using the artificia
variable C:

AvVAVA&BVB VB VB x(AVvAVA &C)A(CoB VB VB VB,).

Given the IFF-formulas for interactions in the
biologica wunit the loca interdependencies are well
described. By asking al IFF-formulas to be valid at the
same time the individual interactions induce a globa
behavior of the system. By means of this observation we
define the standard form of an interaction network as

SN = /k\s., @
j=1

where k denotes the number of |FF-formulas S, which

describe &l relevant interactions in the system. This
definition alows for a categorization of the variables:
Variables that occur only on the left-hand-sides of |FF-

AN A A O Br(=A Vv A VB)A((AAAA)Y—B)~ ~Aotmutas S, reRalled input variables, while those being

Therefore we restrict the analysis to the specificaly
structured IFF formulas S; .

only in the right-hand-side of formulas are denoted output
variables. The remaining variables are called intermediates.
Inputs, for instance, can be receptors, environmental
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Figure 3. Visua representation of a graph, a directed graph or digraph, and a bipartite graph showing the two node partitions in

white and black, respectively.
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Figure 4. A small example of an interaction network with 4 components and 2 interactions, namely x, v X, <> x, and
X, A X, <> =%, . The panel on the right-hand side shows a simplified illustrations omitting explicit OR and NOT operational

nodes.

influences, or a virus in case of a disease model. Outputs
may refer to transcription factors, genes, cellular
phenotypes, or symptoms of a disease while the
intermediates can be signaing proteins connecting
receptors and transcription factors, genes that regulate other
genes, etc.

With this formal model at hand we follow two
main lines of analysis. We start with the investigation of
structural properties of the interaction network using graph
theoretical methods. In the subsequent section we explicitly
go through known agorithms, show how they can be
applied to an interaction network, and in particular what
their use for the analysisis. In the following Section 3.3 the
functionality of a system is simulated and analyzed, which
will be the focus of this work. A methodology to evaluate
the standard form (4) is presented, some results on the
complexity of the algorithms are given, and more important
for users, benefits for the analysis are demonstrated by
examples.

3.2. Structural analysis

The graphical representation of biological
systems is quite intuitive. Components are drawn as nodes
that are connected by arrows to describe the interactions.
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Graphs are not only useful for visualization, but aso for
structural analysis. Questions like ‘which component
influences which’ and ‘are there positive or negative
feedbacks involved’, i.e. does the network possess cycles
with an even or odd number of negations, respectively, can
be answered directly. Therefore, we first review some
standard notation and formalize the approach. A graph
(Figure 3 (@) consists of a set of nodes and edges that are
defined as pairs of nodes. If the pairs of nodes are ordered
the edge becomes an arc and the graph becomes a directed
graph or digraph (Figure 3 (b)). A graph or digraph can be
bipartite, that is the nodes can be partitioned into two
subsets such that each edge or arc has exactly one node
from each subset (the white and black nodes in Figure 3

(©).

An interaction network can be formally defined
as a bipartite digraph with two types of nodes: components
S (eg. proteins) and operations O which contain AND,
OR, and NOT to describe molecular interactions. A vertex
is a combination of a component, the component’s negation
and a NOT operation (Figure 4: The vertex also contains
four arcs connecting the components and the NOT-
operation bidirectionally. Furthermore, the biological
interactions/mechanisms are encoded by arcs from
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components to operations (the requirements for an
activation) and one or more arcs from an operation to
component () (the effector(s) respectively (in)activated
component(s)). The graph displayed in Figure 4 (a) depicts
the formal definition of an interaction network. For
simplification of illustrations we will nevertheless label a
vertex simply by the component’s name omitting the
construct that it contains and remove the operational nodes
OR. Instead we draw a direct arc from input to output and
use dashed lines to denote negative influence. Furthermore
the AND operation will be depicted by a small black dot.
Thissimplified version isillustrated in Figure 4 (b).

Please note, that certain algorithms presented
hereafter can actualy fail if there are AND connections
involved as the interaction is not independent of the values
of other variables. Up to now the analysis of those cases
was accomplished by the concept of hypergraphs (37). But
as presented earlier in this section, we can transform each
interaction network into a standard form that consists only
of OR operations, which ensures the functionality of the
algorithms without constructing the hypergraphs. Hence,
every interaction network can be transformed into one that
follows the simplified scheme of Figure 4 (b) without
“black dots”.

Given the interaction network as a bipartite
digraph, we can apply various algorithms known from
graph theory and combinatorial optimization. See (38) for a
more detailed presentation of the algorithms used. With this
help we analyze some properties of the network. The first
question is whether one component is connected to another.
A classic application of this question is that one can find
out which drug targets have any influence on other
components, a key question of interest in the development
of pharmaceuticals. In mathematical terms the former
question and checking the validity of the network, in the
sense that one knows the influence of one molecule upon
another and wants to verify if this connection is modeled,
are the same problem. It means we have to find out if there
exists a path between two nodes. We can solve it by
applying the Dijkstra algorithm, an algorithm determining
the shortest path between two nodes in a digraph with only
positive weights of arcs. As long as a path exists, the
algorithm provides us in polynomial time with values that
specify the minimal length of the path between every pair
of nodesin the graph. Otherwise it states that none exists.

It is also of interest to enumerate al paths
between two given nodes. This helps to find out which
components are particularly vulnerable to dysfunctions in
the system. If one component is connected to the rest of the
network by a small number of paths, it is more probable
that this component gets disconnected than a component
which has a greater number leading to this node in the
graph, since its activation is redundant. On the other side, a
well connected component (hub) that is malfunctioning
effects a bigger set of components than a poorly connected
component. Thus, it is possible to identify potential failure
modes and bottlenecks of the interaction network. The
enumeration of paths between two nodes s and t can be
done by applying the Dijkstra algorithm recursively.
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Firstly, calculate the shortest path between s and t.
Secondly, eliminate the last arc of this path which leads
directly into t. Thus the algorithm finds the “next” shortest
path. This is repeated until al directed arcs into t are
removed. Now move one step up the paths found so far
which means remove their last arc, i.e. arcs coming from
immediate predecessors of t. lterate until the whole
network is analyzed. It takes

#{n | nisthe number of the nodes in the longest path between s and t}

recursions until all paths are listed resulting in a pseudo
polynomial agorithm, as the output is obtained in
polynomial time, but the output size can be of exponential
sizein theinput length.

One important feature of interaction networks is
the presence or absence of feedback loops, i.e. cyclesin the
graph through which a component can influence itself.
Feedback loops make the anaysis of networks much
harder, as there can be effects occurring at a later time and
therefore change the output pattern of the network. To
model the interaction network at one time point it can be
necessary to remove certain arcs in order to obtain a
network free of cycles. For this problem we can make use
of an algorithm by Tarjan (39) that enumerates all directed
cycles in a digraph. It is a backtracking procedure with a

running time in O((V + A)(C+1)), where V is the

number of nodes, A the number of arcs, and C the
number of directed cycles of the digraph. Therefore, the
algorithm is pseudo-polynomial due to a possibly
exponential number of directed cycles. Note that the trivial
cycles occurring due to the negation operations are ignored
(Figure 4 (a@)). Therefore we can find al cycles in
interaction networks. Instead of enumerating all cycles,
which can be alengthy procedure, one can also ask only for
the existence of a negative or a positive feedback. For the
understanding of the function of a biological system it is
essential to be aware of enhancing effects or switch-off
mechanisms, which makes it an important question. This
can be accomplished in polynomia time. ldentifying a
negative or positive feedback is done by detecting the sign
of weighted cycles in a digraph (40), i.e. counting the
number of positive and negative influence along a closed
path to determine whether its net effect is positive or
negative, which can be done in polynomia time (41).
However, deciding whether there is a positive or negative
cycle through afixed node v isaready NP-complete (42).

Another interesting point of the anadysis of
interaction networks can be the manipulation of the
network in order to cut the connection between some
components. If one molecule has a dysfunction, it is useful
to know how to separate it from the rest of the network. Let
s and t be the components to be disconnected, i.e. they are
the source and the sink respectively. The Ford-Fulkerson
algorithm is applied from s to t. The algorithm computes
the maximal flow between s and t in the digraph or in any
subgraph. The max-flow-min-cut theorem (9) tells us that
the maximal value of flow is equal to the minimal cut. In
other words the minimal number of arcs which have to be
removed is computable. For example, if t is connected by
five direct interactions but all of them depend on the same
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Figure 5. A small interaction network from Example 3.
The dotted line denotes inhibition while the black node
means alogical AND.

node at some point along their paths between s and t then
flow is limited by this single node, i.e. it is a bottleneck in
the system. Linear programming duality also provides us
with the specific arcs which have to be removed which
means we can either target a bottleneck node or a specific
interaction coming or originating from that node. The latter
may allow for a better intervention control in case one
wants to suppress undesired behavior such as it is the case
in disease models or drug targeting. For example the
protein Ras is often involved in cancer development, yet
being a hub it controls so many growth processes that the
toxic effects are a problem (43). Ingtead of hitting a hub
causing unwanted side effects, a more restricted set of changes
downstream of it may be beneficial.

As displayed above, we can identify and diminate
feedback loops. Neglecting the triviad cycles occurring due to
the negation, every interaction network can be converted into
an acyclic digraph. In this context we can layer our graph, i.e.
we can clearly assign a number to every node which refers to
the leve it beongs to. An interaction network is layered when
we can label the nodes such that the component nodes have an
odd layer number, al operation nodes have an even layer
number, and the orientation of each arc follows the increasing
layer number. The layer number provides a hint at the position
of a component in the network. It dso yields the number of
components that are upstream via the longest activation
cascade. We note that it is sufficient for an interaction network
to contain no cycles to be a layered network. This can be
proven by a Breadth First Search Traversal type of agorithm
displayed in (44), that layers any acyclic interaction network.
The idea of the agorithm is to assign the next layer number to
the successors of the considered layer. In case a successor has
only one incoming arc or al its predecessors are in the
previous layer, the node is assgned the next integral number.
Otherwise, the arcs leading from the considered layer to the
successor are removed and the assignment of alayer number is
postponed. With this we close the illugtration of the potentids
of the structural analysis for interaction networks and move to
the functiond part.

3.3. Functional analysis
The biologica system is syntacticaly
characterized by its standard form SN. In order to analyze
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its semantics and thus its functionality concerning
activation/inhibition behavior an instrument to evaluate the
logical IFF-formulas is needed. Therefore, we exploit the
concept of satisfiability, which asks for a 0/1 assignment to
the components such that the overall function evauates to
TRUE (see (15) for a formal definition), and introduce this
specia case:

The IFFSAT problem of a problem SN with
literal set L: We fix the value of a set of components
L, c L tobe 0 and another set L, ¢ L of components that

are 1. Then the problem is to decide whether a solution for
the following formula exists or not, i.e. whether

SNA A (—|X) A X (IFFSAT)
Xely Xely

is satisfiable and if so, give an appropriate assignment.

In the setting of IFFSAT problems we can answer
the question whether, given a partial set of activations,
there exists a solution for the entire formula S, by fixing
some logical variables in S to a prescribed value and
solving the IFFSAT problem for the remaining formula
S'. In biological applications this genera procedure yields
the prediction of a systems response to certain stimuli and
dysfunctions, the detection of corresponding intervention
strategies, and model verification.

Example 3. We consider the interaction network of Figure 5
representing a subnetwork of the TCR model of (29): A key
issue for modeling biological systems is to check the
completeness and correctness of the model. This can be
accomplished by checking whether IFFSAT is inconsistent,
i.e. there exists no satisfying truth assignment, for a given
set of measured data. In our example interaction network
(Figure 5) a measurement that states the simultaneous
activation of TCRLIG, CCBLP1, and TCRB leads to an
inconsistent IFFSAT formula as it contradicts the IFF-
formula TCRLIG A— CCBLP1 <> TCRB. Thus, there
must exist another component that activates TCRB and is
not present in the interaction network yet, or a tempora
information is lacking. On the other hand, the measurement
TCRB =1 and LAT =1 isconsistent with the model SN.

Several scenarios can be tested with these logical
IFF-formulas. First of all, certain input and output patterns
can be checked for validity. For this purpose fix TCRLIG,
LCKR, and LAT to the desired value and solve the related
IFFSAT instance. If it is satisfiable, the input/output pattern
is avalid assignment. If one is interested in predicting the
output for a prescribed input pattern, one fixes the inputs to
interesting values again and solves IFFSAT twice: Once
with value LAT =0 and one time with LAT =1. If both
situations are satisfiable, LAT is undetermined as it is the
case, eg. for TCRLIG=1, leaving LCKR arbitrary. This
happens typicaly when their is insufficient information
about the activation of a node which in signaling networks
is the case for horizontal inputs. These inputs are critical to
uniquely determine the state of a molecule after receptor
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triggering, but their own regulation is unknown as for
instance they are controlled by other receptors or
undetermined environmental variables. In case one instance
is satisfiable and the other is not, LAT takes the value
obtained in the satisfiable setting, which is true for the
input pattern  TCRLIG=1 and LCKR=1 implying
LAT =1.

Failure modes are crucia to the development of
pharmaceuticals. In mathematical terms failure modes are
simply certain values of variables that lead to an undesired
behavior of the biological system. The corresponding
intervention strategies can be obtained by fixing the failure
modes to their opposite “good” value and computing
whether other variables are forced to obtain a specific
value, which then are possible intervention strategies. Asin
the previous tests we solve several different IFFSAT
instances to find fixations. In our example we set
ZAP70=1, which is a key component in the TCR
signaling network, and ask for variables that force this
setting. In this case a possible intervention is FYN =1 and

TCRB =1 aswell as TCRLIG=1 and LCKR=1.

Much research has been done to find effective
solution algorithms for subclasses of SAT (45). There is,
however, no algorithm that can efficiently check
satisfiability for arbitrary propositional formulas (46).
Nevertheless, a great deal of successful research has been
performed to develop practically usable methods for huge
SAT problem instances. Note that in general IFF-formulas
cannot be transformed into a series of formulas obtaining a
certain “nice” structure that allows for polynomial
computations, e.g. 2SAT or Horn formulas (15). Thus,
generally IFFSAT cannot easily be solved by using the
Prolog (47) method. Actualy, IFFSAT is equally hard as
general SAT:

Lemma 1. The satisfiability problem IFFSAT is equivalent
to 3-SAT, hence NP-complete.

For the proof see (48). Nevertheless, IFFSAT becomes
much easier if a certain structural property is fulfilled as
presented in (49). We will omit the technical details of
these structural properties and state only their main result:

Theorem 1. If an SN instance in cascade form satisfies the
cutnode condition, the related IFFSAT can be solved in
linear time.

Note that each SN instance can be transformed into this
cascade form but not every instance fulfills the cutnode
condition. However, the often problematic feedback loops
are not the reason for an unsatisfied cutnode condition. For
the details see (49).

Another method that is equivalent to IFFSAT is
an integer programming based approach. Instead of
utilizing SAT for the semantics of SN, we exploit a
feasibility or optimization problem over a linear system of
inequalities requiring integrality of the variables. An
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overview of general integer programming theory can be
found in (50).

Dantzig (51) dready presented how a SAT
problem can be formulated as an integer program (I1P). For
the IFFSAT problem the associated integer program is

constructed by introducing |L| binary variables x and

their complements X , and trandating each IFF-formula
into the system

X. —%. >0 for all
.ZL:, Ao S,i=1..k
for dl iel, and
Xy +X 20 )
' S,i=L1...,k

©)
x+%=1 xef{l leL

X, =L x,=0 pel,qel,

where we will assume that for non-negated components
Ael the variable x,, and for negated components

—AelL,X, has been used in the formulation of the

inequalities. The first inequality simply statesthat B isO if
al inputs A are zero while the second type of inequalities

force B to be 1 in case any of the A is active. The
condition x + X =1 requiresthat the value of a component
iseither 0 or 1 but never both at the same time.

The feasible solutions of the IP correspond to an
assignment of 0/1-values to each component that satisfies
al restrictions. As in the IFFSAT setting the considered
biologicaly relevant questions can be answered, partialy
with less instances to solve, as we can apply an objective
function.

However, solving integer programs is generally
hard, as the related decision problem is NP-complete. Thus,
it is not expected that it is more efficient than the SAT
based approach. In some cases it can be solved easily due
to combinatorial features or special descriptions of the
underlying polyhedron. The following lemma yields one
easy case in which the description of the polyhedron
enables us to solve the corresponding IFFSAT instance in
polynomial time, thisis the case for a single IFF formula of
arbitrary (but polynomially bounded) size.

Lemma 2. The inequality description of a single IFF
formula S; inthelP model (5) isintegral.

See (52, p. 338) for the proof. Nevertheless, it cannot be
generalized to IFFSAT problems with an arbitrary number
of equivalence formulas, as the property that permitted fast
computations is not preserved.

Computations utilizing both approaches still perform in a
reasonable time. In Teble 6 we used the TCR
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Table5. Structural facts about the TCR interaction network from (29).

# Comp #inter min | L. | max | |_j [ avg | |_j | #inputs # outputs # paths: in/out Shortest path Longest
]
path
93 123 6 1.32 3 14 5630 9 60
Table 6. Computational performance of the IP method by means of the TCR model of (29).
Variables Rows Inputs Outputs #eas #infeas Total time(s) Avgtime(s)
214 376 3 14 36 131036 ~ 120 0.001
model introduced in (29) to test the computational due to its different location and/or additional - but so far

performance of the IP method. Structural facts about the
interaction network are given in Table 5. All possible
input/output patterns are fixed and tested for feasibility.
The average computational time of 0.001 seconds per
instance promises an effective method to test the various
biologica questions. Computations were performed on a
SUN-Fire V890 (1.2GHz) using CPLEX 9.1 (53).

4. DYNAMIC M ODEL

In practical applications IFFSAT instances often
turn out to be infeasible even without components fixed. It
occurs that there are errors in the interactions, especialy
when the model is developed step by step or in multiple
units. Mistakes are then often made when merging the
parts. Another source for infeasibility is that temporal
information is not represented in the SN model. If it isin
fact available, which in practice is often not the case, it can
lead to infeasibility. In particular, delayed interactions
modeled as instantaneous are a risk, as for instance
(negative) feedback loops can lead to an inconsistent
IFFSAT, but at the same time have a huge impact on the
functionality of a signaling network through their timing
since certain activation cascades can be enabled initially
and switched off at a later time point to avoid over-
reaction. So far, the detection of errorsisusually performed
by experts who validate the interaction network step by
step in order to find the crucial point for infeasibility. In
this section we introduce a new method to systematically
investigate and propose ‘repair’ options of causes for
infeasibility in SN which, as a side effect, dlows the
handling of timing information. A typica situation is
illustrated in the example.

Example 4. While merging two separate models it
happens that two different pathways lead to the same
common component possibly generating a conflict. One
pathway activates the component while the other does not.
In (33) the TCR and IL2 receptor of T cells are integrated.
In this process severa common components occurred. For
example, the secondary messenger DAG is produced
following stimulation of either receptor and can activate
PKCs and RASGRP. However, it is known that RASGRP
does not become activated upon IL2 stimulation. The
model predicts RASGRP to be active while experimental
results state the opposite. Thus, we fix RASGRP to be 0,
obtain therefore an infeasible configuration, and compute
the minimal infeasible subsystems which help to detect the
crucia point in the highly complex overall system. In this
case, there is only one minimal infeasible subsystem which
simplifies the analysis. This is displayed in Figure 6. Here,
we could reve