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1. ABSTRACT

Logical models for cellular signaling networks
are recently attracting wide interest: Their ability to
integrate qualitative information at different biological
levels, from receptor-ligand interactions to gene-regulatory
networks, is becoming essential for understanding complex
signaling behavior. We present an overview of Boolean
modeling paradigms and discuss in detail an approach
based on causal logical interactions that yields descriptive
and predictive signaling network models. Our approach
offers a mathematically well-defined concept, improving
the efficiency of analytical tools to meet the demand of
large-scale data sets, and can be extended into various
directions to include timing information as well as multiple
discrete values for components.

2.  INTRODUCTION

The development of new technologies and high
throughput methods provides new insights in the structure
and function of biological units. In response to this growing
complexity, the need for structural and functional
theoretical analysis has emerged. Relevant questions such
as predicting a cell’s response, determining suitable
intervention strategies for dysfunctions, or simply detecting
modeling errors require answers beyond trial-and-error.

When speaking about biological systems we refer
to any level of detail. In particular, it can mean a
mechanistic description of a cell stating all (known)
interactions on a molecular basis, or it can denote a
schematic model of the development of a disease. The
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interpretation strongly depends on the purpose of the model
and the quality of data. In accordance, we always name an
element in the biological system component and for a
reaction or biological consequence we use the term
interaction. The termini active and inhibited refer to
characteristics such as the right or wrong location for an
interaction, enzymatic activity, phosphorylated or
dephosphorylated forms, or the sufficient presence or
absence of a protein. We will not further discuss these
details, other than to state that for each individual model
they need to be carefully specified for every component.

Several different modeling techniques were
introduced to analyze biological systems. Many approaches
utilize ordinary differential equations to describe small,
quantitative systems with respect to reaction rates and
production levels (for an overview see (1)). One famous
concept which is still widely used for quantitative analysis
is Michaelis-Menten kinetics (2). Due to the high
complexity to solve differential equation systems this
approach is not appropriate for every system. Therefore, it
is often applied only to well-characterized subsystems.
However, for many biological systems there is not
sufficient data available to allow a quantitative approach.
Often one can only distinguish between two states, e.g.
expressed or not expressed, which does not permit a
reasonable parameter estimation.

Here, we will concentrate on qualitative concepts
to model a biological units functionality. We will start with
an overview of established qualitative modeling methods,
then provide a self-contained presentation of our modeling
formalism based on logical implications and discuss its
extension to a dynamic setting: In Section 3.1 we show
how to systematically derive implication formulas from
measurements, then discuss structural analysis of the
underlying interaction network (Sec. 3.2), and show how to
make functional predictions (Sec. 3.3 and 4). Therefore,
Sections 3 and 4 can be read as a guideline for users that
first leads the way to a logical model of the biological
system and secondly explains the potentials of the model
including solving techniques and their complexity. Finally,
we will introduce a new approach to the situation where
multiple activation levels are to be modeled without falling
back to a reformulation with binary variables.

2.1. Propagation techniques
A first step towards qualitative modeling

techniques was accomplished by Kauffman in 1969 (3). He
represented each component in the biological unit by a
binary variable whose value is determined by a
propositional formula. Given an initial set of values for all
variables, the evolution of the system’s states is computed
by evaluating the logical formulas for one state to obtain
the next. Descriptively speaking the values are propagated
through the system just like reactions occurring one after
the other. In further work Glass and Kauffman (4)
introduce steady states of a logical system. They form an
analog of the steady state in the continuous setting, which
is defined as a state where the first derivative of all
concentration functions is 0. In the discrete case steady
states are defined as a state that has itself as an ensuing

state, i.e. evaluating the propositional formulas for the
current setting of 0 and 1 yields the identical pattern. It has
been shown that following a certain mapping between
discrete and continuous models the two concepts coincide.
These considerations form the basis for the concept of
Boolean networks which is a widely used model. Many
extensions and applicable analytic tools have so far been
proposed (e.g. (5 ,6 ,7)).

2.2. Interaction graphs
Analyzing a biological system by means of

Boolean networks has two dimensions. The first is a
structural analysis which utilizes a graphical representation
of the system, the so called interaction graph (8). It is not
only used to visualize the system, but can also answer
questions concerning connectivity, which component
influences which, and identify feedback loops, i.e.
subsystems where a component influences itself positively
or negatively via several other components. Applying graph
theoretical and combinatorial optimization tools these
questions can directly be investigated (9 ,8). These tools are
limited in the sense that they ignore the type of interaction,
which becomes critical when multiple components are
required to activate another one, a so called AND
connection. To overcome this restriction Klamt et al. (8)
generalize their concept of interaction graphs to directed
hypergraphs. This concept allows not only arrows between
two components, but they are forked so that one arc has
several tails leading into one component. Hence, a directed
hyperarc represents an AND connection. However, e¡cient
graph theoretic methods to analyze the system directed
hypergraphs are rare.

The second aspect of describing biological
systems by Boolean models concerns the functionality. To
determine steady states an initial state is assumed, for
which all interactions are evaluated, yielding the next state
(8). This iterative process is continued until a steady state is
reached. Therefore a steady state is an assignment of values
to each component that does not change when all
interactions are evaluated again, just as in Kauffman’s
concept (3). A particular application are minimal
intervention sets in which the value of some components
are predetermined. Then all compatible steady states are
computed as described above and analyzed with respect to
components that do not change their value. Thus, minimal
intervention sets are a key instrument for in silico drug
development. The computation involves listing and testing
all possible sets, which implies a limited size of computable
intervention sets. In general, the analysis of Boolean
networks can be applied to large-scale systems, and is
therefore suitable for systems with many components
where few details about the interactions are known.

2.3. Kinetic logic and Petri nets
Another modeling paradigm is that of Petri Nets,

which will not be presented here in detail. It is a separate
field of research containing many extensions and variations
of the classical concept of Petri Nets. Often it is applied to
small and medium sized systems. More information can be
found in the PhD. thesis of Petri (11), a recent overview
with applications to systems biology is given in (12).
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Table 1. Overview of the basic terms of propositional logic
Symbol Logical meaning Interpretation

component

 conjunction logical AND

 disjunction logical OR

 negation logical NOT

A B implicatio

A B equivalence ( ) ( )A B A B   

a b logical equivalence two logical terms can be
transformed into each other

A closely related strategy by Thomas (13) to
handle discrete data formalizes a so called kinetic logic for
gene regulatory networks. It is based on the theory of
Boolean control circuits and the difference compared to
Petri Nets is to involve reaction times and delays, which
makes it a qualitative concept closely related to the
differential equations techniques. It deals with interactions
in much more detail. Two types of logical variables are
distinguished: environmental variables, that model the
environmental influences like temperature or mutation
type, and internal variables, which serve as a memory
variable for the current level of the respective element. For
example, this can be the concentration of a product. For
each internal variab x he associates an internal Boolean
function X describing the regulation of the corresponding
gene x . As a first step the internal functions are manually
determined. Thus, a model for the gene regulatory network
is established. As demonstrated in (14) the system can then
be simulated with all possible values for the environmental
and internal variables in order to obtain predictions and
explanations for the systems behavior. Identifying steady
states or oscillating states is the main interest rather than
structural properties as this approach is best suited for small
networks. A system can be in two different states, stable or
unstable/transient: If the given values of the internal
variables coincide with the evaluated internal function for
specific, fixed values of the environmental variables, then it
is in a stable state. Otherwise, it is in a transient state.
Biologically, the idea behind this is to include the duration
of biological processes. If a gene g is present above a
certain threshold, so that it is able to perform its function, it
will still take some time until its product p is actually
present in functionally relevant amounts. In this case,

1g  and the associated function P g delivers a value

of 1. So the system is in a transient state, as 1g  but still

0p  . After a certain time, p will shift over to 1 which
brings the system back to a stable state. The evolution of
the biological system over time for a given environmental
influence can then be illustrated by a state transition graph.
Before we describe the approach by an example, we review
the basic terms of propositional logic in Table 1. For the
reader unfamiliar with the formalism of propositional logic
we also refer to (15).

Example 1 (taken from (14)). Suppose we are given a
biological system described by two internal functions

X y o

Y x t

   
  

where ,x y are internal variables and ,o t are
environmental variables, say oxygen supply and
temperature. Function X states that the corresponding
gene x is active if y is absent or the repressor, which
corresponds to the site where gene y represses gene x , is

inactive ( 0o  ). Accordingly, the gene y associated with

Y is only active if x is absent or the temperature is high
( 1t  ). Note, that o and t are determined by the user
depending on the experiment. Following the approach of
Thomas the system is simulated with all possible truth
values of , , ,x y o and t which can be found in Table 2. In

the highlighted scenarios the actual value of X and Y

equal those of x and y and therefore the system is

stable. Consider, e.g.
   , , , 0,1,0,0x y o t 

, since 0o  ,
X evaluates to 1 and the gene x can be switched on.

But the reaction takes some time to produce x , and
hence x will only be 1 at a later time point, bringing us

to the state
   , , , 1,1,0,0x y o t 

. This is again transient.

With an analogous argument y shifts to 0, finally
yielding a stable state. Note that in the last column we
find two stable states. Which one of them is achieved
depends on the duration of the reactions and the starting
point. In Figure 1 the state transition graph for this

situation
   , 1,0o t 

illustrates the competition of the
two stable states fought by the production/degradation

times
deg, , ,pro pro

x y xt t t
and

deg
yt .

A detailed exposition of the kinetic logic
concept and its applications can be found in (14). Some
refinements of this approach are known (e. g. (16 ,17 ,18
,19)). On the one hand discrete quantification of the
variables are included by e.g. Van Ham (20), who
encodes different levels of the variables as binary
variables for each level. Such incidence variables take
the value 1 if the gene exceeds the associated level and 0
otherwise. On the other hand more detailed time
information are incorporated. Siebert and Bockmayr (21)
for example allow for specific durations of each reaction
using the framework of timed automata. However, this
approach and its extensions are limited by the size of a
system: One has to compute the values of all internal
functions for every possible scenario of internal and
environmental variables and compare them with each
other.

In general, the question which model is best
suited for a biological system depends on the available
data and the type of question studied: More detailed
models on the one hand elucidate the functionality of the
system to a higher extent, but on the other hand reduced,
qualitative models may reveal macroscopic behavior just
as well with much smaller measuring, modeling, and
computational effort.
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Table 2. Simulation of the Thomas system for all possible
values of , , ,x y o and t .

XY 00 01 11 10 ,o t
00 11 11 11 11
01 11 11 01 01
11 10 11 01 00
10 10 11 11 10

,x y

Figure 1. The state transition graph for ( , ) (1,0)o t  in

Example 1 where prot denotes the production and degt the
degradation time of the associated gene.

3. LOGIC FRAMEWORK FOR INTERACTION
NETWORKS

Over the last years large-scale systems have
gained considerable importance to users as descriptive and
predictive models to improve insight into structure and
functionality (e. g. (22, 23, 24, 25, 26) or see the reviews
(27, 28)). The logic framework presented in this section is
related to the concept of Boolean networks. It aims at
strictly formalizing the concept, improving the efficiency of
analytical tools to meet the demand of large-scale data sets,
and extending the framework into various directions,
including temporal information as well as multiple discrete
values for each component. We will consider interaction
networks as bipartite graphs, introduce the qualitative, logic
framework, and expand this by including temporal
information and a discretization of activation levels.
Theoretical results concerning complexity and structure of
the developed model are displayed and are illustrated by
means of practical applications.

3.1. From blots to formulas
The simplest model of a biological process is that

which one obtains by collecting diverse knowledge about
the various individual causal relationships of its constituent
components. This is in fact the common implicit modeling
paradigm employed by users that argue about a biological
process using their accumulated knowledge about the
relevant entities. We will follow this path in a well-
formalized way: The intuitive model of a biological process
is to describe all (causal) experimental statements in the
form of logical formulas, that can be written down in
propositional logic (29): Introduce component variables for
each component, and write down implication formulas for
experimentally proven knowledge statements like “MEK
activates ERK” as

MEK  ERK

and “In the absence of (activated) PTEN and SHIP1 we
find that PI3K generates an increased amount of PIP3” as

PTEN SHIP1  PI3K  PIP3.   

In practical applications the logical implications have to be
derived experimentally. In the example “MEK activates
ERK” this is certainly easy, since the two proteins always
appear together. But, of course, there exist more complex
interactions for which the implication formula is not easily
derived by common sense. For these cases we propose the
following procedure:

1. Translate the experimental results into a truth
table, i.e. for every stimulation tested open a new
row in the table and list 0 and 1 for the
absent/inhibited and present/activated
components involved in the experiment.

2. Assume a logically consistent behavior and
anticipate further truth values if possible.

3. Extract the canonical logical formula F as a
disjunction of conjunctions. This is: one row is
represented as the conjunction of all its variables.
The variables occur negated if the corresponding
value is 0. The subsequent formula displays a
row in a truth table and its corresponding
canonical formula.

.
1 0 1

A B C
A B C

 
    

 

The formula evolves as the disjunction of all
rows.

4. Simplify F utilizing the Quine-McCluskey
Method (30) and transform F to an implication
formula.

The Quine-McCluskey Method simplifies logical formulas
F obtained by truth tables to its smallest equivalent in
disjunctive normal form. First, the prime implicants are
identified, i.e. those implicants that have minimal length
and imply F . The general idea is to apply the following
fact pairwise to the non-prime implicants:

  ( ) ( ) .x y x y x y y x       (1)

The redundant implicants are deleted in each
iteration. All prime implicants are generated by this
iterative procedure, but not all are needed to describe the
formula F . Rather only a minimal subset of prime
implicants such that all cases where F becomes TRUE are
covered, is necessary. Therefore a set covering problem is
to be solved, which is generally hard. We illustrate the
procedure with the example in Figure 2.
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Table 3. Truth table corresponding to blots in Figure 2.
MALT1 BCL10 CARD11 NF-kappaB

measured:
0 1 1 0
1 0 1 0
1 1 0 0
1 1 1 1

derived:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

Figure 2. Two stylized blots presenting results of (31) and (32) which show the activation of NF-kappaB.

Example 2. Assume we are faced with the
experimental results displayed in Figure  2. The
measurements are translated into a truth table, displayed as
Table 3, by introducing one row for every distinct
measurement with one column for each measured
component. The first four rows in the Table 3 are translated
from Figure  2. For instance, in the wild type case all three
components MALT1, BCL10, and CARD11 are active and
we see an active NF-kappaB. This yields the row filled
with 1s only. The last four rows are derived from the first
four measured rows, i.e. assuming a logical implication
formula we can determine the value of NF-kappaB for the
missing patterns of the inputs. We know from the
measurements that NF-κB is active if all three inputs are
present after stimulation, but inactive if only one of them is
missing. Therefore, none of them has an inhibitory effect
and we can conclude that NF-kappaB is also inactive if any
combination of inputs is missing. Thus, we obtain a logical
formula where we abbreviate MALT1, BCL10, CARD11,
and NF-kappaB by M, B, C, and N, respectively.

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

F M B C N M B C N M B C N M B C N

M B C N M B C N M B C N M B C N

                      
                           

Applying the idea of Equation (1) to each pair of implicants
that are possible to be combined yields

     

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) .

F M B C N M B N M C N M B N M C N B C N

B C N M B N M C N B C N

M B C N M N B N C N

                      
             

            

This yields not only the implication, but the
equivalence:

MALT1  BCL10  CARD11  NF-kappaB  

stating that NF-kappaB is active if and only if MALT1,
BCL10, and CARD11 are all active. If one wants to stress
the necessity of a stimulus to initialize the cascade, it can
be added as an additional requirement for the activeness of
NF-kappaB.

Table 4 gives an overview of possible
implications that occur in practical applications. Recall that
activeness in this context can have any meaning you assign,
e.g. phosphorylation, presence, transport to the ‘right’
location, etc.
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Table 4. List of possible implications in practice. TCRB denotes the TCR bound to a ligand while TCRP and IL2P denote the
phosphorylated receptors. More information on the first five examples can be found in (29) and (33) while the last one is
published in (34)

statement implication formula explanation
ZAP70 LAT A B if A is active, B is active.

FYN LCK ABL  A B C  if A , B , or both are active, C is active.

DAG VAV1 PDK1 PKCTH   A B C D   if A , B , and C are simultaneously active,
D is active.

(FYN TCRB) (LCKP1 TCRB) TCRP    ( ) ( )A B C D E    activeness of A and B or C and D (or
all) implies active E .

MKK4 MEKK1 (IL2P PI3K) JNK    ( )A B C D E    if A or B , or the two components C and
D (or subsets of these) are active, E is
active.

CXCR4 CXCL12 ERM  A B C   if both A and B are present, there is no C :
Absence of one of them, makes C active.

The set of formulas we obtain now describes all
currently known information about the system, which we
can then use to analyze and predict its behavior. However
in order to do so, it proves useful to specify that we are
only interested in statements that can be logically deduced
from those that we have collected, and that what cannot be
deduced should be considered false. This also avoids the
paradoxical situation that the mathematically correct logical
statement ‘FALSE TRUE’ can lead to statements along the
lines of ‘Receptor off Receptor cascade activation’. This
is known as a closed world assumption, see (35) (and also
(36) for justification on the semantic level).

The way to formalize the above deduction rule is
as follows. After computing and collecting all such
implications we aggregate all formulas with an identical
right-hand-side. Following this we introduce the reverse
implication for each formula. In other words we assume
that whenever a component on the right-hand-side is
activated or inhibited there must be an explanation for it in
the set of interactions. If there is not, the model must lack
information or include incorrect data. This leads to the two
basic interaction rules

1 nA A B   (2)

stating that B is active if and only if at least one of the iA

is active, and

1 nA A B   (3)

where B is active if and only if all iA are active. AND-

formulas (3) do occur in practical applications, but for the
mathematical modeling they are obsolete as each AND-
formula can be transformed to a logically equivalent OR-
formula (2):

    1 1 1 1n n n nA A B A A B A A B A A B                      

Therefore we restrict the analysis to the specifically
structured IFF formulas jS .

:
j

j i j
j L

S A B


  (IFF)

in which a subset jL of the components  1, , 0,1nA A 

determine the state of the component  0,1jB  . It is

assumed that the component jB does not appear on the

left-hand-side, i.e. no autoactivation takes place. The IFF-
formulas do not contain AND-connection but those can
always be represented by OR-formulas using artificial
variables, e.g.

     1 2 3 4 1 2 3 4 .A A A A B A A C B A A C            

Similarly, effectors (right-hand-sides) that are connected by
a logical AND are split into separate IFF-formulas. In case,
there is an OR-connection on the right-hand-side, an
auxiliary implication is introduced using the artificial
variable C :

   1 2 3 1 2 3 4 1 2 3 1 2 3 4 .A A A B B B B A A A C C B B B B              

Given the IFF-formulas for interactions in the
biological unit the local interdependencies are well
described. By asking all IFF-formulas to be valid at the
same time the individual interactions induce a global
behavior of the system. By means of this observation we
define the standard form of an interaction network as

1
SN : ,j

k

j
S


 (4)

where k denotes the number of IFF-formulas jS which

describe all relevant interactions in the system. This
definition allows for a categorization of the variables:
Variables that occur only on the left-hand-sides of IFF-
formulas jS are called input variables, while those being

only in the right-hand-side of formulas are denoted output
variables. The remaining variables are called intermediates.
Inputs, for instance, can be receptors, environmental
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Figure 3. Visual representation of a graph, a directed graph or digraph, and a bipartite graph showing the two node partitions in
white and black, respectively.

Figure 4. A small example of an interaction network with 4 components and 2 interactions, namely 1 2 3x x x  and

2 4 3x x x   . The panel on the right-hand side shows a simplified illustrations omitting explicit OR and NOT operational

nodes.

influences, or a virus in case of a disease model. Outputs
may refer to transcription factors, genes, cellular
phenotypes, or symptoms of a disease while the
intermediates can be signaling proteins connecting
receptors and transcription factors, genes that regulate other
genes, etc.

With this formal model at hand we follow two
main lines of analysis. We start with the investigation of
structural properties of the interaction network using graph
theoretical methods. In the subsequent section we explicitly
go through known algorithms, show how they can be
applied to an interaction network, and in particular what
their use for the analysis is. In the following Section 3.3 the
functionality of a system is simulated and analyzed, which
will be the focus of this work. A methodology to evaluate
the standard form (4) is presented, some results on the
complexity of the algorithms are given, and more important
for users, benefits for the analysis are demonstrated by
examples.

3.2. Structural analysis
The graphical representation of biological

systems is quite intuitive. Components are drawn as nodes
that are connected by arrows to describe the interactions.

Graphs are not only useful for visualization, but also for
structural analysis. Questions like ‘which component
influences which’ and ‘are there positive or negative
feedbacks involved’, i.e. does the network possess cycles
with an even or odd number of negations, respectively, can
be answered directly. Therefore, we first review some
standard notation and formalize the approach. A graph
(Figure 3 (a)) consists of a set of nodes and edges that are
defined as pairs of nodes. If the pairs of nodes are ordered
the edge becomes an arc and the graph becomes a directed
graph or digraph (Figure 3 (b)). A graph or digraph can be
bipartite, that is the nodes can be partitioned into two
subsets such that each edge or arc has exactly one node
from each subset (the white and black nodes in Figure 3
(c)).

An interaction network can be formally defined
as a bipartite digraph with two types of nodes: components
S (e.g. proteins) and operations O which contain AND,
OR, and NOT to describe molecular interactions. A vertex
is a combination of a component, the component’s negation
and a NOT operation (Figure 4: The vertex also contains
four arcs connecting the components and the NOT-
operation bidirectionally. Furthermore, the biological
interactions/mechanisms are encoded by arcs from
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components to operations (the requirements for an
activation) and one or more arcs from an operation to
component (s) (the effector(s) respectively (in)activated
component(s)). The graph displayed in Figure 4 (a) depicts
the formal definition of an interaction network. For
simplification of illustrations we will nevertheless label a
vertex simply by the component’s name omitting the
construct that it contains and remove the operational nodes
OR. Instead we draw a direct arc from input to output and
use dashed lines to denote negative influence. Furthermore
the AND operation will be depicted by a small black dot.
This simplified version is illustrated in Figure 4 (b).

Please note, that certain algorithms presented
hereafter can actually fail if there are AND connections
involved as the interaction is not independent of the values
of other variables. Up to now the analysis of those cases
was accomplished by the concept of hypergraphs (37). But
as presented earlier in this section, we can transform each
interaction network into a standard form that consists only
of OR operations, which ensures the functionality of the
algorithms without constructing the hypergraphs. Hence,
every interaction network can be transformed into one that
follows the simplified scheme of Figure 4 (b) without
“black dots”.

Given the interaction network as a bipartite
digraph, we can apply various algorithms known from
graph theory and combinatorial optimization. See (38) for a
more detailed presentation of the algorithms used. With this
help we analyze some properties of the network. The first
question is whether one component is connected to another.
A classic application of this question is that one can find
out which drug targets have any influence on other
components, a key question of interest in the development
of pharmaceuticals. In mathematical terms the former
question and checking the validity of the network, in the
sense that one knows the influence of one molecule upon
another and wants to verify if this connection is modeled,
are the same problem. It means we have to find out if there
exists a path between two nodes. We can solve it by
applying the Dijkstra algorithm, an algorithm determining
the shortest path between two nodes in a digraph with only
positive weights of arcs. As long as a path exists, the
algorithm provides us in polynomial time with values that
specify the minimal length of the path between every pair
of nodes in the graph. Otherwise it states that none exists.

It is also of interest to enumerate all paths
between two given nodes. This helps to find out which
components are particularly vulnerable to dysfunctions in
the system. If one component is connected to the rest of the
network by a small number of paths, it is more probable
that this component gets disconnected than a component
which has a greater number leading to this node in the
graph, since its activation is redundant. On the other side, a
well connected component (hub) that is malfunctioning
effects a bigger set of components than a poorly connected
component. Thus, it is possible to identify potential failure
modes and bottlenecks of the interaction network. The
enumeration of paths between two nodes s and t can be
done by applying the Dijkstra algorithm recursively.

Firstly, calculate the shortest path between s and t.
Secondly, eliminate the last arc of this path which leads
directly into t. Thus the algorithm finds the ”next” shortest
path. This is repeated until all directed arcs into t are
removed. Now move one step up the paths found so far
which means remove their last arc, i.e. arcs coming from
immediate predecessors of t. Iterate until the whole
network is analyzed. It takes

# | is the number of the nodes in the longest path between  andn n s t

recursions until all paths are listed resulting in a pseudo
polynomial algorithm, as the output is obtained in
polynomial time, but the output size can be of exponential
size in the input length.

One important feature of interaction networks is
the presence or absence of feedback loops, i.e. cycles in the
graph through which a component can influence itself.
Feedback loops make the analysis of networks much
harder, as there can be effects occurring at a later time and
therefore change the output pattern of the network. To
model the interaction network at one time point it can be
necessary to remove certain arcs in order to obtain a
network free of cycles. For this problem we can make use
of an algorithm by Tarjan (39) that enumerates all directed
cycles in a digraph. It is a backtracking procedure with a

running time in    1O V A C  , where V is the

number of nodes, A the number of arcs, and C the
number of directed cycles of the digraph. Therefore, the
algorithm is pseudo-polynomial due to a possibly
exponential number of directed cycles. Note that the trivial
cycles occurring due to the negation operations are ignored
(Figure 4 (a)). Therefore we can find all cycles in
interaction networks. Instead of enumerating all cycles,
which can be a lengthy procedure, one can also ask only for
the existence of a negative or a positive feedback. For the
understanding of the function of a biological system it is
essential to be aware of enhancing effects or switch-off
mechanisms, which makes it an important question. This
can be accomplished in polynomial time. Identifying a
negative or positive feedback is done by detecting the sign
of weighted cycles in a digraph (40), i.e. counting the
number of positive and negative influence along a closed
path to determine whether its net effect is positive or
negative, which can be done in polynomial time (41).
However, deciding whether there is a positive or negative
cycle through a fixed node v is already NP-complete (42).

Another interesting point of the analysis of
interaction networks can be the manipulation of the
network in order to cut the connection between some
components. If one molecule has a dysfunction, it is useful
to know how to separate it from the rest of the network. Let
s and t be the components to be disconnected, i.e. they are
the source and the sink respectively. The Ford-Fulkerson
algorithm is applied from s to t. The algorithm computes
the maximal flow between s and t in the digraph or in any
subgraph. The max-flow-min-cut theorem (9) tells us that
the maximal value of flow is equal to the minimal cut. In
other words the minimal number of arcs which have to be
removed is computable. For example, if t is connected by
five direct interactions but all of them depend on the same



Discrete, qualitative models of interaction networks

157

Figure 5. A small interaction network from Example 3.
The dotted line denotes inhibition while the black node
means a logical AND.

node at some point along their paths between s and t then
flow is limited by this single node, i.e. it is a bottleneck in
the system. Linear programming duality also provides us
with the specific arcs which have to be removed which
means we can either target a bottleneck node or a specific
interaction coming or originating from that node. The latter
may allow for a better intervention control in case one
wants to suppress undesired behavior such as it is the case
in disease models or drug targeting. For example the
protein Ras is often involved in cancer development, yet
being a hub it controls so many growth processes that the
toxic effects are a problem (43). Instead of hitting a hub
causing unwanted side effects, a more restricted set of changes
downstream of it may be beneficial.

As displayed above, we can identify and eliminate
feedback loops. Neglecting the trivial cycles occurring due to
the negation, every interaction network can be converted into
an acyclic digraph. In this context we can layer our graph, i.e.
we can clearly assign a number to every node which refers to
the level it belongs to. An interaction network is layered when
we can label the nodes such that the component nodes have an
odd layer number, all operation nodes have an even layer
number, and the orientation of each arc follows the increasing
layer number. The layer number provides a hint at the position
of a component in the network. It also yields the number of
components that are upstream via the longest activation
cascade. We note that it is sufficient for an interaction network
to contain no cycles to be a layered network. This can be
proven by a Breadth First Search Traversal type of algorithm
displayed in (44), that layers any acyclic interaction network.
The idea of the algorithm is to assign the next layer number to
the successors of the considered layer. In case a successor has
only one incoming arc or all its predecessors are in the
previous layer, the node is assigned the next integral number.
Otherwise, the arcs leading from the considered layer to the
successor are removed and the assignment of a layer number is
postponed. With this we close the illustration of the potentials
of the structural analysis for interaction networks and move to
the functional part.

3.3. Functional analysis
The biological system is syntactically

characterized by its standard form SN. In order to analyze

its semantics and thus its functionality concerning
activation/inhibition behavior an instrument to evaluate the
logical IFF-formulas is needed. Therefore, we exploit the
concept of satisfiability, which asks for a 0/1 assignment to
the components such that the overall function evaluates to
TRUE (see (15) for a formal definition), and introduce this
special case:

The IFFSAT problem of a problem SN with
literal set L : We fix the value of a set of components

0L L to be 0 and another set 1L L of components that

are 1. Then the problem is to decide whether a solution for
the following formula exists or not, i.e. whether

 
0 1

SN
x L x L

x x
 

    (IFFSAT)

is satisfiable and if so, give an appropriate assignment.

In the setting of IFFSAT problems we can answer
the question whether, given a partial set of activations,
there exists a solution for the entire formula S , by fixing
some logical variables in S to a prescribed value and
solving the IFFSAT problem for the remaining formula

'S . In biological applications this general procedure yields
the prediction of a systems response to certain stimuli and
dysfunctions, the detection of corresponding intervention
strategies, and model verification.

Example 3. We consider the interaction network of Figure 5
representing a subnetwork of the TCR model of (29): A key
issue for modeling biological systems is to check the
completeness and correctness of the model. This can be
accomplished by checking whether IFFSAT is inconsistent,
i.e. there exists no satisfying truth assignment, for a given
set of measured data. In our example interaction network
(Figure 5) a measurement that states the simultaneous
activation of TCRLIG, CCBLP1, and TCRB leads to an
inconsistent IFFSAT formula as it contradicts the IFF-
formula TCRLIG  CCBLP1  TCRB  . Thus, there
must exist another component that activates TCRB and is
not present in the interaction network yet, or a temporal
information is lacking. On the other hand, the measurement
TCRB 1 and LAT 1 is consistent with the model SN.

Several scenarios can be tested with these logical
IFF-formulas. First of all, certain input and output patterns
can be checked for validity. For this purpose fix TCRLIG,
LCKR, and LAT to the desired value and solve the related
IFFSAT instance. If it is satisfiable, the input/output pattern
is a valid assignment. If one is interested in predicting the
output for a prescribed input pattern, one fixes the inputs to
interesting values again and solves IFFSAT twice: Once
with value LAT 0 and one time with LAT 1 . If both
situations are satisfiable, LAT is undetermined as it is the
case, e.g. for TCRLIG 1 , leaving LCKR arbitrary. This
happens typically when their is insufficient information
about the activation of a node which in signaling networks
is the case for horizontal inputs. These inputs are critical to
uniquely determine the state of a molecule after receptor
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triggering, but their own regulation is unknown as for
instance they are controlled by other receptors or
undetermined environmental variables. In case one instance
is satisfiable and the other is not, LAT takes the value
obtained in the satisfiable setting, which is true for the
input pattern TCRLIG 1 and LCKR 1 implying
LAT 1 .

Failure modes are crucial to the development of
pharmaceuticals. In mathematical terms failure modes are
simply certain values of variables that lead to an undesired
behavior of the biological system. The corresponding
intervention strategies can be obtained by fixing the failure
modes to their opposite “good” value and computing
whether other variables are forced to obtain a specific
value, which then are possible intervention strategies. As in
the previous tests we solve several different IFFSAT
instances to find fixations. In our example we set
ZAP70 1 , which is a key component in the TCR
signaling network, and ask for variables that force this
setting. In this case a possible intervention is FYN 1 and
TCRB 1 as well as TCRLIG 1 and LCKR 1 .

Much research has been done to find effective
solution algorithms for subclasses of SAT (45). There is,
however, no algorithm that can efficiently check
satisfiability for arbitrary propositional formulas (46).
Nevertheless, a great deal of successful research has been
performed to develop practically usable methods for huge
SAT problem instances. Note that in general IFF-formulas
cannot be transformed into a series of formulas obtaining a
certain “nice” structure that allows for polynomial
computations, e.g. 2SAT or Horn formulas (15). Thus,
generally IFFSAT cannot easily be solved by using the
Prolog (47) method. Actually, IFFSAT is equally hard as
general SAT:

Lemma 1. The satisfiability problem IFFSAT is equivalent
to 3-SAT, hence NP-complete.

For the proof see (48). Nevertheless, IFFSAT becomes
much easier if a certain structural property is fulfilled as
presented in (49). We will omit the technical details of
these structural properties and state only their main result:

Theorem 1. If an SN instance in cascade form satisfies the
cutnode condition, the related IFFSAT can be solved in
linear time.

Note that each SN instance can be transformed into this
cascade form but not every instance fulfills the cutnode
condition. However, the often problematic feedback loops
are not the reason for an unsatisfied cutnode condition. For
the details see (49).

Another method that is equivalent to IFFSAT is
an integer programming based approach. Instead of
utilizing SAT for the semantics of SN, we exploit a
feasibility or optimization problem over a linear system of
inequalities requiring integrality of the variables. An

overview of general integer programming theory can be
found in (50).

Dantzig (51) already presented how a SAT
problem can be formulated as an integer program (IP). For
the IFFSAT problem the associated integer program is
constructed by introducing L binary variables ix and

their complements ix , and translating each IFF-formula

into the system

0
i j

j

A B
i L

x x


  for all
, 1, ,jS j k 

0
i jA Bx x  

for all ji L and

, 1, ,jS j k 

 1, 0,1l l lx x x   l L

1, 0p qx x  1 0,p L q L 

(5)

where we will assume that for non-negated components
A L the variable Ax , and for negated components

, AA L x  has been used in the formulation of the

inequalities. The first inequality simply states that B is 0 if
all inputs iA are zero while the second type of inequalities

force B to be 1 in case any of the iA is active. The

condition 1l lx x  requires that the value of a component

is either 0 or 1 but never both at the same time.

The feasible solutions of the IP correspond to an
assignment of 0/1-values to each component that satisfies
all restrictions. As in the IFFSAT setting the considered
biologically relevant questions can be answered, partially
with less instances to solve, as we can apply an objective
function.

However, solving integer programs is generally
hard, as the related decision problem is NP-complete. Thus,
it is not expected that it is more efficient than the SAT
based approach. In some cases it can be solved easily due
to combinatorial features or special descriptions of the
underlying polyhedron. The following lemma yields one
easy case in which the description of the polyhedron
enables us to solve the corresponding IFFSAT instance in
polynomial time, this is the case for a single IFF formula of
arbitrary (but polynomially bounded) size.

Lemma 2. The inequality description of a single IFF
formula jS in the IP model (5) is integral.

See (52, p. 338) for the proof. Nevertheless, it cannot be
generalized to IFFSAT problems with an arbitrary number
of equivalence formulas, as the property that permitted fast
computations is not preserved.

Computations utilizing both approaches still perform in a
reasonable time. In Table 6 we used the TCR
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Table 5. Structural facts about the TCR interaction network from (29).
# Comp # inter min | |jL max | |jL avg | |jL # inputs # outputs # paths: in/out Shortest path Longest

path
93 123 0 6 1.32 3 14 5630 9 60

Table 6. Computational performance of the IP method by means of the TCR model of (29).
Variables Rows Inputs Outputs #feas #infeas Total time (s) Avg time (s)

214 376 3 14 36 131036  120 0.001

model introduced in (29) to test the computational
performance of the IP method. Structural facts about the
interaction network are given in Table 5. All possible
input/output patterns are fixed and tested for feasibility.
The average computational time of 0.001 seconds per
instance promises an effective method to test the various
biological questions. Computations were performed on a
SUN-Fire V890 (1.2GHz) using CPLEX 9.1 (53).

4. DYNAMIC MODEL

In practical applications IFFSAT instances often
turn out to be infeasible even without components fixed. It
occurs that there are errors in the interactions, especially
when the model is developed step by step or in multiple
units. Mistakes are then often made when merging the
parts. Another source for infeasibility is that temporal
information is not represented in the SN model. If it is in
fact available, which in practice is often not the case, it can
lead to infeasibility. In particular, delayed interactions
modeled as instantaneous are a risk, as for instance
(negative) feedback loops can lead to an inconsistent
IFFSAT, but at the same time have a huge impact on the
functionality of a signaling network through their timing
since certain activation cascades can be enabled initially
and switched off at a later time point to avoid over-
reaction. So far, the detection of errors is usually performed
by experts who validate the interaction network step by
step in order to find the crucial point for infeasibility. In
this section we introduce a new method to systematically
investigate and propose ‘repair’ options of causes for
infeasibility in SN which, as a side effect, allows the
handling of timing information. A typical situation is
illustrated in the example.

Example 4. While merging two separate models it
happens that two different pathways lead to the same
common component possibly generating a conflict. One
pathway activates the component while the other does not.
In (33) the TCR and IL2 receptor of T cells are integrated.
In this process several common components occurred. For
example, the secondary messenger DAG is produced
following stimulation of either receptor and can activate
PKCs and RASGRP. However, it is known that RASGRP
does not become activated upon IL2 stimulation. The
model predicts RASGRP to be active while experimental
results state the opposite. Thus, we fix RASGRP to be 0,
obtain therefore an infeasible configuration, and compute
the minimal infeasible subsystems which help to detect the
crucial point in the highly complex overall system. In this
case, there is only one minimal infeasible subsystem which
simplifies the analysis. This is displayed in Figure 6. Here,
we could reveal that the source of DAG might be critical

due to its different location and/or additional - but so far
unknown - regulatory factors. In general, infeasibilities
might not be as easy to unravel. Stimulating CD28 in the
merged TCR and IL2 model of (33) and requesting JNK to
be active yields 771 minimal infeasible subsystems. Several
of them are almost equivalent, so a classification has to be
done to make this set understandable. This is analogous to
the case where a certain set of interactions can be
connected by many paths to construct feedback loops,
making the complete set of feedbacks large, with a
concentrated core of interactions that explain most or all of
the infeasible subsystems.

When the infeasibilities did not arise due to
modeling mistakes or as a conflict in the data that is
resolved by experiments it probably point to delayed
interactions and an extension to the standard logical
description of the network is required. Suppose we are
given the standard form SN of an interaction network. For
each IFF formula , 1, ,jS j k  , we introduce auxiliary

variables ,i jy i L indicating the influence of Variable iA

on jB . This leads us to the requirement IFF formulas:

       :
j j j j j

j i i j k i j i i j j i k
i L k L i L i L k L

R A y B A y B A y B B y A
    

     
                         

     
    

(RIFF)

which assigns to each interaction (IFF formula) jS

requirement variables ,i jy i L . The RIFF formula states

on the one hand that jB is active if there is an ji L such

that both iA and its requirement variable iy are 1 -- causes

have consequences -- and on the other hand if jB and some

iy are 1, then there must be an kA that is active, i.e. there

is no consequence without cause. Concretely, in an
interaction network 1iy  denotes influence of the

corresponding component iA on the right hand side jB

while 0iy  denotes no effect. In case 0iy  for all

,j ji L B is requested to be free. The second condition is

needed for a monotonic behavior of the y variables which
is needed for further computations. For details see (48).
Analogously we define the RIFFSAT problem.

 
101

j

k

j x L x L
R x x

  
     (RIFFSAT)

with 0L describing the set of components that shall be

inactive and 1L the set of active components.
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Figure 6. Minimal infeasible subsystem resolving one
conflict while merging the two receptor models in (33).

We demand that the requirement variable iy of

iA are different for every IFF formula in which iA occurs

on the left hand side in order to deal with a component
occurring in several interactions separately in each
situation. Note, that in the graphical representation the
requirement variables can be seen as binary variables for
the arcs that indicate whether the arc is present or not.
Therefore, one can represent the dynamic behavior of a
network by introducing T copies of the same interaction
network each associated with a binary vector , 1, ,ty t T 

that indicates which interaction is present at time t . The
difference 1t ty y  encodes the change in structure of the

system from time 1t  to t .

Example 5. In the merged TCR and IL2 network
(33) several interactions occur at later points in time because of
long production times or dependency on components that are
not produced/degraded at an early state. Examples of these are
the clauses “ERK absence and LCKP1 activity implies the
activity of SHP1”, “activity of GADS, LAT, and ZAP70
implies activity of GAB2”, and similarly “If GRB2, ZAP70,
and LAT are active, so is GAB2”. Modeling the networks
behavior including these different points in time reveals, for
instance, that ERK is active after simultaneous TCR and IL2
stimulation while it remains inactive if the cell is prestimulated
at IL2 and subsequently also at the TCR. This was
experimentally confirmed (33).

As for IFFSAT we can represent the set of all
truth assignments for which (RIFFSAT) is TRUE by an
inequality description: For every RIFF formula jR and

corresponding requirement set jY we write down

inequalities of the form

 1
k j

j

A i B
k L

x y x


   for all ji L

 1
i jA i Bx y x   for all ji L

 1, 0,1l l lx x x    j j jl L B Y  

1, 0p qx x  1 0,p L q L 

(6)

We will assume that ix is used in the inequality description

if the corresponding component is negated. Note that for
each fixed y the formulation reduces to an IFFSAT
instance.

A satisfying truth assignment yields again an
assignment of 0 and 1 to all components of the unit, but it

might not be valid for the related IFFSAT, as we can cut
the connection between certain components. In particular,
if the original IFFSAT problem is inconsistent, a solution to
the associated RIFFSAT implies which interactions of
components have to be removed in order for IFFSAT to be
consistent, i.e. the value of variables iA in jS for which

0iy  have to be irrelevant for jB . This points at the

origin of the inconsistencies. In order to identify the
location of a modeling error, one is usually interested in
minimal inconsistent or maximally consistent solutions to
RIFFSAT. The optimality refers to the number of zeros in
y as this encodes the variables to be removed from the IFF

formula.

Both approaches, RIFFSAT as well as IP (6), can
provide one maximal feasible solution. But one is of course
interested in all maximal solutions with respect to the
requirement variables in order to find all possible modeling
errors, missed temporal information, or to plan specific
experiments verifying an actual network structure. In order
to find the set of all maximal solutions with respect to the
requirement variables it is necessary to use a ‘clever
enumeration method’. For this purpose, we make use of the
joint generation algorithm (54). For an application to
signaling networks and its computational performance see
(48). The joint generation algorithm does not only provide
a maximally consistent subnetwork, but the minimally
inconsistent subsystems are generated as a by-product
which in particular yields a concrete characterization of
inconsistencies. This allows for an easy identification of
modeling errors. The subsequent example illustrates the
method.

Example 6. Consider the negative feedback that is
depicted in Figure 7. Leaving all variables unfixed, the
corresponding SN is feasible with the assignment

 TCRB FYN PAG CSK LCK1, 1, 0, 0, 1x x x x x     . If we

assume that TCRB is inactive, i.e. TCRB 0x  , the situation

changes and the system becomes infeasible. Generating all
maximal solutions of the IP presented in Figure 7 with the
objective to maximize the number of attending
implications, yields in particular the minimal infeasible
subsystem which is the ‘cycle’ comprised of the
components FYN, PAG, CSK, and LCK. This implies that
either a modeling error occurred while composing different
parts to one overall system, or the interactions occur at
different times. In this setting as all reactions are
experimentally proven, so that rather the second reason
applies. In (29) it is presented that FYN phosphorylates
PAG after 3 to 5 minutes which is ‘late’ compared to the
other implications considered. For TCR signaling this
interaction takes the role of an off-switch.

5. MULTIPLE ACTIVATION LEVELS

The propositional logic approach proved to be a
useful framework for the analysis of large interaction
networks. Functionality and structure can be investigated
hand in hand. In particular for biological systems like
signal transduction networks which often lack quantitative
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Figure 7. A negative feedback that is in general feasible, but becomes infeasible for TCRB 1 , and its dynamic model
description.

measurements so that the data is presented in a binary form.
For instance, the kinase ERK being phosphorylated or not
and the transcription factor NFAT being localized to the
nucleus or the cytoplasm. Thus, binary modeling is the only
approach suitable. However, certain interaction networks or
parts of a network may allow for a more detailed analysis.
Even though the data is not yet continuous several levels of
activation can be identified. For example, a component can
be inactive, of low, medium, or high activity. Depending on
its state it can have different effects on the behavior of the
network. The next example illustrates this behavior in an
apoptosis network.

Example 7. The apoptosis network of Schlatter et
al. (26) is a logical model describing the process of
programmed cell death. It includes components that have
three distinct activation levels. For instance, the component
UV radiation can be off, low, or high. The authors observe
that a cell survives if there is no UV radiation and
surprisingly if it is high, while it dies if UV radiation is
low. The experimental evidence is given in Figure 8. It
presents the percentage of cells that survive upon different
radiation levels, which are indicated below by 0,1, and 2
referring to no, low and high UV light, respectively.

Taking a closer look at the apoptosis network we
find several level dependent interactions such as “If there is
no Caspase3 we find activation of Gelsolin, while if we
find no high Caspase3, ICAD is activated” (see (26) and
reference therein for biological details). In our usual
notation this reads

Caspase3 Gelsolin high Caspase3 ICAD   
If we assume again that all such interactions are valid at the
same time such level dependent interactions yield distinct
read-outs of the network.

Obviously, the different activation levels can be
discretized and converted into a Boolean model. But this
implies a great loss of information and thus reduces the

predictive power of the model. Alternatively, a function can
be fitted through the valid points and a continuous
technique can be applied, but then a large part of
(unknown) information has to be assumed. It is therefore
desirable to bridge the gap between the purely logic
approach and continuous methods, which assumes a
complete knowledge of all components’ concentrations
over time. A suitable model for the purpose of including
multiple activation levels has to allow a finite range for the
variables and at the same time it has to keep its
propositional logic characteristics that enables one to
decide feasibility of the system or of given scenarios. An
easy approach that fulfills these conditions is to introduce
binary variables for each possible level of a component that
indicate its value together with the constraint that exactly
one of the binary variables corresponding to one
component is active. If we denote the level of a component
by a superscript, then the level dependent interactions of
Example 7 look as follows:

Caspase3 Gelsolin and Caspase3 Caspase3 ICADinact act inact low act  

with Caspase3 +Caspase3 +Caspase3 1inact low high  ,

Gelsolin +Gelsolin 1inact act  , and ICAD +ICAD 1inact act  .
The concept goes back to van Ham (20) in the 1970’s and
is currently the standard way of dealing with multiple
activation levels computationally (e.g. (55)) as well as
theoretically (56 ,57 ,58 ,59). This approach is well suited
for cases with a limited number of components that have
only a few activation levels distinct from 0 and 1 .
However, as the systems become more complex, increasing
components and/or the levels of activation, the system size
escalates, in particular the variable number rises by
approximately #components(max #levels 1) . It is indeed

reported in Schlatter et al. (26) that computational time
increases dramatically even when only a few components
have more than two levels of activation associated. In
Thomas’ concept of kinetic logic (Section 3.3) multiple
levels can be incorporated in a different manner: Snoussi
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Figure 8. Experimental results showing the effect of
different levels of UV radiation taken from (26). The
percentage of surviving cells for untreated cells (0) and
after weak UV (1) and strong UV (2) stimulation for each
measure are shown in columns in the upper half including
standard deviation. The ‘3’ refers to the number of repeats
of the experiment.  half including standard deviation.

(60) introduces multiple values for one variable which is
increased whenever a reaction is executed again. In
Thomas’ state transition graph this is straight forward to
integrate although complexity of the graph rises
significantly. In this framework, it is the standard way of
integrating levels (see also (21)). However, it is not clear
how to model this in the Boolean network approach
without assuming consecutiveness of activation levels and
without the use of the state transition graph which bypasses
the inclusion of integer values into the logical activation
formulas.

We therefore propose a different approach that
avoids an explosion of the system, but keeps one variable
per component. The variables become integer valued rather
than binary and its value expresses its current level. No
additional variables are introduced. The idea is to keep the
formalism of Section 3.3, but associate with every
component in each IFF formula an interval determining the
components’ levels at which it has an effect in the current
formula. More formally, we introduce activation levels

 0,1, , in for each component iA , jB . Starting with an

IFF formula jS we write down interval IFF formulas (iIFF

formulas):

,: ) ( ).(
j

j

j i i j j B
i L

W J B JA

    (iIFF)

in which each variable ,i jA i L is associated with an

interval  , 0,1, ,i j iJ n  , and jB with  0, ,
j jB BJ n 

denoting the activation window, which can differ for all
variables and each of their occurrence.

We call an expression ,i i jA J TRUE if iA takes

a value from ,i jJ . Correspondingly, an iIFF formula states

that whenever at least one of the iA takes a value within

,i jJ , then jB attains a value of
jBJ , and is therefore a

natural generalization of an IFF formula to more than two
levels of activation. However, in contrast to IFF formulas
we do not assume the variables to occur negated. We rather
shift this information into the interval J . Whenever the
same variable iA occurs in several or even in one iIFF

formula, different activation windows ,i jJ can thus be

associated.

Coming back to our example of apoptosis (26),
the interactions depending on multiple levels can be
formalized as:

       Caspase3 0 Gelsolin 1 and Caspase3 0,1 ICAD 1     

In accordance with the original IFFSAT we can
define the interval IFFSAT problem: Decide whether there
exists an assignment of integer values to each component
such that
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becomes TRUE. In this context L is the set of components
in SN, F L a subset of predetermined components, and

k the number of iIFF formulas.

Note that iIFFSAT, just like RIFFSAT, contains
IFFSAT as a special case, in which all intervals have only
one element, either 0 for negative or 1 for positive
components. Therefore, iIFFSAT is as powerful for
multiple level modeling as IFFSAT is for binary interaction
networks. Hence, the relevant biological questions can be
checked for equivalently (see Example 3). However, this
interval satisfiability is not investigated as well as SAT is.
Automatic solvers are not available. To solve iIFFSAT
computationally we rewrite it as a system of nonlinear
equalities. We encode feasible states as common roots of
polynomial equations (61):
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For each iIFF formula jW we collect all minimal

variable assignments such that jW is TRUE. Therefore, we

obtain two different kinds of points, those with

jj BB J and those with
jj BB J . The first type are all

points   ,,
i j j

l l l
i A B i j Bx x x J J   , 1, , il m  , which we

obtain for every ji L . The latter are jo points

1, 2, | |,j j

l
j j L j By J J J J     , where ,i jJ denotes the

complement of the set ,i jJ with respect to  0,1, , in .

The feasible points can be encoded as the roots of a
polynomial:

       2 22 2

1 1
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Each variable x that is fixed to a prescribed interval fJ is

written as a separate polynomial:

  0.
fv J

x v


 
Further, we introduce a polynomial for each variable that is
not fixed to a prescribed interval to model its possible
activation windows. For each variable x with activation

levels  0,1, , xn we write

0

( ) 0
n

j

x j


 

to express the feasible region of the variables.

To capture iIFFSAT, such polynomials are
introduced for each jW , and each variable x yielding a

equality system of polynomials which can be investigated
for feasibility by means of Hilbert’s Nullstellensatz.

Theorem 2 (see e.g. (62)). Let  1, , , 1,i np C x x i m   .

Then:
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Just as in the SAT case we have thus a certificate
for the feasibility of the modeled system, which allows us
to follow the same line to answer questions of the previous
type concerning the prediction of a system’s output,
simulating its behavior, and detection of intervention
strategies. We illustrate this approach using our example
from apoptosis which in this formulation reads

   
     

   

2 2 2 2

2 2 2 2 2 2

0 Caspase3 (Gelsolin 1) (Caspase3 1) Gelsolin

0 Caspase3 (ICAD 1) (Caspase3 1) (ICAD 1) (Caspase3 2) ICAD

0 Caspase3 Caspase3 1 Caspase3 2

0 Gelsolin (Gelsolin 1)

0 ICAD (ICAD 1).

     

         

    

  
  

In a sense this kind of reformulation is similar to
the state transition graph approach in Thomas’ kinetic logic

by Snoussi (60). While in state transition graphs the
network’s overall states are enumerated and ordered, we
enumerate all feasible points of only one interaction of the
system in the polynomial equations. Doing this for every
interaction guarantees the global behavior. Computational
experience with this type of formulations is still lacking
and an developing field of research.

6. CONCLUSIONS

Discrete models are an important and viable tool
to model logical and multi-level qualitative behavior of
cellular signaling networks. Their strength lies in the
flexibility to integrate information at varying biological
levels. They are not limited to steady state logical analysis,
but can in a natural fashion encode all possible timing
behaviors when only partial and relative timing information
is available. Usable algorithmic tools for the analysis of the
arising mathematical models are available, but are
themselves an interesting topic for further research: SAT
solvers like MiniSAT (63) can solve problems with
hundred thousands of variables, the free implementation of
the joint generation algorithm available (64) has been used
successfully in realistic applications (33), and libraries of
graph algorithms are available for most programming
languages, e.g. the Boost library for C++ (65).
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