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1. ABSTRACT

Arylamines are well-known as widespread
industrial and environmental mutagens and carcinogens.
Their bioactivity stems from enzymatic metabolic
activation to reactive and highly electrophilic
intermediates. In this work, computational investigations
related to the biological activity of these compounds have
been reviewed, especially focusing on studies reporting
results from quantum-mechanical calculations. Correlations
between relative mutagenicities and structural and
electronic features of the parent amines and of their derived
nitrenium ion intermediates were examined, with the aim of
achieving a clearer comprehension of the main factors
determining the genotoxic potential of this type of
compounds.

2. INTRODUCTION

Numerous aromatic amines (AAs) present in
different industrial activities (dyes used in textile, paper,
plastic, pharmaceutical, cosmetic, and food industries), as
well as in tobacco smoke, are widely distributed
environmental carcinogens (1-3). Similarly, heteroaromatic
amines (HAs), found in well-done or over cooked meats
and protein rich foods, have also been confirmed as
mutagens and carcinogens (4-9). The genotoxic potential of
these compounds is developed by enzymatic metabolic
activation (Figure 1) (10-12). The initial step involves
oxidation of the exocyclic amine nitrogen by cytochrome
P450 enzymes to form aryl N-hydroxylamines (10), which
can undergo N-O bond cleavage to arylnitrenium ions
under mildly acidic conditions (12). Additionally, further
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Figure 1. Metabolic activation of aromatic and HAs.

bioactivation of N-hydroxylamines to sulfuric or acetic acid
esters facilitates the heterolysis of the N-O bond (10-12).
The very electrophilic and highly reactive nitrenium ions
generated are the ultimate metabolites that covalently bind
and modify DNA (10-12). Replication of covalent DNA
adducts may lead to mutations and cancer induction (13-
15). Besides this major mutagenic pathway, it has been
suggested that interaction of a number of AAs and HAs
with P450 enzymes and peroxidases causes formation of
reactive oxygen species (ROS), which may also provoke
DNA mutations and cancer (Figure 1) (16-20).

3. STRUCTURE-ACTIVITY RELATIONSHIPS

During the last decades, many efforts have been
made to correlate mutagenicity and carcinogenicity data for
AAs and HAs with observed and/or calculated properties of
the amines or of their derived nitrenium ions. As an
indication of the marked interest in this topic, several
structure-activity relationship (SAR) and quantitative
structure-activity relationship (QSAR) studies have been
reported (21-43). Some of them, based on the same set of
95 aromatic and HAs, have lately been compared (44). It
was found that the QSAR model developed by Maran et al.
(33) (equivalent to the one of Karelson et. al. (38)) was the
most adequate to describe the mutagenicity of the 95
amines studied (44). This linear model combined one
constitutional descriptor, related to the hydrophobically
active surface area of the compounds, and five descriptors
derived from quantum-chemical calculations. QSAR
studies relative to in vitro mutagenicity and animal
carcinogenicity of aromatic and HAs have been recently
reviewed (45).

According to QSAR analyses having a
mechanistic orientation, the toxic activity of amines was
shown to correlate with the ease of formation of the N-
hydroxylamine, with the stability of the nitrenium ion, and
with the ease of formation of epoxides on the aromatic ring
(46). On the other hand, various studies pointed to the

central role of hydrophobicity in the mutagenic and
carcinogenic potency of aromatic and HAs (45). Electronic
descriptors related to reactivity have also been implied, as
the energies of the highest occupied molecular orbital
(HOMO) and of the lowest unoccupied molecular orbital
(LUMO) (45). The HOMO energy describes the tendency
of a molecule to be oxidized, and in this case can account
for the propensity to form the hydroxylamine metabolite,
whereas the mechanistic reason for the correlation of the
mutagenic potential with the LUMO energy is not clear.
Regarding steric effects, bulky substituents at the nitrogen
amino group, and ortho to the amino function, were
observed to decrease the activity of arylamines (45).
Several authors have found correlations between potency
and topological parameters, as the number of fused
aromatic rings and the type of ring system (45). In a very
recent publication, mutagenicity of arylamines has been
ascribed to three factors: (i) high binding affinity in the
productive binding mode within the catalytic cavity of
P450 enzymes, primarily CYP1A2, (ii) resonance
stabilization of the anionic form generated by proton
abstraction from the amino group, and (iii) exothermicity of
the heterolytic cleavage of N-O bonds of hydroxylamines
and their bioconjugates (47).

4. THE ROLE OF NITRENIUM IONS

The relative stability of the nitrenium
intermediates has been highlighted to be essential in
determining the bioactivity of AAs (10). In line with this,
earlier theoretical works have proposed that mutagenicity
increases with the rate of nitrenium ion formation, that is,
with a greater stability of the nitrenium intermediate, as
computed with the semiempirical method AM1 (23-25).
Multiple variable models, including variables related to
nitrenium ion stability calculated at higher level ab initio
methods, have later suggested that these variables were of
only limited use in regression models (21,22,27-29). The
significance of nitrenium ion stability in ruling the
mutagenic potency of amines was thus questioned (29).
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Figure 2. Nitrenium ion formation from aniline derivatives.

Considering the observed discrepancies between
semiempirical and Hartree-Fock ab initio results, this issue
was then examined by using density functional theory
(DFT) methods (41,42). Thus, the importance of nitrenium
ions on the mutagenicity of this type of compounds was
evaluated at a higher level of theory including electron
correlation. Formation of these electrophilic intermediates
from their precursors was analyzed, and correspondences
were explored between experimental mutagenic potencies
reported in the literature and calculated reaction energies
and electronic properties for a series of AAs and HAs of
diverse structure. In this way, clear correlations were
observed for compounds of related structure, indicating that
mutagenic activity increased with nitrenium ion stability
(41-42). Subsequently, DFT calculations were applied in
several studies relating the stability of nitrenium ions with
mutagenicity (47-55).

4.1. Formation of nitrenium ions
Aniline was selected as the model amine to

analyze the reactivity of different precursors towards
nitrenium ion generation at the B3LYP/6-31+G* level (41).
Calculations on the N-O bond dissociation process were
performed for the N-hydroxyl derivative (1a), as well as for
its acetic (1b) and sulfuric esters (1c) (the deprotonated
(negatively charged) analogue 1d was also considered)
(Figure 2) (41). The nitrenium ion derived from aniline
presented a geometry more consistent with an imino
carbenium ion, the dominant canonical form being the one
in which the positive charge is localized at the para-carbon
(Figure 2). This fact, evidenced by natural population
analysis (NPA) derived charges, the C-N bond distance,
and the C-C bond length alternation in the ring, was in
agreement with previous reports (56,57). Spectroscopic 13C
NMR studies on protonated aromatic imines had shown
charge delocalization into the phenyl ring, establishing the
ambident carbocationic nature of the iminium ion via the
aminocarbenium ion form (58).

The most feasible N-O bond cleavage reaction
corresponded to the sulfuric acid ester 1c, whereas the
process from the deprotonated derivative 1d was much
more endothermic. Acetic acid ester 1b was the second one
in reactivity, and the heterolytic dissociation of 1a resulted
the most endothermic reaction (41). These observations

were in agreement with the lower reactivity of
hydroxyarylamines as compared with their esters (10). In
aqueous solution, the charged products were remarkably
stabilized, as it would be expected, diminishing the
endothermicity of the reaction. Nevertheless, the relative
reactivity order for the bond breaking process was identical
to the gas-phase trend (41).

Several reactions involved in the mutagenicity of
aromatic and HAs were evaluated at the B3LYP/6-31G*
level for a set of 312 amines (48). The reactions considered
were those corresponding to the generation of a reactive
species (hydroxylamines and their conjugates, nitrenium
ions, nitrosoarenes), as well as those involving the reaction
of these species with DNA. Results showed that formation
of nitrenium ions (from hydroxylamines activated either by
protonation or conjugation) presented the higher levels of
discrimination between active and inactive compounds
(48). In this way, chemical reactivity, computed by
quantum mechanical methods as energy changes to form
reactive intermediates, closely correlated with activity in
the Ames test. Solvation corrections by IEFPCM single
point energy calculations did not enhance the agreement
between computations and experiments (48).

For a large collection of 846 arylamines, the
reaction energies of metabolically relevant pathways were
calculated at the B3LYP/6-31G* level (50). The nitrenium-
forming reaction was determined as the most relevant
energetic step for discriminating among mutagenic and
nonmutagenic compounds. As shown in previous studies
(41,48), solvation energies had an observable effect but did
not improve the splitting between both groups. A threshold
of 283 kcal/mol for the nitrenium formation energy was
suggested for differentiating active (Ames+, lower reaction
energies) from inactive (Ames-, higher reaction energies)
amines (50). Nitrenium formation energy computations
were thus performed for over 14,000 arylamines, with the
aim of building a database of potential mutagenicity
hazards of use in the pharmaceutical industry (50).

In a very recent study, B3LYP/6-31G*
calculations were applied to the rational design of
nonmutagenic 4-aminobiphenyls for a drug discovery
project (55). For this compound set, 4-aminobiphenyls with
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Figure 3. Parent aromatic and HAs studied in reference 41.

a computed energy change for nitrenium ion formation
above 145 kcal/mol were inactive in the Ames test (55).
These resulted to be the first nonmutagenic derivatives, as
no aminobiphenyls that were not positive in an Ames test
were previously known.

4.2. Stability of nitrenium ions
Relative nitrenium ion stabilities were calculated

for a set of 17 N-acetoxy esters of diverse aromatic and
HAs by applying DFT methods (41). The parent amines are
displayed in Figure 3. Related structures were selected in
order to consider the influence of the number of rings, the

effect of the nitrogen atom (HAs vs. carbocyclic amines),
and the presence of a methyl substituent. Relative stabilities
were assessed by the computed changes in energy for
Reaction 1.

Because of extensive resonance delocalization of
the cationic charge through the aromatic system, the
resulting structures corresponded to imino carbenium ions
(in accordance to references 56 and 57). For every cation,
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Figure 4. Aromatic and HAs studied in reference 42.

the exocyclic nitrogen presented a negative NPA charge
density. With nonsymmetrical aryl substituents, alternative
orientations of the NH bond generates two distinct
configurational isomers, designated syn if the hydrogen of
the NH group is oriented toward the β-ring carbon of
higher priority (in the Kahn-Ingold-Prelog sense), and anti
otherwise (59), both isomers being separated by substantial
activation barriers (57,60). The most stable isomer for each
cation was considered to determine the relative stability
order (41). It should be noticed that the traditional
nitrenium ion designation will be conserved along this
review, in spite of the actual imino carbenium nature of all
the species.

No correlation was found between the
experimental mutagenic potencies and the calculated
changes in energy for nitrenium ion formation (Reaction 1)
for the complete set of 17 N-acetoxy esters derived from
the aromatic and HAs considered (41). In contrast, clear
correlations were noticed for groups of compounds of
related structure, denoted as aromatic, imidazocarbocyclic,
and imidazoheterocyclic. According to this, mutagenic
activity was observed to increase with nitrenium ion
stability (lower ΔEr in Reaction 1), and with the
development of a more negative charge density at the
exocyclic nitrogen of the nitrenium ion (qN), although each
group of structures followed a different functional
relationship (41). It was found that ΔEr and qN were
strongly correlated, and whilst both heteroaromatic sets

fitted almost the same function, the aromatic compounds
followed another line. Hence, qN was pointed out as an
important factor in determining nitrenium ion stability,
which was also favored by the increment in the number of
fused rings (resonance effect), and by methyl substitution
(hyperconjugation and inductive effects) (41). In aqueous
phase, the correlations for each group of amines matched
the gas-phase results. Solvation significantly stabilized the
charged products, decreasing the endothermicity in
Reaction 1.

Subsequently, the previous series of 17 amines in
reference 41 was extended to 43 compounds, and the
relative stabilities of their corresponding nitrenium ions
were evaluated by B3LYP/6-31G* calculations (42). In
order to properly represent this group of chemicals, a
diverse set of AAs and HAs was selected, covering a wide
range of experimental values for mutagenic potencies
reported in the literature (5.790 – -3.390) (29). These
amines are displayed in Figure 4. Relative nitrenium ion
stabilities were gauged by comparing the computed change
in energy (ΔEr) for the formation of the ion from the
corresponding parent amine in gas phase (Reaction 2).

Correlations were analyzed between mutagenic
potencies expressed as LogMP (logarithm of the number of
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Figure 5. Correlations observed between nitrenium ion stability (ΔEr) and mutagenic potency (LogMP).

histidine revertants per nanomole of chemical in the Ames
assay for Salmonella typhimurium strain TA98 + S9
microsomal preparation) and calculated properties. The
theoretical parameters evaluated were ΔEr (nitrenium ion
stability, as defined by Reaction 2), and the NPA charge at
the exocyclic nitrogen atom of the nitrenium ion (qN). As
previously noticed (41), better correlations were found for
compounds of related structure. Distinct correlation
functions were observed for the amines grouped according
to their classification as aromatic (Ar), heteroaromatic
(HAr), imidazocarbocyclic (ImiAr, amines presenting an
imidazole ring fused with a carbocyclic aromatic moiety),
imidazoheterocyclic (ImiH, imidazole fused to a
heterocyclic system), dipyridoimidazoles (PI), and
quinoxalines (Qx) (42).

The following correlation coefficients were
obtained: for the Ar group, r2 = 0.914 (13 compounds); for
HAr, r2 = 0.943 (8 compounds); for ImiAr, r2 = 0.991 (4
compounds); for Qx, r2 = 0.956 (4 compounds); for PI, r2 =
0.994 (4 compounds); and for the ImiH group, r2 = 0.854,
(9 compounds) (42). Mutagenic activity increased with the
stability of the nitrenium ions. Correlations for each set are
shown in Figure 5. It should be remarked that combination
of the different heteroaromatic groups into larger sets
afforded very good correlations, some of them even better
than those for the separate groups. Thus, for HAr + Qx (12

compounds), r2 = 0.953; for HAr + Qx + PI (16
compounds), r2 = 0.933; for HAr + Qx + PI + ImiH (25
compounds), r2 = 0.914. Accordingly, almost all the HAs
fitted one curve, indicating that mutagenic activity is
significantly influenced by nitrenium ion stability (42).

Mutagenicity was also found to increase with the
development of negative charge at the exocyclic nitrogen of
the nitrenium ion (qN) (42). As qN and ΔEr were strongly
correlated between each other, the negative charge density
at the exocyclic nitrogen was signaled as an important
factor in determining nitrenium ion stability, and
considered as an estimation of the extent of delocalization
of the net positive charge within the π system of the cation.
Nitrenium ions derived from AAs were more stable than
those from the HAs of related structure. Among related
heteroaromatic compounds, nitrenium ion stability
decreased with the increment in the number of nitrogen
atoms. In this way, ImiAr derived ions were more stable
than the related ImiH and Qx intermediates. In all cases, qN

was more negative for the most stable structures (42).

Nitrenium stability was also favored by the
increase in the number of aromatic rings (resonance effect),
and by methyl substitution (hyperconjugation and inductive
effects) (42). However, for some pairs of amines differing
in the number or position of the methyl groups, the stability
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Figure 6. A. Correlations observed between
hydrophobicity (LogP) and mutagenic potency (LogMP).
B. Correlations between hydrophobicity (LogP) and
nitrenium ion stability (ΔEr).

of the cations did not match the mutagenicity order.
According to this, bioactivity should probably be also
affected by some other factors, as steric interactions within
the active site of the enzymes involved in the activation
pathway, or intercalation into the DNA.

More recently, quantum mechanical calculations
at different levels of theory (semiempirical, ab initio, DFT)
were applied to compute the stability of nitrenium ions
derived from a set of 257 primary aromatic and HAs (49).
These calculations could correctly differentiate between
Ames active and inactive compounds, as well as rationalize
and predict SAR trends within structurally related chemical
series. Therefore, the authors proposed the use of nitrenium
ion stability calculations as a valuable tool for medicinal
chemists to select nonmutagenic aromatic and
heteroaromatic primary amines in preclinical drug
discovery programs (49).

5. AROMATIC AMIDES

Aromatic amides follow the same metabolic
pathway as aromatic amines (10-12), even though
esterification of the N-hydroxyarylamides intermediates

(hydroxamic acids) is required for subsequent reactivity
with DNA (10). Although amides generally appear to be no
less carcinogenic than amines (1), the acetamido
derivatives were always less mutagenic when compared to
their parent amines (61,62). In agreement with this,
heterolysis of the N-O bond to give a nitrenium ion was
calculated by DFT to be less favorable in the arylamides
because of the loss of amide resonance in their precursors
(41); but not owing to inductive destabilization of the
arylnitrenium ion by the N-acetyl group, as proposed earlier
according to semiempirical computations (63,64).

Reactions of type 1 were calculated for the N-
acetoxy esters of acetanilide and 2-acetylaminofluorene at
the B3LYP/6-31+G* level in order to compare their results
with those from the esters of the respective amines (41).
The N-O bond-breaking reaction was more favorable (less
endothermic) for the amines (41). The approximately
orthogonal conformation adopted by the carbonyl group in
the N-acetyl nitrenium ions precluded resonance with the
aromatic system. According to the NPA charges, nitrenium
ions derived from the amides presented less negative
charge density at the nitrogen atom than those derived from
the amines. However, the change in charge density for the
exocyclic nitrogen (ΔqN) was more favorable (more
negative) for the nitrenium ion derived from acetanilide
than that from aniline. In contrast, electron donation
brought about by the acetyl group resulted in an important
decrease of the negative charge at the oxygen atom of the
carbonyl. Thus, the acetyl substituent, despite of being
generally regarded as a powerful electron withdrawing
group, in the nitrenium ion derived from acetanilide was
found to act as a σ-electron donor (41,63,64). On this basis,
the formation of N-acetyl nitrenium ions seems to be
hindered by an unfavorable polarization of the carbonyl
group.

6. THE INFLUENCE OF HYDROPHOBICITY

Hydrophobicity plays an important role in the
absorption and transport of chemicals to their sites of
activation and chemical reaction, as well as in the
interaction of the compounds with the bioreceptors. The
potential importance of hydrophobic interactions on the
genotoxic activity of molecules led to the use of
hydrophatic factors in a variety of mutagenicity QSARs.
Particularly, earlier QSARs for the mutagenicity of amines
had established that activity was primarily determined by
hydrophobicity (30). However, different QSAR studies for
AAs and HAs where hydrophatic factors were considered
generated contradictory results. Whereas earlier reports
indicated that bioactivity was predominantly determined by
the hydrophobicity of the amines (30,32), further studies
observed that hydropatic factors made only a small
contribution to mutagenic potency (22,29).

Afterwards, the influence of the logarithm of the
n-octanol/water partition coefficient (LogP) on the
mutagenic activity of aromatic and HAs was analyzed
(Figure 6) (42). Positive correlations were observed for
each series of compounds in reference 42, although they
were not as good as those achieved between calculated
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nitrenium ion stabilities (ΔEr for Reaction 2) and LogMP.
In general, within each group of amines, a higher
bioactivity was associated with relatively large LogP
values (Figure 6A). Similarly, the more stable nitrenium
ions were those derived from the amines with higher LogP
values (Figure 6B) (42). On the other hand, when the whole
set of compounds was considered, the more active HAs,
presenting lower LogP values, formed relatively less stable
nitrenium ions than the correspondingly related AAs, which
are more hydrophobic and less active (42).

Hydrophobicity can differently affect the variety
of processes involved in chemical genotoxicity, and this
could lead to confusing conclusions if sets of amines of
very diverse structure are considered. The observed
discrepancies between QSAR studies using hydrophatic
factors could arise from this fact (22,29,30,32). Therefore,
the influence of hydrophobicity on mutagenic potency
seems to be better interpreted when analyzing congeneric
amines. Considering related compounds, mutagenicity
increases with LogP, in correspondence with greater
nitrenium ion stability (42). In contrast, when comparing
amines that differ in the replacement in an aromatic ring of
a carbon atom by nitrogen, an inverse correlation of the
mutagenic activity with LogP was observed (42).

7. SUMMARY AND PERSPECTIVE

Aromatic and HAs are compounds of particular
importance in the pharmaceutical industry and occur
frequently as substructures in drug candidates (65).
Because of their synthetic feasibility, valuable
physicochemical properties, and potential interaction with
binding sites of target proteins, they are convenient
pharmaceutical building blocks. However, their mutagenic
and carcinogenic potential restrict their use in drug
discovery programs. Bioactivity of this class of compounds
is brought about by complex processes involving a number
of metabolic and chemical steps. Nevertheless, the studies
presented in this review indicate that current computational
methods can provide proper estimations of relative
mutagenic potencies, denoting its potential value as
predictive tools. A calculated probability of activity in the
Ames test can help the rational design of safer drugs. The
use of DFT calculations appears particularly encouraging
on the basis of their accuracy at moderate computational
costs.

Nitrenium ion stability is considered as a key
factor in determining mutagenic potency. Since better
correlations were obtained for groups of related compounds
(41,42), it is fairly probable that the influence on activity of
additional aspects, such as solubility, transport, specific
interactions with the biological environment, etc., needs to
be also considered. In this regard, activation pathways of a
series of para-substituted anilines and 2-aminopyridines in
the CYP1A2 enzyme have been lately investigated via SAR
analysis and DFT computations (47). Furthermore, a recent
study has shown that the interactions of nitroaromatic
compounds and their reductive enzymes play an important
role in the formation of nitrenium ions, and correspond to
differences in the occurrence of DNA adducts (66).

Additional comparisons of calculated
activity trends with data obtained by mutagenicity and
tumorigenicity assays, and by DNA binding studies, would
be desirable in order to achieve a more comprehensive
understanding of SARs between arylamines and their
toxicological potential.
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