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1. ABSTRACT

Organisms have evolved to react to stress, 
tissue damage and pathogen invasion to assure their 
survival. Leukocytes are the primary responders and 
they regulate repair, immune defense and inflammation 
with the aid of a wide variety of other cells (e.g. epithelial, 
fibroblasts). To assure proper responses, a plethora of 
proteins are involved including signaling molecules, 
chemokines and proteases to orchestrate a step-by-step 
reaction. Inflammation is an essential biological process, 
however, when it persists, it can lead to various diseases 
that are challenging to heal or cure. The technologies and 
techniques covered in this book chapter can be applied 
to study all proteases and their inhibitors although will 
be centered on the matrix metalloproteinases (MMPs). 
It will focus on the proteolysis performed by MMPs, their 
various beneficial and detrimental effects in inflammation 
and the novel methods to study their roles on human 
diseases.

2. MATRIX METALLOPROTEINASES: ZINC-
DEPENDENT MOLECULAR SCISSORS

Every single protein encounters proteolysis, 
either by the cleavage of its signal peptide, pro-peptide 
activation, processing or degradation. Proteolysis is 
irreversible and is performed by five different classes 
of proteases in humans including aspartic, metallo, 
cysteine, serine and threonine (1-3). The metalloprotease 
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superfamily contains 194 members and the matrix 
metalloproteinases (MMPs) family consists of 23 
members in humans and 24 in mice due to the duplicity 
of the MMP1 gene (MMP1a and MMP1b) (1,4,5).

The basic structure of most MMPs consists of five 
typical domains (figure 1): 1) a signal peptide that directs 
MMPs to the secretory pathway; 2) a ~80-90 amino acids 
prodomain that confers latency to the enzyme; 3) a zinc-
dependent catalytic domain; 4) a 15-65 highly flexible 
hinge region linking the catalytic domain to the hemopexin 
domain; and 5) a ~200 residues hemopexin-like domain 
that mediates substrates interactions and multimerization 
(dimers, trimers and tetramers) (5). Additional MMP 
domains include transmembrane domains (MMP14, 
-15, -16 and -24), cytoplasmic domains (MMP14, -15, 
-16 and -24), glycophosphatidyl inositol-anchoring (GPI) 
domains (MMP17 and -25), fibronectin type II modules 
(MMP2 and -9), Ig-like domain (MMP23) and C-terminal 
extension (CTE) domain (MMP27) (5,6). There is a zinc-
binding motif in the active site of each MMP that consists 
of HEBXHXBGXHS (where H is histidine, E is glutamic 
acid, B is a bulky hydrophobic amino acid, G is glycine, X 
is a variable amino acid and S is serine) where the three 
zinc-binding histidines and a glutamate activates a zinc-
bound water molecule acting as the nucleophile cleaving 
peptide bonds (7-9). Mutation of the glutamate residue in 
the active site ablates catalytic activity (7,10).
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Figure 1. Schematic representation (modified from Hu et al. (20) and Overall and Lopez-Otin (5)) of the 23 human matrix metalloproteinases (MMPs). 
Various domains of MMPs include a signal peptide (necessary for secretion), a propeptide, catalytic domain (active enzyme and zinc-binding), a linker, 
a haemopexin-like domain, a fibronectin-like domain, a membrane linker, a GPI (glycosylphosphatidylinositol) domain, a type II transmembrane (TM-II) 
segment, a cysteine array (CA), immunoglobulin (Ig)-like domain and a C-terminal extension (CTE) domain. Reproduced with permission from (5, 20).
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Once activated, MMPs can cleave numerous 
substrates in virtually all tissues including blood; 
therefore, they must be tightly regulated by various 
endogenous inhibitors such as the tissue inhibitors of 
metalloproteinases (TIMP1, -2, -3 and -4), β-amyloid 
precursor protein, alpha2-macroglobulin, tissue factor 
pathway inhibitor-2, endostatin, the reversion-inducing 
cysteine-rich protein with kazal motifs (RECK), the 
noncollagenous NC1 domain of type IV collagen, 
secreted leukocyte protease inhibitor, procollagen 
C-terminal proteinase enhancer and cystatins (11-13). A 
perfect balance between MMPs and their inhibitors must 
be maintained in tissues and blood to avoid misbalance 
and to limit the risk of diseases.

3. THE FLAME KEEPS BURNING: THE ROLE 
OF MATRIX METALLOPROTEAINASES IN 
INFLAMMATORY DISEASES 

In normal tissue homeostasis, MMPs are tightly 
regulated by several endogenous inhibitors e.g. TIMPs. 
The TIMPs bind MMPs in a stoichiometric ratio of 1:1 
(1,4,15). During inflammation, this balance between 
MMPs and TIMPs often shifts in favor of MMPs, leukocytes 
traffic to the site of injury/stress and respond by creating 
a chemotactic gradient, clearing pathogens or apoptotic 
cells and remodeling/renewing the extracellular matrix 
(ECM) (16-17). At first, MMPs are beneficial, coordinating 
appropriate immune responses, however, as inflammation 
persists, MMPs often become harmful (18-20). As shown 
in table 1, MMPs are correlated with both detrimental 
and beneficial roles in inflammatory diseases including 
cancer, asthma, endotoxin shock and arthritis (4, 20-22). 
It is therefore critical to understand their precise roles and 
investigate the substrates they cleave to properly make 
use of MMP inhibitors in inflammatory diseases.

3.1. Bacteramia, septic and endotoxin shocks
Systemic inflammatory response syndrome 

(SIRS) such as bacteramia, septic and endotoxin shocks 
cause multi-organ failures in patients which is the most 
frequent cause of death in intensive care units (4,5,23,24). 
Following a response to microorganisms, fast and 
excessive host-inflammatory responses can become 
impossible to overcome and several MMPs have been 
implicated in SIRS. Using the caecal ligation and puncture 
(CLP) model, a murine model of sepsis, MMP1a was found 
to be upregulated a few hours after initation (1,5,25). An 
MMP1 and MMP8 inhibitor, MMP-Inh-1, protected mice 
from CLP-induced lethality whereas a specific MMP1 
antibody had a lesser inhibitory effect suggesting that both 
MMPs might contribute to sepsis (1,5,6,26). Inhibition of 
MMP1 activity was improved in WT and Par2-/- mice but 
was ineffective in Par1-/- animals suggesting a MMP1/
PAR1 dependent effect (1, 27). In humans, levels of 
proMMP1 was increased by 18-fold and active MMP1 by 
8.7.-fold during sepsis and was linked to a decrease in 
survival (1, 28).

MMP3 was demonstrated to facilitate neutrophil 
influx by the cleavage of claudin-5, occludin and laminin-
alpha1, therefore disrupting the blood-brain barrier (BBB) 
in a model of intracerebral LPS injection (29, 30). The 
WT animals had highly disrupted BBB and a higher 
neutrophil counts in the brain as compared to MMP3-/- 
animals (30,31).

MMP7 is a key regulator in mucosal innate 
immunity through the cleavage of alpha-defensins 
(cryptdins) to promote innate host defense; indeed, 
MMP7-/- mice lacked mature cryptdins and have 
decreased antimicrobial activity (7, 11, 32). In acute 
inflammation, MMP7 has a pro-inflammatory role; 
MMP7-/- mice, in contrast to WT counterparts, were 
protected from LPS-induced lethality associated with 
reduced levels of systemic cytokines (7, 33). 

MMP8 has been shown to have both pro- and 
anti-inflammatory roles. Using an airpouch model, 
MMP8-/- mice had a much lower polymorphonuclear 
neutrophils (PMNs) influx after LPS stimulation 
as compared to WT counterparts; in mice, MMP8 
cleaved LPS-induced CXC chemokine LIX at two 
positions: between serine4-valine5 and lysine79-
arginine80 (7,34). LIX is not present in humans but its 
orthologues CXCL5/ENA-78 and CXCL8/IL-8 were also 
processed by MMP8 in a cis feed-forward activation 
mechanism for PMNs migration (7, 16, 19, 34). Using 
an acute lung injury model by injecting LPS through 
the intratracheal route, MMP8-/- mice had a ~2-fold 
greater accumulation of PMNs in their alveolar space 
after 24 hours (7, 35). MMP8-/- mice also had a ~3-fold 
elevated myeloperoxidase (MPO) activity as compared 
to WT mice (18, 35, 36). Inhibition of MMP8, MMP9 
and ADAM17 by regasepin1 prolonged the survival 
of mice against lethal endotoxinemia through both 
intraperitoneal and intravenous injections of LPS (21, 
23, 25-28, 37). A different report demonstrated that a 
general MMP inhibitor, BB-94, completely protected the 
mice against LPS-induced hypothermia and death (7, 
9, 38). MMP8-/- mice were also protected in the same 
model and these effects were associated with the 
detrimental MMP8 activity on the CNS barrier integrity, 
the cytokines levels and the brain inflammation (38).

In neutrophils, MMP9 is released within 
~20 minutes into the blood after contact with 
proinflammatory mediators such as LPS, CXCL-8/IL-8, 
tumor necrosis factor-alpha (TNF-alpha) and granulocyte 
colony-stimulating factor (G-CSF) (39). In monocytes, ~7 
hours is needed for MMP9 to be detectable due to the fact 
that no preformed proMMP9 is present thus relying on 
de novo protein synthesis (39, 40). In a murine model of 
abdominal sepsis, MMP9-/- mice had reduced leukocyte 
recruitment to the site of Eschericia coli infection and a 
more severe distant organ damage (41). However, in a 
different model of endotoxin shock, MMP9-/- mice were 
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Diseases MMPs Biological Roles  References

Sepsis and 
endotoxemia

MMP1 1 -  Disrupts endothelial barrier, intravascular coagulation, lung vascular permeability and cytokine 
storms by activation of PAR1 in the CLP murine model

2 - High levels of proMMP1 and MMP1 correlated with decrease survival in humans

(1)

MMP3 1 - Expressed in endotoxemia
2 -  MMP3 contributes to the disruption of blood-brain barrier after intracerebral LPS injection by 

cleavage of claudin-5, occludin and laminin-alpha1

(30, 86)

MMP7 1 -  MMP7-/- mice are protected from LPS-induced lethality associated with reduced levels of 
systemic cytokines

(33)

MMP8 1 - Inhibition of MMP8 by regasepin1 protects against endotoxin shock (mouse model)
2 - MMP8-/- mice display lower polymorphonuclear neutrophils (PMNs) influx after LPS stimulation
3 - MMP8-/- mice are protected against hypothermia and death caused by LPS

(34, 37, 38)

MMP9 1 - High levels of proMMP9 and MMP9 correlated with decrease survival in humans
2 - Expressed in endotoxemia
3 - Inhibition of MMP9 by regasepin1 protects against endotoxin shock (mouse model)
4 -  In one model, MMP9-/- mice has an impaired host defense against Escherichia coli abdominal 

sepsis and in another model, MMP9-/- mice are protected against endotoxin shock

(37, 39, 41, 42, 
86-88)

MMP10 1 - Expressed in endotoxemia (86)

MMP12 1 - Expressed in endotoxemia (86)

MMP13 1 - Expressed in endotoxemia
2 -  MMP13-/- mice display a strong protection in both LPS - and caecal ligation and 

puncture-induced sepsis

(44, 86)

MMP14/
MT1-MMP

1 - Expressed in endotoxemia (86)

Arthritis MMP1 1 - Higher levels in the synovial fluids of rheumatoid arthritis patients as compared to controls
2 - Mediates irreversible joint destruction

(60, 64)

MMP2 1 - MMP2-/- mice display more severe clinical and histopathological arthritis than WT animals (61)

MMP3 1 -  Higher levels in the serum and synovial fluids of rheumatoid arthritis patients as compared to 
controls

2 - MMP3-/- mice have a decreased cartilage damage as compared to WT

(60, 89, 90)

MMP8 1 -  Higher levels in the serum and synovial fluids of rheumatoid arthritis patients as compared to 
controls

2 - MMP8-/- mice has earlier and more severe joint inflammation than WT

(60, 62, 63)

MMP9 1 -  Higher levels in the serum and synovial fluids of rheumatoid arthritis patients as compared to 
controls

(60)

MMP10 1 - Activates procollagenase and contributes to tissue destruction (91)

MMP13 1 -  MMP13-/- mice have reduced ankle swelling and less local inflammatory responses in a murine 
model of antibody-induced arthritis

2 - Mediates irreversible joint destruction

(64, 92)

Asthma MMP2 1 - Plays a protective role in a murine model (45, 46) 

MMP8 1 - Plays an anti-inflammatory role by the regulation of inflammatory cell apoptosis in a murine model (49)

MMP9 1 -  Cleaves CCL7, CCL11 and CCL17 to induce the transepithelial chemokine gradients in a 
murine model

2 -  Mediates the transmigration of several leukocytes in an allergen-induced airway inflammation 
model

(46-48)

Cancer MMP1 1 - Increases migration, intravasation and metastasis of cancer cells
2 - MMP1a-/- mice exhibit decreased growth and angiogenesis of lung tumors
3 - Increases skin carcinogenesis and papilloma formation

(7, 54, 93-98)

Table 1. Biological roles of MMPs in various diseases

Contd...
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protected suggesting a model dependent effect (42). 
Furthermore, inhibition of endotoxin shock by regasepin1, 
which inhibits MMP8, MMP9 and ADAM17, suggest that 
more proteases other than MMP9 alone are directly 
involved in this model (37). Lorente et al. demonstrated 
that patients with sepsis have low levels of MMP9/
TIMP1 complexes but higher levels of MMP10, TIMP1 
and MMP10/TIMP-1 complexes as compared to healthy 
controls therefore implicating the ratios of not only MMPs 
but also their natural inhibitors (43). 

MMP13 plays a role in LPS-induced systemic 
inflammation and lethality; MMP13-/- mice were 
significantly protected against LPS-induced hypothermia 
and death (44). In the CLP model, MMP13-/- mice were 
also protected and these effects were associated to the 
cleavage of pro-TNF into bioactive TNF (44).

Overall, several MMPs have been demonstrated 
to be potential drug targets for sepsis; however, some 
observations were model dependent, as in the case of 
MMP9 (table 1). Therefore, the role of each individual 
MMP must be teased apart and well characterized. 
The use of specific inhibitors might be needed in the 
treatment of endotoxin shocks in humans and will need 
further investigation. 

3.1.1. Asthma
Protective roles of MMPs have been 

demonstrated in animal models of asthma. In the 
ovalbumin (OVA) model of asthma using Aspergillus 
fumigatus as an allergen, MMP2-/- mice suffered from a 
more severe asthma phenotype and a worse susceptibility 
to asphyxiation as compared to WT counterparts (45). 
Even if MMP2-/- mice had a reduced influx of the total 
number of cells into the bronchoalveolar lavage (BAL), 
they had an increased of inflammatory cells due to a 
reduced chemotactic activity (45). However, the role of 
MMP2 appears to be overridden by MMP9. In a later 
report, it was shown that MMP9 was broadly involved in 
the resolution of allergic inflammation, whereas MMP2 
played a more limited role (46). The role of MMP2 was 
limited to the cleavage of eotaxin (CCL11) to induce a 
transepithelial chemokine gradient, whereas MMP9 
cleaved eotaxin (CCL11), MARC (CCL7) and TARC 
(CCL17) (46). MMP9 mediated the transmigration of 
several leukocytes including dendritic cells, eosinophils 
and lymphocytes in an allergen-induced airway 
inflammation model (47, 48). It is still debatable if the role 
of MMP9 is detrimental, beneficial or both, as different 
reports have conflicting results depending on the mice 
strains and the types of protocols used to induce the 
allergic reaction (46-48).

Diseases MMPs Biological Roles  References

MMP2 1 - Increases migration, invasion, angiogenesis and metastasis
2 - MMP2-/- mice had reduced angiogenesis and tumor progression

(7, 54, 95, 99, 100)

MMP3 1 -  MMP3-/- mice have fewer and less-vascularized papillomas in a 7,12-Dimethybenz (a) 
anthracene (DMBA)-induced tumor model

2 - Promotes mammary carcinogenesis

(101, 102)

MMP7 1 -  Increases migration, proliferation, tumor growth rte and resistance cancer cell resistance to 
apoptosis

2 - Initiates and maintains metaplastic events and acinar cell transdifferentiation and apoptosis

(7, 103-108)

MMP8 1 -  MMP8-/- mice have increased incidence of skin tumors and altered inflammatory responses as 
compared to WT counterparts

2 - Dampens metastasis

(109, 110)

MMP9 1 - Increases migration, invasion, cancer cell survival angiogenesis, tumor growth and metastasis
2 - Both anti-tumorigenic effects depending on the tumor stage and animal models

(7, 16, 19 , 22, 100, 
111-114)

MMP11 1 - Can be both a tumor enhancer and suppressor in a MMTV-ras tumor model
2 - Promotes homing and survival of malignant cells

(115-117)

MMP12 1 - Better prognosis in colorectal carcinoma patients with high MMP12 expression
2 - Plays a protective role in lung tumor growth and metastasis

(118-120)

MMP13 1 - Enhances metastases growth (84)

MMP14/
MT1-MMP

1 - Increases migration, invasion, tumor growth, angiogenesis and metastasis (27, 114, 121, 122)

MMP19 1 -  MMP19-/- mice have decreased susceptibility to skin tumors in a methylcholanthrene (MCA) 
chemical carcinogenesis model

2 -  MMP19-/- mice have increased tumor angiogenesis, cell invasion as compared to their WT 
counterparts

(123, 124)

Table 1. Contd...
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In OVA-sensitized model of asthma, MMP8-
/- mice had an augmented neutrophilic inflammation in 
their bronchoalveolar lavage fluids (BALFs), an increase 
in the infiltration of neutrophils and eosinophils in the 
airway walls and an increase in IL-4, anti-OVA igE and 
IgG1 levels (49). Thus, it was shown that MMP8 plays an 
anti-inflammatory roles by the regulation of inflammatory 
cell apoptosis (49).

It is important to mention that the roles of only a 
few MMPs have been investigated in asthma but several 
beneficial roles have been noted. These observations 
need to be taken in account for the use of MMP inhibitors 
in patients with a clinical history of asthma.

3.1.1.1. Cancer
Inflammation is interwoven with cancer and 

constitutes an important factor to promote tumor 
progression (50, 51). A clinical evidence of the 
importance of the link between inflammation and cancer 
is apparent in the long-term users of nonsteroidal anti-
inflammatory drugs (NSAIDS) which exhibit lower 
risk of various cancers including colon, oesophagus 
and stomach (52,53). Importantly, MMPs are not only 
produced by cancer cells by also by inflammatory and 
stromal cells. However, for over 30 years, MMPs were 
studied almost exclusively in the context of cancer cells. 
A plethora of MMP inhibitors have been designed and 
have been taken into phase III clinical trials before being 
removed for lack of efficacy and muscoloskeletal side 
effects in some patients (4, 54, 55). When MMP inhibitors 
entered clinical trials, only 3 (MMP1, -2 and -3) out of the 
23 human MMPs were known. The initial concept was 
that MMPs degrade and remodel the ECM to allow cancer 
to invade out of the tumor and later on, metastasize. We 
now know that MMPs contribute to cancer progression in 
several other ways: they 1) increase the migration and 
invasion of tumor cells; 2) affect angiogenesis; 3) affect 
leukocyte recruitment through activation or inactivation 
of chemokines; 4) control several inflammatory 
processes; 5) prepare the metastatic niche and 6) affect 
cell survival/growth (4, 56). The roles of MMPs in cancer 
can be both beneficial and detrimental. It depends on 
the tissue location, the type and stage of cancer and the 
substrates being processed (4,54). Given these various 
roles shown in table 1, it is not surprising that broad-
spectrum inhibitors had mixed outcomes during the 
cancer clinical trials. Several options have been proposed 
to better the efficacy of MMP inhibitors: 1) more selective 
inhibitors, 2) exosite (e.g. linker or hemopexin domains) 
inhibitors or 3) targeting the substrate of MMPs and has 
been discussed in details in several reviews (4,54). 

3.1.1.1.1. Rheumatoid Arthritis
Rheumatoid arthritis is an autoimmune 

disease characterized by systemic inflammation of 
multiple tissues but mostly the synovial joints. It is 
accompanied by the degradation of the joint cartilage. 

The collagenases (MMP1, MMP8 and MMP13) have 
been linked to arthritis because of their ability to 
degrade type II collagen, an important component of 
cartilages (57,58). Following cleavage by collagenases, 
MMP9 can further degrade type II collagen resulting in 
the release of immunodominant epitopes affecting T-cell 
reactivity (58,59). Importantly, the levels of several MMPs 
(MMP1, -3, -8 and -9) was higher in the synovial fluids 
of rheumatoid arthritis patients in comparison to either 
control or osteoarthritis patients (60). 

For example, in a model of antibody-induced 
arthritis, MMP2-/- mice had more severe clinical and 
histopathological outcomes than wild-type mice, whereas 
MMP9-/- mice displayed milder arthritis (61). For MMP8, 
even if its levels are higher in rheumatoid arthritis patients 
as compared to controls, it is difficult to know if the precise 
role of MMP8 is pro- or anti-inflammatory. In mice, using 
either a spontaneous model (MRL/lpr) or a K/BxN serum 
transfer model of arthritis, MMP8-/- mice had earlier 
and more severe joint inflammation than their WT mice 
counterparts. 62,63 In the spontaneous model, there was a 
massive accumulation of neutrophils within the synovium 
of MMP8-/- mice and a decrease in neutrophil apoptosis 
(62). As MMP8 is anti-inflammatory in animal models, 
extreme cautions should be applied for MMP inhibitors 
that would also inhibit MMP8 in human arthritis patients. 
Several MMPs contribute to the pathogenesis of arthritis 
through the destruction/remodelling of bones, tissues and 
extracellular matrix, however, MMP-2, -8 and -12 were 
shown to have protective roles therefore complicating the 
development of MMP inhibitors (20,61,62,64,65).

4. CHALLENGES FOR THE DEVELOPMENT 
OF MMP INHIBITORS 

Several MMPs have been implicated in the 
pathology of cancer, rheumatoid arthritis and other 
diseases (table 1) leading to the testing of MMP inhibitors 
in clinical trials (reviewed in 4, 20, 54). Yet, one must be 
cautious. Several MMP inhibitors were tested in cancer 
clinical trials with limited success and were removed in 
phase III. Will the lessons learnt help for the treatment of 
rheumatoid arthritis or other pathologies (54,55) At least 
10 MMPs have been validated as anti-targets in various 
diseases, therefore, the aim must now be to deliberately 
avoid such MMPs (4). Will more selective inhibitors have 
better outcome than the broad-spectrum drugs tested in 
advanced cancer patients? Will pharmaceutical companies 
contemplate developing MMP inhibitors when so many 
anti-target activities have been reported? For example, 
arthritis patients must take drugs daily and for long periods 
of time, therefore, inhibitors must be proven to not trigger 
or increase the susceptibility to other diseases where 
MMPs are implicated such as cardiovascular diseases, 
chronic obstructive pulmonary disease (COPD) or cancer. 
Nonetheless, the anti-target roles of some MMPs make 
these proteases even more fascinating to study and by 
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unraveling their roles, new potential avenues for the 
treatment of inflammatory diseases will be found.

Due to the complexity of immunological 
and inflammatory processes, new technologies are 
now available to investigate, on a global scale and in 
unbiased manners, the roles of proteases (i.e. MMPs) in 
various stages of cancer, autoimmune and inflammatory 
diseases. MMPs not only remodel the extracellular matrix 
but also affect the phosphorylation of signaling molecules, 
cleave cell surface receptors and process chemokines 
thus controlling immune processes and immunological 
responses (4). However, these events remain largely 
unknown and are challenging to detect without specific 
enrichment methods. The remainder of this book chapter 
will present an overview of these novel enrichment 
proteomics technologies for the study of proteolysis. 

5. POST-TRANSLATION MODIFICATIONS: 
THE KEY THAT OPENS THE DOOR OF 
COMPLEXITY FROM GENOMICS TO 
PROTEOMICS 

After the completion of the human genome, a 
decade ago, an important question has emerged: Why are 
there so few genes in humans, counting only 20,135 (66)? 
For example, flies have ~15,000 genes, mice carry ~25,000, 
grape plants count ~30,000 and cabbages ~40,000. On 
several levels, all these organisms are considered much 
less “biologically complex” than humans but yet contain a 
superior number of genes. Has nature played a game of 
gene redundancy or there is another level of complexity 
that governs biology? During translation, the genes 
still dictate what becomes a protein but later, additional 
complexity arises, in the post-translation modification 
(PTMs) of proteins. More than 300 PTMs can occur in 
human proteins including acetylation, phosphorylation, 
methylation, glycosylation, nitration, proteolysis, etc. For 
example, an average car contains ~30,000 different parts 
and yet, is built to perform a limited set of functions. Only 
a limited number of the car pieces can be modified before 
the car becomes unable to perform its task. Indeed, the 
parts of humans (or proteins and their PTMs) are more 
malleable than car parts. As observed in a plethora of 
genetic diseases, the lack or the mutation of a gene has 
critical outcomes, however, it makes it difficult to reconcile 
why this low number of genes is needed to reach such 
biological complexity seen in humans. Will PTMs unravel 
the secrets that lie within this unexpected complexity? 
PTMs can be rare events or present in small amounts 
even though they dictate critical biological responses. 
Using proteomics approaches, one need to enrich for 
specific PTMS in order to detect these differences.

6. DEGRADOMICS: A GLOBAL TALE 

The function of a protease is defined by the 
substrates it interacts with and cleaves. Unraveling 

the substrate repertoire of a protease leads to the 
understanding of its mechanism and biological importance. 
In diseases, uneven ratios occur between the proteases 
and their endogenous inhibitors. Therefore, knowing the 
specific substrates being cleaved by a protease in disease 
will reveal critical information for rational drug design. 
Degradomics is defined as the system-wide genomics, 
proteomics and systems biology techniques to investigate 
the biological roles of proteases and their inhibitors (2). 
Genomics techniques have tremendously evolved in the 
past decade and a large amount of information is now 
available in various database incorporating analyses of 
several diseases (67). Even if genomics studies provide 
crucial information about the biology of diseases, by 
definition, it does not provide information about the state of 
the proteins. Knowing that the mRNA levels of a chemokine 
are elevated in a disease, one stills does not know whether 
the chemokine is latent or activate. For example, MMPs 
cleave chemokines and affect their outcomes by either 
converting them into agonists or antagonists (68). It is 
therefore critical to complement the genomics information 
with proteomics knowledge. The proteomics technologies 
have tremendously evolved in recent years thereby 
creating novel biochemical tools to study protein functions.

7. QUANTITATIVE SHOTGUN PROTEOMICS 

Proteomics allow for large-scale analysis 
and determination of protein functions. Quantitative 
proteomics can be achieved in two ways: using label-
free methods or by incorporating stable isotopic 
labeling (69). In label free quantification methods, the 
mass spectrometry signal of the same peptides from 
different samples are compared to one another (70). This 
approach is now far more robust than before and can 
be utilized in experiments where large ratio differences 
between samples are expected (more than fourfold) (69). 
Isotope-based methods incorporate light and heavy 
versions of chemical groups labeled to proteins or 
peptides of the samples; for example, the amide groups 
of peptides can be dimethylated by a normal isotope from 
formaldehyde or heavy versions using 15N, 13C or 2H 
isotopes (71, 72). Other options include isobaric tags for 
relative and absolute quantitation (iTRAQ), tandem mass 
tags (TMT) and stable isotope labeling by amino acids 
in cell culture (SILAC) (69, 73, 74). Quantitative shotgun 
proteomics provide crucial information about the protein 
amounts in different samples. However, as mentioned 
before, several states of a single protein exist in nature 
and dictate important biological roles. It is therefore 
challenging to detect PTMs without specific enrichment 
methods and proteolysis is no exception.

8. PROTEOMICS OF POST-TRANSLATIONAL 
MODIFICATIONS: N-TERMINOMICS 

Proteases generate new peptides after cleaving 
substrates thus enrichment for neo-N-termini is the 
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method of choice to study post-translational proteolysis. 
N-terminomics allow for the identification of N-termini of 
both original N-termini and neo-N-termini generated by 
a protease. Positive selection methods can positively 
enrich for the neo-N-termini. For example, a subtiligase 
can be used to biotinylate the alpha-amines of the 
N-termini of peptides followed by the cleavage using the 
specific tobacco etch virus (TEV) protease before LC/
MS/MS analysis (75). Negative selection methods are 
described in figure 2 and include combined fractional 
diagonal chromatography (COFRADIC) and terminal 
amine isotopic labeling of substrates (TAILS) (76,77).

8.1. Terminal amine isotopic labeling of MMP 
substrates

In the TAILS procedure, both alpha- and 
epsilon-amines are blocked by dimethylation (or 
other labels) followed by protein trypsinization. The 
water-soluble hyperbranched polyglycerol aldehyde 
polymer is then added to bind the neo-tryptic generated 

alpha-amine peptides. Due to the polymer’s large size 
(more than10 kDa), by using ultracentrifigation, the 
tryptic bound peptides are then removed from the sample 
leaving behind the peptides cleaved by the protease of 
interest  (figure 2) (77). The unbound N-terminal peptides 
are then send to the mass spectrometer followed 
by bioinformatics analysis. TAILS reduces sample 
complexity due to its depletion of tryptic peptides. Such 
enrichment methods enhances the identification of low 
abundance peptides in both in vitro and in vivo systems 
and offer a different coverage of peptides as compared to 
traditional proteomics techniques (77,78).

Terminomics approaches also present 
challenges. In a typical shotgun proteomics experiment, 
trypsin is often the protease of choice to digest proteins 
into peptides, cutting after arginine and lysine residues. 
In TAILS, trypsin is also used, however, due to the 
dimethylation of the free amines of lysine residues, 
trypsin is unable to cut after dimethylated lysines and only 

Figure 2. Schematic representation (adapted from Huesgen and Overall (125)) of N-terminal peptide enrichment strategies based on the removal of non-
target peptides. COFRADIC and TAILS are methods designed to enrich for N-terminal by selective removal of internal peptides followed by N-terminal 
protection. These negative selection approaches also enrich for endogenous alpha-amine modified N-terminal peptides. See main text for method and 
biological application details. Reproduced with permission from (125).
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cuts after arginine residues, resulting in peptides with an 
ArgC specificity i.e. semi-tryptic peptides. These N- and 
C-terminal peptides are not always amenable for LC-MS/
MS analysis: they are often longer in length and risk to 
have different physicochemical properties for ionization 
and/or fragmentation (79). ArgC generated peptides also 
risk to have different charge states, therefore, acquisition 
methods utilizing different collision or electron transfer 
energy are needed. To solve this limitation, some groups 
have used GluC and chymotrypsin in parallel to trypsin to 
increase the number of MS-amenable peptides (77, 80).

Enriching for the N-terminome can lead to the 
detection of low abundance proteins or never before 
identified proteins. For example, Lange et al. (81) have 
identified 1369 natural and neo-N-termini corresponding 
to 1234 proteins in human erythrocytes using TAILS. 
Of these identified proteins, 281 were novel identified 
erythrocyte proteins and 6 were detected for the first time 
in the human proteome.

Several MMPs have already been investigated 
using TAILS. 146 high-confidence substrates were 
discovered using MMP2-/- fibroblast secretomes treated 
with either recombinant MMP2 or buffer (77). In a separate 
experiment, murine fibroblasts were treated with MMP2 
or MMP9 and identified 3,152 unique N-terminal peptides 
corresponding to 1,054 proteins (82). Of these identified 
N-terminal peptides, 201 MMP2 cleavages and 19 MMP9 
cleavages were detected (82). Novel substrates were 
biochemically validated including galectin-1, insulin-like 
growth factor binding protein-4 (IGFBP4), complement 
C1r component A, dickkopf-related protein-3 (Dkk-3) and 
thrombospondin-2 (TSP2) (82).

TAILS can also be used to study in vivo samples. 
Using a 12-O-tetradecanoylphorbol 13-acetate (TPA) 
model of skin inflammation, the skin of wild-type and 
MMP2-/- mice were analyzed (83). In wild-type animals, 
MMP2 cut serpin G1 at position 470R↓S471, leading to 
its inactivation (83). In the Mmp2-/- mice the high levels 
of intact functional serpin G1 blocked complement 
activation in vivo. In response to phorbol ester-induced 
inflammation, MMP2 inactivates the complement 1 (C1) 
inhibitor therefore increasing complement activation and 
bradykinin generation, thus, leading to an increase in 
vessel permeability (83).  

Co-cultures of the human breast cancer cells 
MDA-MB-231 with the osteoblast MC3T3-E1 cells 
were analyzed by both the CLIP-CHIP® microarray 
and TAILS. Breast cancer cells induced MMP13 on 
both the mRNA and protein levels which lead to the 
analysis of the osteoblast secretomes with the addition 
of exogenous recombinant MMP13 or buffer (84). A 
total of 1280 proteins were identified and 48 proteins 
were significantly increased in the culture supernatants 
of MMP13 treated samples including novel substrates 
of MMP13 (4, 8). These cleavages of MMP13 affect 

biology in several ways: two chemokines (CCL2 and 
CCL7) are inactivated therefore representing a feedback 
mechanism in a monocyte recruitment pathway and 
platelet-derived growth factor-C (PDGF-C) is activated 
leading to an increase in the phosphorylation of ERK1/2. 
Other substrates including SAA3, osteoprotegerin, cutA 
and antithrombin III were also biochemically validated to 
be cleaved by MMP13 (4,8).

Several novel substrates of the neutrophil-specific 
protease membrane-type 6 matrix metalloproteinase 
(MT6-MMP/MMP25) were also discovered using TAILS. 
The secretomes from human fetal lungs (HFL-1) cells 
were incubated with either recombinant MT6-MMP or 
with the catalytically inactive form (MT6-MMPE234A) and 
58 high confidence novel substrates were identified. Five 
of these proteins were validated biochemically including 
cystatin C, insulin-like growth factor-binding protein-7 
(IGFBP7), galectin-1, vimentin and secreted protein 
acidic and rich in cysteine (SPARC) (85). Furthermore, 
the cleavage of vimentin by MT6-MMP results in a loss 
of chemotaxis of the human monocytic cells THP-1 
but an increase in phagocytosis (85). Therefore, MT6-
MMP is implicated in macrophage chemoattraction and 
phagocytosis of apoptotic neutrophils by the cleavage of 
vimentin.

Using unbiased techniques like degradomics, 
the number of known MMP substrates has greatly 
expanded. Interestingly, many of these are proteins 
implicated in inflammatory diseases and pathogen-
induced processes. These novel discoveries in the field 
of MMPs will modify our understanding on the biological 
roles of these proteases and how they affect and control 
immunity.

9. PERSPECTIVES: A SHORT-CUT CAN TELL 
TAILS 

The function of a protease is defined by 
the substrate it cuts. Proteases can induce signaling 
pathways, activate or inactivate chemokines, increase 
or decrease cell migration, cell invasion, cell proliferation 
and angiogenesis (2,4,56). Importantly, still more than 
half of the proteases have no annotated substrates in 
MEROPS, the protease database (http://merops.sanger.
ac.uk). Over the last decade, various degradomics 
tools have been developed leading to a significant 
increase of the discovery of protease substrates. MMPs 
play major roles in inflammation and remain of great 
interest in biology. As more novel and unexpected 
MMP substrates are being discovered using unbiased 
approaches like TAILS, new opportunities arise for 
developing MMP inhibitors. MMPs do not act alone. 
They are embedded in an interconnected protease 
web that is dynamic and altered in disease states. By 
understanding the role of MMPs within these complex 
networks, other therapeutics avenue will be discovered 
to treat inflammatory diseases.
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