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1. ABSTRACT

Year after year, conditions, quality, and 
duration of human lives have been improving due to 
the progress of science, technology, education, and 
medicine, which however has a downside. Owing to 
improvement in children’s nutrition, developmental 
acceleration occurs that imbalances a child’s system. 
Because of virtual worlds of the Internet, social 
experience of teenagers expands and clashes with 
puberty of adolescents. Due to the comfort of cities, 
urbanization emerges and causes stress to adults 
because of artificial light, noise, pollution, violations of 
personal space, and family disruption. At old age, all 
these factors taken together contribute to loneliness, 
cancer, diabetes, drug addiction, and sporadic 
Alzheimer’s disease, which shorten the lifespan, 
as reviewed in the US, 1990–2010. That is why, a 
person may ask oneself: “What can I do now to keep 
my health in my old age?” To help them, we provide 
this comprehensive review on predictive preventive 
personalized medicine. This branch of molecular 
medicine uses single nucleotide polymorphisms to 
prevent diseases on the basis of the difference between 
the individual and reference human genomes.

2. INTRODUCTION

Year after year, conditions, quality, and 
duration of human lives have been improving due to 
the progress of science, technology, education, and 
medicine, which however has a downside. Owing to 
improvement in children’s nutrition, developmental 
acceleration occurs that imbalances a child’s system. 
Because of virtual worlds of the Internet, social 
experience of teenagers expands and clashes with 
puberty of adolescents. Due to the comfort of cities, 
urbanization emerges and causes stress to adults 
because of artificial light, noise, pollution, violations of 
personal space, and family disruption. At old age, all 
these factors taken together contribute to loneliness, 
cancer, diabetes, drug addiction, and sporadic 
Alzheimer’s disease (AD), which shorten the lifespan, 
as reviewed in the US, 1990–2010 (1). That is why, a 
person may ask oneself: “What can I do now to keep 
my health in my old age?” This personal initiative in 
health maintenance is one of the main reasons behind 
predictive preventive personalized medicine (2). This 
newest branch of molecular medicine uses single 
nucleotide polymorphisms to prevent diseases on 
the basis of the difference between the individual and 
reference human genomes.

Before the genomics era, discovery of the 
associations between SNPs and diseases was mostly 
due to luck (3, 4). Now, in the postgenomic era, 
such studies are systematic and genomewide within 
the framework of the large worldwide project “1000 
Genomes” (5). The results of the project are stored in 

the dbSNP database as true SNPs (6). This database 
is an inherent part of the reference human genome 
and contains ancestral alleles of all SNPs, whereas 
the human variome represents their minor alleles. 
Currently the database contains over 8.58 billion known 
unannotated SNPs (7), which can be mapped using 
the UCSC Genome Browser (8). In turn, biomedical 
databases GWAS (genomewide association study) 
(9), OMIM (10), ClinVar (11), and HapMap (12) 
annotate these SNPs by documenting associations 
with hereditary diseases and with their complications 
and comorbidities (e.g., (13)). Each such association 
is characterized by the statistical significance of the 
discrimination between a cohort of patients with a 
given disease and healthy volunteers (as a control), 
with the SNPs serving as biomarkers of this disease 
according to a conventional clinical protocol (14). The 
vast majority of SNPs are neutral while only a tiny 
minority is biomedical SNP markers as was postulated 
by the theory of neutral evolution (15) and Haldane’s 
dilemma (16). Therefore, the clinical search for SNP 
markers of diseases by “trial and error” is very slow, 
costly, and labor-intensive.

Most of currently known biomedical SNP 
markers have been found within protein-coding gene 
regions where their manifestations are invariant and 
easily detectable because of the disruption in both 
structure and function of the altered protein (10). 
Nevertheless, neither medication nor a lifestyle change 
can fully correct pathological effects of these SNPs; 
that is why they are rather valuable for physicians 
but not for people who would like to prevent various 
diseases by sequencing their individual genome. In 
contrast, the smallest number of biomedical markers 
has been found in the regulatory regions of genes, 
where the mutations alter only the concentration of 
a protein in human cells without any damage to the 
structure and function of this protein (17). Because 
nothing changed in proteins but their concentrations, 
the pathological effects of these regulatory biomedical 
SNP markers should be correctable by medications 
and/or lifestyle changes. For this reason, such 
biomedical SNP markers can be interesting both to 
physicians (may help to improve patient care) and to 
people who would like to prevent such diseases by 
sequencing their individual genome.

The majority of the known regulatory 
biomedical SNP markers alter the binding site for 
TATA-binding protein (TBP) because they are located 
within the small region (–70; –20) upstream of the 
transcription start site (18). These SNP markers are 
readily detectable due to the positive correlation 
between the expression level of the human gene 
containing them and the affinity of TBP for the promoter 
of this gene (19). This is because TBP’s binding to 
its binding site is the very first obligatory molecular 
event of transcription initiation in eukaryotes (20, 21). 
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For the remaining ~2,600 DNA-binding proteins (22), 
experimental data on their binding to human gene 
promoters in health (23), in disease (24), and after 
treatment (25) are still being accumulated.

Computer-based elimination of neutral SNPs 
among the known unannotated SNPs (7) may accelerate 
and facilitate the clinical search for biomedical SNP 
markers (4). This task can be performed by means of 
many publicly available Web services performing well 
only on some SNPs and diseases ((26–42); for a review, 
see (43, 44)). The most advanced software appears 
to be targeted to the dynamics of molecular structures 
and allows researchers to estimate the SNP-caused 
changes in proteins (e.g. (45)). The new trend in this 
active field of research is Web navigation services that 
help users to generate their own ideas on how an SNP of 
interest can affect symptoms of diseases under study by 
predicting how this SNP can alter the protein’s structure-
function relation (46). Another innovation is Web service 
PredictSNP2 (47). It expresses the numerical estimates 
of alteration in a protein’s structure-function relations 
caused by an SNP as qualitative categories of human 
health (47). These categories are more understandable 
to the general population.

Meanwhile, the smallest progress has 
been made on regulatory SNPs because their 
manifestations may vary from cell to cell, from 
tissue to tissue, from patient to patient, and from 
subpopulation to subpopulation without any changes 
in a protein’s structure-function relations (48). That 
is why development of the approaches to computer-
based prediction of candidate SNP markers of human 
hereditary diseases within regulatory gene regions 
is a challenging problem that limits the progress of 
predictive preventive personalized medicine (2).

Trying to find an answer to the question 
“What can be done to keep one’s health at old age?” 
here we provide a comprehensive review on the topic 
of known and candidate regulatory SNP markers of 
hereditary diseases. This review is focused on the 
markers near the TBP-binding sites of human gene 
promoters because these regulatory sites have been 
studied the most. For example, one of such candidate 
SNP markers is rs72661131, which is associated 
with stroke and sporadic AD (49). Risks of both 
diseases can be minimized by adding some natural 
marine products into the diet of an individual who 
has a minor allele of this SNP (50). Of course, this is 
oversimplification: if stroke and sporadic AD could be 
prevented by a natural marine diet alone, the life of the 
general population would be easy. Nevertheless, this 
candidate SNP marker may be interesting for people 
who would like to bring their lifestyle in line with their 
sequenced individual genome. Thus, we focused this 
review on a public Web service called SNP_TATA_
Comparator (http://beehive.bionet.nsc.ru/cgi-bin/mgs/

tatascan/start.pl), which was developed specifically for 
predicting the candidate SNP markers near the TBP-
binding sites of human gene promoters (51).

3. WEB-SERVICE SNP_TATA_COMPARATOR

The Web-service SNP_TATA_Comparator, 
http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan/
start.pl, calculates a computer-based statistical 
estimation of SNP-caused alteration of TBP’s binding 
affinity for a human gene promoter. Based on this 
estimate, the Web-service SNP_TATA_Comparator 
predicts a change in the expression of the genes that 
can be associated with diseases, their comorbidities, 
and complications (51). Let’s see how to use it and 
review its bioinformatics model, hardware platform, 
and software design in more detail.

3.1. How to use WEB service  
SNP_TATA_Comparator

Figure 1 illustrates how a person can 
use SNP_TATA_Comparator (51) in practice. As a 
preliminary preparation, he or she should first find the 
human gene, the promoter of this gene, and the SNPs 
of this promoter, using another public Web service 
“UCSC Genome Browser” (8) as shown in Figure 1 A.

Next, using the BioPerl library (52), the 
user can extract the promoter sequences containing 
these SNPs from the reference human genome (5) by 
means of Web service SNP_TATA_Comparator (51) 
as shown in Figure 1 B. Here, the “Base sequence” 
textbox contains the ancestral allele of the promoter of 
interest. Another “Editable sequence” textbox contains 
a copy of this DNA sequence, where the user should 
manually create the minor allele of interest according 
to its description from the dbSNP database (6) 
available via Web service “UCSC Genome Browser” 
(8). Clicking on the “Calculate” button transforms 
these two DNA sequences as the input data into 
the output data appearing in the “Result” textbox as 
shown in Figure 1, B and C. This transformation is 
based on a bioinformatics model shown in Figure 2 
and described in detail in section 3.2. Finally, the line 
“DECISION” shows the prediction made by SNP_
TATA_Comparator (51) using this model. Additionally, 
the line “Z-score” shows the p value of the probability 
rate of this prediction (where: alpha = 1 - p is its 
statistical significance).

3.2. Bioinformatics model

The bioinformatics model of the Web service 
SNP_TATA_Comparator (51) takes into account three 
steps of TBP’s binding to a eukaryotic gene promoter, 
namely: (i) TBP slides along DNA (53–55) <=> (ii) TBP 
stops at a TBP-binding site (56; 57) <=> (iii) the TBP–
promoter complex is fixed by DNA helix’s bending to 
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the 90° angle (58–60). This binding affinity can be 
estimated using the following empirical equation:

 (1)

where 10.9 (ln units) is nonspecific TBP–DNA affinity 
10–5 M (61), 0.2 is the stoichiometric coefficient (62), 
and KSTOP is the maximal score-value of Bucher’s 
position-weight matrix, which is the commonly 

accepted criterion of the TATA box: the canonical form 
of the TBP-binding site (57).

In Eq. (1), KSLIDE is our empirical estimate of 
the equilibrium constant of TBP’s sliding along DNA 
(this constant was determined experimentally (53)), 
namely:

 (2)

Figure 1. Known and candidate SNP markers of variable immunodeficiency (77), stroke (78), preeclampsia (79), and (likely) cardiovascular risk in 
rheumatoid arthritis (80) near TBP-binding sites of the human MBL2 gene promoter. (A) Unannotated SNPs (analyzed in this study) in the region (–70; 
–20) (where all proven TBP-binding sites (boxed) are located; double-headed arrow) of the human MBL2 gene promoter. These data were retrieved 
from dbSNP (6) using the UCSC Genome Browser (8). Dash-and-double-dot arrows: known and candidate biomedical SNP markers are predicted by a 
significant change in the affinity of TBP for the human MBL2 gene promoter. (B, C) The results produced by Web service SNP_TATA_Comparator (51) 
for the two SNP markers of the hereditary diseases in question: known rs72661131 (77–79) and candidate marker rs567653539 near the known TATA 
box (boxed) of the human MBL2 gene promoter. Solid, dotted, and dashed arrows indicate queries for the gene list, list of transcripts of a given gene, 
and DNA sequence of the promoter corresponding to the specified transcript in terms of the BioPerl library (52) of the reference human genome (5), 
respectively. Dash-and-dot arrows: estimates of significance of the alteration of gene product abundance in patients with the minor allele (mt) relative 
to the norm (ancestral allele, wt) expressed as a Z-score (the ratio of the difference between two means to the square root of the sum of the squares of 
their standard errors) using package R (66). Circles indicate the ancestral (wt) and minor (mt) alleles of the SNP marker labeled with its dbSNP ID (6).
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where (TA)3’HALF is the total amount of dinucleotide TA 
within the 3’ half of the DNA sequence being analyzed; 
MinorGrooveWidthREGION is the mean width of the 
minor groove of the B-form of the DNA helix (54); 
0.8, -3.4, and -35.1 are linear regression coefficients 
(62); MEAN15bp is the mean arithmetic value for 
all possible positions and orientations of the TBP-
binding site, 15 bp long (this value was determined  
empirically (53)).

In Eq. (1), KBEND is our empirical estimate of the 
equilibrium constant at the DNA helix bending step on 
the basis of the macromolecular dynamics computations 
(58) describing how TBP can bind to DNA, namely:

 (3)

where WR = {TA, AA, TG, AG}, TV = {TA, TC, TG} 
(63) (the IUPAC-IUB nomenclature (64)); 0.9, 2.5, and 
14.4 are linear regression coefficients taken from ref. 
(63); MEANTATA-box is the mean arithmetic value for both 
DNA strands of the TBP-binding site at the position of 
the maximal score-value of Bucher’s position-weight 
matrix (57).

Additionally, the estimates of standard 
deviation of the -ln(KD) (Eq. 1)—for 78 possible 
substitutions, si+j→X, at each j-th position (-14 < j < 
13; 78 = 3 * 26) within the 26-bp DNA window—was 
heuristically estimated as

 (4)

This equation (4) estimates the resistance 
of the TBP-binding site of the promoters against the 
majority of single-nucleotide substitutions (65).

Next, the results of calculations according to 
Eqs. (1–4) for the promoter DNA sequences of both 

ancestral (wt) and minor (mt) alleles of a given gene, 
-ln(KD,wt) “+/-” dwt and -ln(KD,wt) “+/-” dmt, respectively, are 
compared with each other in terms of Fisher’s Z-score 
as described in ref. (66):

 (5)

Then, the Z-value obtained is converted 
using R statistical package (66) into a p value, i.e., the 
probability rate (where alpha = 1 - p is the statistical 
significance) as shown in Figure 1 B.

Finally, the following decision is made:

IF {-ln(KD;mt) is statistically significantly greater 
than -ln(KD;wt)},

THEN {DECISION is “there is overexpression 
of the minor allele of this gene in comparison with the 
ancestral allele”};

ELSE (IF {-ln(KD;mt) is statistically significantly 
less than -ln(KD;wt)},

THEN {DECISION is “there is underexpression 
of the minor allele of this gene in comparison with the 
ancestral allele”}),

OTHERWISE {DECISION is “alteration of the 
expression of this gene is insignificant”} (6)

For each SNP thus analyzed, the decision 
(Eq. 6) is the main result shown in the line “DECISION” 
of the “Result” textbox, and the p value can be found in 
the line “Z-score” (Figures 1, B and C).

It should be noted that before developing 
software Web-service SNP_TATA_Comparator (51) 
based on equations (1–6), the three-step molecular 
mechanism for the binding between TBP and the TATA 
box was predicted in silico (67) and detected in vitro 

Figure 2. The bioinformatics model that takes into account three steps of the TBP–promoter binding according to both prediction in silico (67) and 
detection in vitro (68), namely: (i) TBP slides along DNA (53- 55) <=> (ii) TBP stops at a TBP-binding site (56; 57) <=> (iii) the TBP–promoter complex 
is fixed by DNA helix’s bending to the 90° angle (58- 60). LTATA and LWINDOW: the lengths of the TATA box (15 bp) and the window (26 bp) for scanning the 
DNA sequence, respectively.
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(68), and its bioinformatics model was repeatedly 
verified on independent experimental data (69–75) (for 
review, see (76)).

3.3. Hardware platform and software design

Web service SNP_TATA_Comparator (51) is 
a bioinformatics application installed on the hardware 
HP 380DL G6 under both virtualization “Citrix 
XenServer” and operating “CentOS 6” systems, which 
connect the Web server “Nginx + Apache,” which is 
supported by the Siberian Supercomputer Center 
(Novosibirsk, Russia). It takes queried data from 
the reference human genome (5) using the BioPerl 
toolkit (52) as shown in Figure 1 B. Its bioinformatics 
model is the executable applet encoded primarily in 
the programming language C of the ANSI standard, 
which uses standard statistical software R (66). The 
user interface is written using standard Java-script. 
This Web service is publicly available (http://beehive.
bionet.nsc.ru/cgi-bin/mgs/tatascan/start.pl).

4. EXAMPLES OF KNOWN AND CANDIDATE 
SNP MARKERS (OF HEREDITARY  
DISEASES) THAT CAN ALTER TATA-BOXES 
OF HUMAN GENES

Table 1 shows the selected examples of 
known and candidate SNP markers of hereditary 
diseases. These SNPs can alter TATA-boxes in the 
canonical form of the TBP-binding sites of human gene 
promoters as predicted by the Web service (51). Here, 
we consider only one example from these illustrative 
results in detail, and the other SNPs are presented 
briefly.

4.1. The human MBL2 gene

The human MBL2 gene (soluble mannose-
binding lectin 2) contains one known SNP marker 
(rs72661131) of variable immunodeficiency (77), 
stroke (78), and preeclampsia (79). This SNP is a 
substitution of a minor c for an ancestral T at position 
–39 (hereafter denoted as –39T>c) in the promoter of 
this gene as shown in Figure 1 B. In the textbox “Result” 
in this figure, one can see that affinity estimates of 
the ancestral allele (20.17 “+/-” 0.12 ln units) are 
significantly stronger than the affinity corresponding 
to the minor allele (–39c; 19.28 “+/-” 0.09 ln units; 
4.19 nM) with the probability rate p > 0.999999 
(Z = 11.97, alpha < 10–6). This SNP decreases affinity 
of TBP for the minor variant of the MBL2 promoter; 
this change corresponds to underexpression of this 
gene (designated as “Down” in Table 1), which is 
characterized by the negative value -0.87 of the SNP-
caused change coefficient, kappaSNP (the natural 
logarithm of the ratio of the expression levels of 
ancestral and minor alleles of the SNP considered, i.e., 
kappaSNP = ln(KD,wt/KD,mt)). This prediction is consistent 

with clinical data on underexpression of this gene in 
patients with variable immunodeficiency (77), stroke 
(78), and preeclampsia (79).

Near this known biomedical SNP marker 
rs72661131, we found two unannotated SNPs 
(rs562962093 and rs567653539), which can 
cause MBL2 underexpression and overexpression, 
respectively (Table 1). The first one can be associated 
with variable immunodeficiency, preeclampsia, and 
stroke as known for rs72661131. According to one 
more clinical study (80), both rs562962093 and 
rs567653539 can be candidate SNP markers of 
cardiovascular events in rheumatoid arthritis, which 
are significantly often associated with overexpression 
and underexpression of mannose-binding lectin 2 
encoded by this gene (Table 1).

4.2. Human HBB and HBD genes

Human HBB and HBD genes (beta- and 
delta-chains of hemoglobin, respectively) contain 
the largest number of SNP markers (rs34500389, 
rs33981098, rs33980857, rs34598529, rs33931746, 
rs397509430, and rs35518301) of resistance to 
malaria and thalassemia caused by underexpression 
of these genes (81). Near these biomedical SNP 
markers, there are three unannotated SNPs 
(rs63750953, rs281864525, and rs34166473) that 
can cause a hemoglobin deficiency. Thus, they can 
be considered candidate SNP markers of the same 
pathologies (Table 1).

4.3. The human IL1B gene

The human IL1B gene (interleukin 1 beta) 
contains the most widely studied SNP marker 
(rs1143627) of gastric ulcer, chronic gastritis, gastric 
cancer, hepatocellular carcinoma, non–small cell 
lung cancer, Graves’ disease, obesity, and major 
depressive disorder (82–88), which were clinically 
shown to be associated with overexpression of this 
gene as shown in Table 1. Near this known SNP 
marker, we found unannotated rs549858786, which 
was reported to lower IL1B expression (Table 1), 
whereas an IL1B protein deficiency is a biochemical 
marker of rheumatoid arthritis (89), whose candidate 
SNP marker can thus be rs549858786 (51).

4.4. The human NOS2 gene

The human NOS2 gene (inducible nitric oxide 
synthase 2) contains an SNP marker of resistance to 
malaria as a beneficial effect (90) and epilepsy as an 
adverse effect (91). It is a –51T>C substitution (position 
27800550 of the complementary DNA strand on 
chromosome 17 relative to the transcription start site 
of this gene (90)) that causes NOS2 overexpression 
according to clinical research (90, 91).
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4.5. The human F3 gene

The human F3 gene encodes tissue 
thromboplastin (synonym: coagulation factor III). There 
is a known SNP marker (rs563763767) of an increased 
risk of venous thromboembolism and myocardial 
infarction in the promoter of this gene (92).

4.6. The human LEP gene

The human LEP gene encodes hormone 
leptin and has no known biomedical SNP markers 
that alter the promoter of this gene. Due to Friedman’s 
discovery that the LEP gene is the “obesity gene” (93), 
three unannotated SNPs—rs34104384, rs200487063, 
and rs201381696—have been predicted as candidate 
SNP markers of obesity-caused hypertension (94, 95) 
and obesity (96) as shown in Table 1 according to their 
predicted effects on the affinity of TBP for the LEP 
promoter (97).

4.7. The human ABCA9 gene

The human ABCA9 gene (ATP-binding 
cassette subfamily A, member 9) is one more 
independent example of a human gene whose promoter 
has no known biomedical SNP markers near its known 
TATA box (98) (Table 1). Using Web service SNP_
TATA_Comparator (51), the candidate SNP marker 
rs367781716 of atherosclerosis, Alzheimer’s disease 
(AD), and cardiovascular diseases was both predicted 
in silico and experimentally verified in vitro (99).

5. PRECLINICAL VERIFICATION IN VITRO 
AND EX VIVO OF THE CANDIDATE SNP 
MARKERS OF HEREDITARY DISEASES

These predictions of Web-service SNP_
TATA_Comparator (51) reviewed here were selectively 
verified under real-time (100–102), equilibrium (103), 
and nonequilibrium (97, 99, 104) conditions in vitro as 
well as under ex vivo conditions using cultured human 
cells transfected with the pGL 4.1.0 vector (Promega, 
USA) (reporter gene LUC (luciferase)) (105). In the 
text below, we discuss these experiments in more 
detail (for these in vitro verification experiments, full-
length human ТВР was expressed in Escherichia coli 
cells BL21 (DE3) and, then, purified by the standard 
protocol (106)).

5.1. Verification of candidate biomedical SNP 
markers using an electrophoretic mobility shift 
assay (EMSA) in vitro

The equilibrium dissociation constants (KD) for 
the TBP–ODN complex (ODN: a given double-helical 
DNA 26-bp oligonucleotide synthesized and purified 
by BIOSYN (Novosibirsk, Russia), which is identical 
to either the minor or ancestral allele of a given SNP 

of the human gene promoter being tested, as shown in 
Table 1) were measured using a conventional protocol 
(103). It includes titration of a fixed amount of active 
TBP, 0.3 nM, with the increasing concentrations of 
the ODN to reach equilibrium. The equilibrium time 
was determined previously for each ODN. Binding 
experiments were run at 25OC in binding buffer (20 mM 
HEPES-KOH, pH 7.6, 5 mM MgCl2, 70 mM KCl, 1 mM 
EDTA, 100 µg/ml BSA, 0.0.1% NP-40, 5% glycerol). 
The human ТВР-ODN complexes were separated from 
the unbound ODN by an electrophoretic mobility shift 
assay (EMSA) as exemplified in Figure 3 A (ancestral 
allele rs367781716:T) and Figure 3 B (minor allele 
rs367781716:c). The KD values that characterize the 
affinity of TBP to TATA boxes were determined using 
conventional software OriginPro 8.

Figure 3 D shows the significant correlations 
between the in silico predicted kappaSNP values of 
the SNP-caused change coefficient (Table 1: natural 
logarithm of the ratio of quantitative estimates of the 
specific biological activity of ancestral (norm) and 
minor (mutant) alleles of the candidate SNP marker 
being verified) and those measured in vitro. As one 
can see, linear (r), rank (R and tau), generalized 
(gamma), and binary (p and Chi-square) correlation 
coefficients independently support the robustness 
of the predictions of Web-service SNP_TATA_
Comparator (51).

Figure 4 shows the significant correlations 
between the in silico predicted kappaSNP values of the 
SNP-caused change coefficient (Table 1) and those 
measured under the nonequilibrium conditions in vitro 
(97, 104). As shown in this figure, the predictions of 
SNP_TATA_Comparator (51) are robust.

5.2. Verification of candidate biomedical SNP 
markers in real time in vitro using high-resolution 
spectrometer SX.20

The above-mentioned ODNs were 
synthesized, purified, and labeled at 5’-termini 
with fluorescent dyes TAMRA and FAM (BIOSYN, 
Novosibirsk, Russia). The working concentration of 
DNA duplexes in all cases was 10–7 М, concentration 
of the active ТВР at the initial stage was the same, 
and then was increased proportionally 2-, 4-, 6-, 8-, 
or 10-fold. Analysis of the time-series of magnitudes 
was conducted next (see Figure 5 in the illustrative 
case of the candidate SNP marker rs201381696), and 
construction of a kinetic model of the interaction of 
TBP with each DNA duplex and calculation of velocity 
constants of all elementary reactions were carried out 
by means of the Dynafit software (Biokin, USA).

Figure 5 shows that the negative sign of the 
predicted kappaSNP value of the SNP-caused change 
coefficient (Table 1) is consistent with that measured 
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Figure 3. Experimental verification of the candidate SNP markers (see Table 1) by an electrophoretic mobility shift assay (EMSA) under equilibrium 
conditions in vitro. An example of electropherograms in the case of ancestral (panel A: norm, wild-type, wt) and minor (panel B: mutant, mt) alleles of 
the candidate SNP marker rs367781716 within the human ABCA9 gene promoter. (C) Experimental data: white and black squares depict the ancestral 
(norm, wild type, wt) and minor (mutant, mt) alleles, respectively, of the candidate SNP marker being verified as well as solid and dashed curves whose 
asymptotes estimate the values of the equilibrium dissociation constants (KD) of the TBP–oligodeoxynucleotide (ODN) complexes as indicated below 
these curves. (D) The significant correlations between the in silico predicted kappaSNP values of the SNP-caused change coefficient (Table 1: natural 
logarithm of the ratio of quantitative estimates of the specific biological activity of ancestral (norm) and minor (mutant) alleles of the candidate SNP marker 
being verified) and those measured in vitro. Solid and dashed lines or curves denote the linear regression and boundaries of its 95% confidence interval, 
calculated by means of software package STATISTICA (StatsoftTM, USA); white and black circles depict the ancestral and minor alleles, respectively, of 
the candidate SNP markers being verified; r, R, tau, gamma, Chi-square, and alpha are Pearson’s simple linear correlation, Spearman’s rank correlation, 
Kendall’s rank correlation, the Goodman–Kruskal generalized correlation, dichotic Chi-square correlation, and their significance, respectively; p is 
Fisher’s exact test in the case of a 2 x 2 contingency table.

Figure 4. The significant correlations between the in silico predicted kappaSNP values of the SNP-caused change coefficient (Table 1: natural logarithm of 
the ratio of quantitative estimates of the specific biological activity of ancestral (norm) and minor (mutant) alleles of the candidate SNP marker being 
verified) and those measured by EMSA under the nonequilibrium conditions in vitro. Solid and dashed lines or curves as well as r, R, tau, gamma, Chi-
square, alpha, and p have the same meaning as in the legend of Figure 3.
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in vitro in real time, namely: kappaSNP = ln((4 nM)/
(27nM)) = -1.91 < 0. This result may be one more 
argument in favor of the robustness of the predictions 
made by Web-service SNP_TATA_Comparator (51). 
For more details, readers can see the original articles 
(100–101) on other SNPs tested using high-resolution 
spectrometer SX.20 (Applied Photophysics, UK) and 
ref. (102) where another device, biosensor ProteONTM 
(Bio-Rad Laboratories, USA), was used.

5.3. Verification of candidate biomedical SNP 
markers using cultured human cell line under  
ex vivo conditions

Cell line HCT116 (human colon 
adenocarcinoma) was cultivated in a complete medium 
consisting of Dulbecco’s modified Eagle’s medium/
Nutrient mixture F-12 Ham, supplemented with 10% 
(v/v) of fetal bovine serum (Sigma), penicillin (100 U/
mL) and streptomycin (100 mg/mL) (BioloT). The 
culture was maintained at 37OC in a humidified 
atmosphere containing 5% of CO2 until the desired level 
of confluence. All the experiments were performed at 
80–85% confluence. Oligonucleotides corresponding to 
ancestral and minor alleles of the predicted candidate 
SNP markers rs201381696, rs200487063, and 
rs34104384 (Table 1) were cloned into the pGL 4.10 
vector (Promega, USA) and cotransfected with pRL-TK 
using Screen Fect A (InCella) as described elsewhere 
(107). After that, the cells were cultured in 6-well 
plates for 24 hours. Luciferase activity was measured 
by means of the Dual-Luciferase Reporter Assay kit 
(Promega). The results are presented in Figure 6.

As readers can see in this figure, there is 
a significant linear correlation (panel B) between 

the predicted kappaSNP values of the SNP-caused 
change coefficient (Table 1) and those measured 
ex vivo (panel A). This finding can be an additional 
piece of supporting evidence for the robustness 
of the computer-based predictions of SNP_TATA_
Comparator (51).

Moreover, all the verification results 
(Figures 3–6) together indicate that this Web-service 
(51) is accompanied by the comprehensive pre-
clinical verification platform that allows for testing its 
predictions as soon as they are made.

6. BIOMEDICAL PREDICTIONS USING A  
KEY WORDS SEARCH FOR KNOWN  
BIOMARKERS OF A HUMAN DISEASE IN 
DATABASES

The predictions in the cases of candidate SNP 
markers of obesity-related disorders (97), autoimmune-
related pathologies (108), chronopathologies (109), 
aggressiveness-related comorbidities (105), and 
sporadic AD (49) as well as resistance to antitumor 
chemotherapy (110) and social dominance/submission 
(111) were made using Web-service SNP_TATA_
Comparator (51). Below we selectively review these 
results in greater detail.

6.1. A Key Words search for known  
physiological markers of a human  
disease in the PubMed database

A Key Words search in the widely used 
PubMed database of biomedical publications (112) 
extends the predictive capabilities of Web service 
SNP_TATA_Comparator (51). Figure 7 depicts a 

Figure 5. The kinetics of binding to and bending of the DNA duplex (ODN) identical to the sequence of the ТАТА box of the ancestral (A: norm, wild-type, 
wt) and minor (B: mutant, mt) alleles of the candidate SNP marker rs201381696 within the human LEP gene promoter. The concentration of ODN was 
fixed (0.1 μM) during all the measurements, whereas the concentration of TATA-binding protein (TBP) was varied between 0.1 and 1.0 μM as indicated 
near the corresponding curve of the time series of experimental measurements. As one can see, the negative sign of the in silico predicted kappaSNP value 
of the SNP-caused change coefficient (Table 1: natural logarithm of the ratio of quantitative estimates of the specific biological activity of ancestral (norm) 
and minor (mutant) alleles of the candidate SNP marker being verified) was confirmed by those measured in vitro in real-time mode, namely: kappaSNP = 
ln(KD,wt/KD,mt) = ln((4 nM)/(27 nM)) = ln(0.14) = –1.91 < 0.
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flow chart of a Key Words search for a comorbidity 
of hereditary diseases whose known and candidate 
SNP markers can alter a TBP-binding site in a 
human gene promoter. In this figure, two boxes 
(dashed lines) depict the primary Key Words search 
for these diseases whose known biochemical 
markers match the predicted significant changes 
of the gene expression caused by the SNP being 
analyzed. This primary result (Figure 7: Result-1) 
can be seen in Table 1 as the predictions obtained 
by the Web service (51) regarding unannotated 
SNPs rs63750953, rs281864525, rs34166473, 
rs549858786, rs562962093, rs567653539, 
rs201381696, rs200487063, rs34104384, and 
rs367781716.

Additionally, Figure 7 shows a box outlined with 
a dotted line, which depicts a secondary manual Key 
Words search for co-occurrence of the comorbidities 
found in the first search and the hereditary disease 
clinically associated with the gene containing the SNP 
under study. According to the positive or negative 
outcome of this additional Key Words search, the SNP 
can be either predicted as a candidate SNP marker 
of a comorbidity of this hereditary disease (Figure 7: 
Result-2) or discarded.

The clinical data found during the manual Key 
Words search (with the corresponding REFERENCES 
in two rightmost columns of the tables in this review) 
are indicated in italics and marked with the phrase 
“(likely)”.

6.2. Examples of SNP markers of hereditary  
diseases as candidate SNP markers of  
sporadic Alzheimer’s disease (AD)

Table 2 exemplifies the results of the Key 
Words search for sporadic AD (49, 113–148) as shown 
in Figure 7. Below we discuss only some of these results 
in detail. The candidate SNP marker (rs72661131) of 
sporadic AD as a consequence of stroke (49) is quite 
interesting in our opinion. It is a genomewide marker 
suggesting that people who carry the minor allele of 
this SNP could minimize the risks of both diseases 
by adding some natural marine products into their 
diet (50). Of course, this is oversimplification: if stroke 
and sporadic AD could be prevented by a natural 
marine diet alone, the life of the general population 
would be very easy. Similarly, using the candidate 
SNP marker rs567653539, someone with a minor 
allele of this SNP can prevent cardiovascular disease, 
rheumatoid arthritis, and sporadic AD by switching to 
a diet enriched with selenium (Se) (119). In addition, 
candidate SNP markers (rs33980857, rs34598529, 
rs33931746, rs63750953, rs281864525, rs35518301, 
and rs34166473) of sporadic AD as a comorbidity 
of thalassemia may mean that the functional food 
supplement fermented papaya can prevent these 
diseases (125).

Thus, these genomewide landmarks may 
be interesting for people who would like to bring 
their lifestyle in line with their sequenced individual 
genome.

Figure 6. Cell culture verification of candidate SNP markers rs201381696, rs200487063, and rs34104384 in human cell lines transfected with the pGL 
4.10 vector carrying a reporter LUC gene. (A) Experimental data: open bars, ancestral allele (wild type, WT); gray bars, minor allele; HCT116, a human 
colon adenocarcinoma cell line; black bar, original vector pGL 4.10 (Promega, USA) without any insertions as an independent control. The height of 
the gray bars and their error bars correspond to the mean estimates and boundaries of their 95% confidence intervals calculated from at least three 
independent measurements. Asterisks indicate a statistically significant difference at the confidence level alpha < 0.05. (B) Significant correlation between 
the in silico predicted kappaSNP values of the SNP-caused change coefficient (Table 1: natural logarithm of the ratio of quantitative estimates of the specific 
biological activity of ancestral (white circles, norm, wt) and minor (black circles, mutant, mt) alleles of the candidate SNP marker being verified) and those 
measured ex vivo. Solid and dashed lines or curves denote the linear regression and boundaries of its 95% confidence interval, calculated by means 
of software package STATISTICA (StatsoftTM, USA); r and alpha are Pearson’s simple linear correlation coefficient and its statistical significance level, 
respectively.



Genomic landmarks for preventive personalized medicine

287 © 1996-2017

6.3. Examples of SNP markers of hereditary  
diseases as candidate SNP markers of  
autoimmunity-related comorbidities

Table 3 demonstrates the results of the Key 
Words search for autoimmunity-related comorbidities 

(108, 149–169). In our opinion, the candidate 
SNP marker (rs563763767) of Hughes syndrome-
associated thrombosis (lethal during pregnancy (167, 
168)) is the most interesting because this syndrome 
is easy to diagnose early and is a preventable form 
of myocardial ischemia (169). Using this genomewide 

 Table 2. Examples of SNP markers of hereditary diseases that can be candidate SNP markers of sporadic
Alzheimer’s disease (AD)m

Genes dbSNP (6) hereditary diseases 
whose known and 
candidate (indicated by 
“(likely)”) SNP markers 
are being analyzed

predicted obesity-related comorbidities whose candidate SNP 
markers (Figure 7: Result-2) are indicated by “(likely)”

Reference

MBL2 rs72661131, 
rs562962093

variable 
immunodeficiency, 
preeclampsia, 
stroke, and (likely) 
cardiovascular risk in 
rheumatoid arthritis

(likely) higher risk of sporadic AD, human intravenous immunoglobulin 
is a treatment of variable immunodeficiency that may account for its 
beneficial effect in both familial and sporadic AD; both preeclampsia 
and sporadic AD are mapped onto the human genome region 10q22 
where the preeclampsia-associated STOX1 gene (isoform A) promotes 
the growth of beta-amyloid plaques; natural marine diet prevents both 
stroke and sporadic AD

(49,50, 113–115)

MBL2 rs567653539
(likely) cardiovascular 
risk in rheumatoid 
arthritis

(likely) lower risk of sporadic AD whereas both cardiovascular 
diseases and rheumatoid arthritis positively correlate with AD; 
circulating microRNAs as a biomarker of AD, cardiovascular diseases, 
and rheumatoid arthritis; selenium (Se) can prevent and/or treat a 
cardiovascular disease, rheumatoid arthritis, and AD. 

(49, 113, 116–119)

HBB, 
HBD

rs33980857, 
rs34598529, 
rs33931746, 
rs63750953, 
rs281864525, 
rs35518301, 
rs34166473

malaria resistance, 
thalassemia

(likely) in homozygotes, high risk of AD (both under- and over-
expression of either HBB or HBD genes are associated with an 
increased risk of AD and more rapid cognitive decline (i.e., abnormal 
hemoglobin abundance correlates with both AD and cognitive decline), 
whereas beta-amyloid and hemoglobin aggregate with each other near 
traumatic vascular injury in the brain); heterozygote protects from AD; 
the functional food supplement fermented papaya as a treatment of 
both thalassemia and sporadic AD; drugs reducing Fe concentration 
can treat both thalassemia and sporadic AD; manzamine-type alkaloids 
as drugs effective against both malaria and sporadic AD; some alleles 
of APOE (keynote gene of both familial and sporadic AG pathogenesis) 
prevent malaria in race-biased susceptibility to AD

(49, 120–128)

IL1B rs1143627 

obesity; liver, lung, 
gastric cancers; gastric 
ulcer and gastritis; 
Graves’ disease, 
recurrent major 
depression

(likely) greater beta-amyloid plaque clearance and blood-brain barrier 
damage in AD; sporadic AD positively correlates with liver and gastric 
cancers rather than lung cancer; negative correlation between sporadic 
AD and Graves’ disease; same antidepressant drugs are used during 
recurrent major depression and both familial and sporadic AD; positive 
correlation between sporadic AD and obesity, whereas both body 
weight and fat loss regardless of diets and lifestyle are biomarkers of 
progression of both familial and sporadic AD

(49, 129–141)

IL1B rs549858786 (likely) rheumatoid 
arthritis

(likely) lower beta-amyloid plaque clearance and blood-brain barrier 
damage in AD (49, 129, 130)

F3 rs563763767 myocardial infarction; 
thrombosis

(likely) high risk of AD because F3 is found in β-amyloid plaques; 
donepezil is a drug against both sporadic AD and myocardial infarction; 
pathogeneses of sporadic AD and myocardial infarction share 
similarities; fibrinogen and beta-amyloid bind to each other as a risk 
factor for both thrombosis and both familial and sporadic AD; drug RU-
505 significantly alleviates thrombosis and cognitive deficits in familial 
and sporadic AD

(49, 142–146)

LEP rs201381696 (likely) obesity

(likely) positive correlation between sporadic AD and obesity, whereas 
both body weight and fat loss regardless of diets and lifestyle are 
biomarkers of progression of AD; higher risk of AD where beta-amyloid 
aggregates can cause hypothalamic leptin signaling dysfunction 
leading to early body weight loss; AD treatment involves nutritional 
assessments and dietary measures; there is leptin replacement 
therapy for AD in case of leptin deficiency and weight loss 

(49, 93, 140, 141, 
147, 148)

LEP rs200487063, 
rs34104384

(likely) obesity-caused 
hypertension

(likely) significant positive correlation between sporadic AD and 
obesity, whereas both body weight and fat loss regardless of diets and 
lifestyle are biomarkers of progression of both familial and sporadic 
AD; hyperleptinemia in urban children can elevate risk of sporadic AD 
in the elderly 

(49, 93), 147
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landmark, a pregnant woman carrying the minor allele 
of this SNP and her physician can arrange additional 
diagnostics to detect the onset and development of 
this disease during her pregnancy to prevent its fatal 
outcome.

6.4. Examples of SNP markers of hereditary dis-
eases as candidate SNP markers of  
circadian rhythm-related comorbidities

Table 4 contains the results of the Key Words 
search for circadian rhythm-related comorbidities 
(170–182), which are associated with consequences of 
desynchronoses either among the nervous, immune, 
digestive, respiratory, and other systems of the human 
body or between the human body and its environment 
(109). The most interesting (in our opinion) known 
SNP marker of myocardial infarction and thrombosis 
(rs563763767) may indicate that these hereditary 
diseases have a circadian preference for the early 
morning (182), which should correspond to the period 
of the strongest therapeutic effects of the medication 
used. In addition, candidate SNP markers rs33980857, 
rs34598529, rs33931746, rs63750953, rs281864525, 
rs35518301, and rs34166473 may indicate that during 
deferoxamine-based therapy in thalassemia, a patient 
can develop symptoms of sensorineural hearing loss 
as a complication of this drug (170, 171). Therefore, 
additional analysis of hearing capacity in patients 
during this treatment may prevent this hearing loss 
(170, 171).

6.5. Examples of SNP markers of hereditary  
diseases as candidate SNP markers of  
obesity-related comorbidities

Table 5 shows the results of the above-
mentioned Key Words search on candidate SNP 
markers of obesity-related disorders (82, 94–97, 
183–188). Looking through this table, one can see that 
obesity is a common comorbidity of all the hereditary 
diseases that have been selected for this review. The 
most generally accepted point of view is that obesity 
can lead to complications of many other diseases. 
Thus, our results suggest that prevention of obesity 
may further alleviate many other diseases, in line with 
the point of view above.

6.6. Examples of SNP markers of hereditary dis-
eases as candidate SNP markers of aggressive-
ness-related complications

Table 6 exemplifies the results of the Key 
Words search for aggressiveness-related complications 
(105, 189–210), which are associated with a 
hereditary behavioral trait that mobilizes all systems 
of the body—i.e., nervous, endocrine, respiratory, 
vascular, and muscular systems—for the defense of 
oneself, children, family, home, territory, possessions, 
business, ideas, or interests (211). It is noteworthy that 
aggressiveness is a specific powerful internal stressor 
(whereby the human body mobilizes itself) that can 
negatively affect the lifespan (212). Here, it should be 

 Table 3. Examples of SNP markers of hereditary diseases that can be candidate SNP markers of 
autoimmunity-related comorbidities

Genes dbSNP (6) or GRCh38/
hg381 (Reference)

hereditary diseases whose known and 
candidate (indicated by “(likely)”) SNP 
markers are being analyzed

candidate SNP markers 
of autoimmunity-related 
comorbidities (Figure 7: Result-2) 
are indicated by “(likely)”

References

MBL2 rs72661131, 
rs562962093

variable immunodeficiency, stroke, 
preeclampsia, and (likely) cardiovascular risk 
in rheumatoid arthritis

(likely) preterm delivery in pregnant 
diabetic women and cardiovascular 
events in rheumatoid arthritis

(108, 149–156)

MBL2 rs567653539 (likely) cardiovascular risk in rheumatoid 
arthritis

(likely) higher susceptibility to 
bronchitis and urinary tract infections 
in patients with rheumatoid arthritis

(108, 150–157)

HBB, 
HBD

rs33980857, rs34598529, 
rs33931746, rs63750953, 
rs281864525, 
rs35518301, rs34166473

malaria resistance, thalassemia
(likely) high risk of autoimmune 
diseases in women with 
hypergammaglobulinemia

(108, 158)

IL1B rs1143627 
obesity; liver, lung, gastric cancers; gastric 
ulcer and gastritis; Graves’ disease, recurrent 
major depression

(likely) cachexia in rheumatoid 
arthritis (108, 159–162)

IL1B rs549858786 (likely) rheumatoid arthritis (likely) lower risk of IL-1beta-induced 
chronic forms of rheumatoid arthritis (108, 159–163)

NOS2 -27800550, chr17 (90) resistance to malaria, epilepsy (likely) inflammation and tissue 
damage in pemphigus vulgaris (90, 108, 164–166)

F3 rs563763767 myocardial infarction; thrombosis (likely) Hughes syndrome-associated 
thrombosis (lethal during pregnancy) (108, 167–169)

1Position (plus as the direct strand and minus as the complementary strand) on a chromosome within the framework of the current release GRCh38/
hg38 of the reference human genome (5).
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 Table 4. Examples of SNP markers of hereditary diseases that can be candidate SNP markers of circadian
rhythm-related comorbidities

Genes dbSNP (6) or GRCh38/
hg381 (Reference)

hereditary diseases whose 
known and candidate 
(indicated by “(likely)”) SNP 
markers are being analyzed

predicted obesity-related comorbidities whose candidate 
SNP markers (Figure 7: Result-2) are indicated by 
“(likely)”

Reference

HBB, 
HBD

rs33980857, rs34598529, 
rs33931746, rs63750953, 
rs281864525, 
rs35518301, rs34166473

malaria resistance, 
thalassemia

(likely) circadian symptoms (worse at night) in restless legs 
syndrome caused by iron deficiency anemia co-occurring 
with thalassemia and for sensorineural hearing loss as a 
complication of deferoxamine-based therapy in thalassemia

(109, 
170–174)

IL1B rs1143627

liver, lung, gastric cancers; 
gastritis; gastric ulcer; 
Graves’ disease, recurrent 
major depression

both diagnosis and treatment of these hereditary diseases 
have circadian optima for use; (likely) bipolar disorder whose 
diagnosis and treatment have circadian optima depending 
on the diet

(109, 
175–177)

IL1B rs549858786 (likely) rheumatoid arthritis (likely) this hereditary disease disrupts the circadian rhythm 
of IL1B gene expression

(109, 178, 
179)

NOS2 -27800550, chr17 (90) resistance to malaria, 
epilepsy

epilepsy that damages the hypothalamus and the circadian 
clock as a whole (clinically known) (likely) remission of panic 
disorder whose symptoms are circadian (worse late in the 
evening)

(90, 109, 
180, 181)

F3 rs563763767 myocardial infarction; 
thrombosis

these hereditary diseases are characterized by their 
circadian preference for the early morning in the elderly (109, 182)

1Position (plus as the direct strand and minus as the complementary strand) on a chromosome within the framework of the current release GRCh38/
hg38 of the reference human genome (5).

 Table 5. Examples of SNP markers of hereditary diseases that can be candidate SNP markers of 
obesity-related comorbidities

Genes dbSNP (6) or GRCh38/
hg381 (Reference)

hereditary diseases whose known and 
candidate (indicated by “(likely)”) SNP 
markers are being analyzed

obesity-related comorbidities whose 
candidate SNP markers (Figure 7: 
Result-2) are indicated by “(likely)” 

References

MBL2 rs72661131, rs562962093
variable immunodeficiency, stroke, 
preeclampsia, and (likely) cardiovascular risk in 
rheumatoid arthritis

(likely) obesity (97, 183)

MBL2 rs567653539 (likely) cardiovascular risk in rheumatoid arthritis (likely) obesity (97, 183)

HBB, 
HBD

rs33980857, rs34598529, 
rs33931746, rs63750953, 
rs281864525, rs35518301, 
rs34166473

malaria resistance, thalassemia (likely) obesity-caused chronic 
inflammation (97, 184)

IL1B rs1143627 
liver, lung, gastric cancers; gastric ulcer and 
gastritis; Graves’ disease, major recurrent 
disorder

obesity (clinically known) (51, 82)

NOS2 -27800550, chr17 (90) resistance to malaria, epilepsy (likely) obesity (90, 97, 185)

F3 rs563763767 myocardial infarction; thrombosis (likely) obesity (97, 186)

LEP rs201381696 (likely) obesity (likely) leptin replacement therapy can 
prevent weight gain and obesity

(93, 97, 96, 
187)

LEP rs200487063, rs34104384 (likely) obesity-caused hypertension
(likely) hyperleptinemia promotes the 
development of hypertension during 
pregnancy (rat model)

(93–95, 97, 
188)

1Position (plus as the direct strand and minus as the complementary strand) on a chromosome within the framework of the current release GRCh38/
hg38 of the reference human genome (5).

emphasized that known SNP markers of hereditary 
diseases are the cause of the diseases in question. 
In contrast, candidate SNP markers of polygenic traits 
(e.g., aggressiveness) can only serve as genomewide 
informative markers of the increased or decreased risk 
relative to the norm among people who carry the minor 
alleles of these SNPs (108). For example, using one 
whole-genome marker (rs201381696) of childhood-

aggressiveness, parents of an aggressive 10-year-old 
girl with a minor allele of this candidate SNP marker 
may choose a diet and a physical exercise regimen for 
their daughter to prevent her obesity in adolescence 
and cardiovascular complications in adulthood (202). 
Similarly, using a candidate SNP marker (rs1143627) 
of aggressiveness as a complication of cytokine 
immunotherapy, a physician can prescribe an adjuvant 
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antiaggression medication together with this main 
treatment procedure to a patient carrying a minor 
allele of this SNP (189, 196). Candidate SNP markers 
(rs33980857, rs34598529, rs33931746, rs63750953, 
rs281864525, rs35518301, and rs34166473) of 
aggressiveness as a complication of hemodialysis in 
severe thalassemia can be used in a similar fashion 
(189, 196). Furthermore, regarding the candidate SNP 
marker of higher aggressiveness in males subjected 
to environmental pollution with Pb (the –51T>C 
substitution, NOS2 gene promoter), people with 
a minor allele of this SNP can alter their lifestyle to 
minimize their contact with materials containing lead 
(197). Therefore, this information could be interesting 

to people who would like to bring their lifestyle in line 
with their sequenced individual genome.

7. SUMMARY AND PERSPECTIVE

Currently, the widely used public database 
PubMed contains a huge number of clinical cases, 
retrospective reviews, research articles, laboratory 
data, and empirical findings from clinicians, 
nutritionists, pharmacists, physiologists, geneticists, 
psychologists, bioinformaticians, pedagogues, 
sociologists, legal scholars, economists, and other 
relevant experts such as specialists on insurance, 
management, health care, law enforcement, and 

 Table 6. Examples of SNP markers of hereditary diseases that can be candidate SNP markers of 
aggressiveness-related comorbidities

Genes dbSNP (6) or GRCh38/
hg381 (Reference)

hereditary diseases 
whose known and 
candidate (indicated by 
“(likely)”) SNP markers 
are being analyzed

aggressiveness-related comorbidities whose candidate 
SNP markers (Figure 7: Result-2) are indicated by 
“(likely)”

References

HBB, 
HBD

rs33980857, rs34598529, 
rs33931746, rs63750953, 
rs281864525, 
rs35518301, rs34166473

malaria resistance, 
thalassemia

(likely) thalassemia-related male–male aggression, 
socialized aggression, inattention, low IQ, acute psychosis 
with aggression, impulsiveness as a form of aggressiveness; 
aggression as a comorbidity in both 4-yo girls and 5-yo 
boys hospitalized with thalassemia; aggressiveness as a 
consequence of hemodialysis in severe thalassemia

(105, 189–195)

IL1B rs1143627

liver, lung, gastric 
cancers; gastric ulcer 
and gastritis; Graves’ 
disease, recurrent major 
depression

 (likely) highly aggressive traits in patients who receive 
cytokine immunotherapy or regular hemodialysis (clinical 
retrospective review)

(105, 189), 196

IL1B rs549858786 (likely) rheumatoid 
arthritis

 (likely) less aggressive traits in patients who receive 
cytokine immunotherapy or regular hemodialysis (clinical 
retrospective review)

(105, 189), 196

NOS2 -27800550, chr17 (90) resistance to malaria, 
epilepsy

(likely) aggressiveness as a complication of both drug-
resistant and childhood epilepsy; stigma as a critical 
factor for interictal aggression in epilepsy (clinical review); 
aggression, hyperactivity, and impaired memory coexist 
in case of recurrent spontaneous seizures in epilepsy; a 
gender-biased complication of excessive lead (Pb) intake 
manifested as lesser exploration in females and higher 
aggressiveness in males

(90, 105, 
197–201)

LEP rs201381696 (likely) obesity

(likely) in a 10-yo girl, aggressiveness is a predictive 
factor for prevention of obesity in adolescence with 
cardiovascular complications in adulthood, as is the case 
for 5-yo boys (retrospective review); aberrant maternal 
behavior, low aggression against an unknown social 
stimulus and locomotor activity during a high-fat diet; low 
probability of dominance due to aggressiveness against 
subordinates in females; high risks of suicidality, violence, 
and impulsive aggressiveness in schizophrenia; higher social 
aggressiveness in males; longer survival in aggressive leptin-
deficient women with anorexia nervosa

(93, 105, 
202–210,)

LEP rs200487063, rs34104384 (likely) obesity-caused 
hypertension

(likely) lower risk of aberrant maternal behavior, higher 
aggression against an unknown social stimulus, and 
locomotor activity on a high-fat diet; higher probability of 
dominance due to aggressiveness against subordinates 
in females; lower risks of suicidality, violence, and 
impulsive aggressiveness in schizophrenia; lower social 
aggressiveness in males

(93, 105, 
203–210)

1Position (plus as the direct strand and minus as the complementary strand) on a chromosome within the framework of the current release GRCh38/
hg38 of the reference human genome (5).
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environmental protection. The gigantic scale, 
multidisciplinary nature, complexity, and disarray of 
this information pool may hinder the practical use of 
this vital knowledge by the general population. As 
one can see in Tables 1–6, candidate biomedical 
SNP markers seem to be promising whole-genome 
landmarks. Using these markers, researchers 
can subdivide existing knowledge on the relevant 
biomedical SNP markers into readable portions, 
which may be directly applicable to people carrying 
a minor allele of such SNPs. This approach could 
be interesting for people who would like to bring 
their lifestyle in line with their sequenced individual 
genome.
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