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1.  ABSTRACT 
 
 Chemokines are involved in leukocyte 
recruitment to inflammatory sites, such as the synovial 
tissue in rheumatoid arthritis (RA). There is a structural and 
a functional classification of chemokines. The former 
includes four groups: CXC, CC, C and CX3C chemokines. 
Chemokines may also be either  inflammatory or 
homeostatic, however, these functions often overlap. Anti-
chemokine and anti-chemokine receptor targeting may be 
therapeutically used in the future biological therapy of 
arthritis. Most data in this field have been obtained from 
animal models of arthritis as only very few human RA trials 
have been completed. However, it is very likely that various 
specific chemokine and chemokine receptor antagonists will be 
developed and administered to RA patients. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  INTRODUCTION 
 
 In arthritis, leukocytes extravasate through the 
vascular endothelium into the synovial tissue. Numerous 
synovial chemotactic mediators termed chemokines and 
their receptors are involved in this process (1-10).  
Currently, there are more than 50 known chemokines 
and 19 chemokine receptors (2).  Some of these 
chemokines and chemokine receptors are also involved 
in intense synovial angiogenesis, the formation of new 
capillaries from preexisting vessels (5,7,11).  In 
rheumatoid arthritis (RA), pro-inflammatory 
chemokines overrule anti-inflammatory chemokines 
resulting in accelerated inflammation in the synovial 
tissue (1-11).  Thus, non-specific or specific blockade of 
chemokines may attenuate synovitis (1-12). 
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Table 1.  Chemokines and chemokine receptors relevant for inflammatory synovitis1 

Chemokine receptor Chemokine ligand  
CXC chemokine receptors  
   CXCR1 (A) IL-8/CXCL8 (A,H), GCP-2/CXCL6 
   CXCR2 (A) IL-8/CXCL8 (A,H), ENA-78/CXCL5 (A), gro-alpha/CXCL1 (A), CTAP-III/CXCL7, GCP-2/CXCL6 
   CXCR3 (A) IP-10/CXCL10, PF4/CXCL4, Mig/CXCL9 
   CXCR4  (A) SDF-1/CXCL12 
   CXCR5 BCA-1/CXCL13 
   CXCR6 CXCL16 (A) 
   CXCR7 I-TAC/CXCL11, SDF-1/CXCL12 
C-C chemokine receptors  
   CCR1 (A,H) MIP-1-alpha/CCL3 (A), RANTES/CCL5 (A), MCP-3/CCL7,  

HCC-1/CCL14, HCC-2/CCL15, HCC-4/CCL16 
   CCR2 (A) MCP-1/CCL2 (A,H), MCP-3/CCL7, HCC-4/CCL16 
   CCR3 RANTES/CCL5, MCP-2/CCL8, MCP-3/CCL7, HCC-2/CCL15 
   CCR4 TARC/CCL17, CKLF1 
   CCR5 (A,H) MIP-1-alpha/CCL3 (A), RANTES/CCL5 (A), MCP-2/CCL8, HCC-1/CCL14 
   CCR6 MIP-3-alpha/CCL20 
   CCR7 SLC/CCL21 
C chemokine receptors  
    XCR1 Lymphotactin/XCL1 
C-X3-C chemokine receptors  
   CX3CR1 Fractalkine/CX3CL1 (A) 

 
 In this chapter, we will briefly review the role of 
chemokines and chemokine receptors in the pathogenesis of 
arthritis.  We will also summarize recent studies on either 
non-specific or specific chemokine and chemokine receptor 
targeting. 
 
3.  CHEMOKINES AND CHEMOKINE RECEPTORS 
IN ARTHRITIS 

 
Chemokines have been classified into the CXC, 

CC, C and CX3C supergene families.  The receptors for 
these chemokines have been termed accordingly as CXCR, 
CCR, CR and CX3CR (2,5,6,13-16).  Although each 
chemokine has its own traditional name, they are also 
considered as CXCL, CCL, XCL and CX3CL  chemokine 
ligands (2,5,6,10) (Table 1).  Apart from this structural 
classification, as some chemokines are primarily involved 
in the development of lymphoid tissues and lymphoid 
neogenesis, while others rather play a role in inflammation, 
chemokines have also been functionally classified into 
homeostatic and inflammatory subclasses (10).  
 
3.1.  CXC chemokines in arthritis 
 In these chemokines, there are two conserved C 
residues separated by one unconserved amino acid (2,15).  
CXC chemokines chemoattract neutrophils, lymphocytes 
and monocytes into the synovium (10,16).  These mediators 
are also involved in cell adhesion, leukocyte integrin 
expression and L-selectin shedding, cytoskeletal 
reorganization, neutrophil degranulation and phagocytosis, 
as well as the production of proteases, prostanoids and 
platelet-activating factor (5,15,17).  
 
 Interleukin-8 (IL-8)/CXCL8, epithelial-
neutrophil activating protein 78 (ENA-78)/CXCL5 and 
growth-related oncogene alpha (gro-alpha)/CXCL1 are 
considered as the most important inflammatory chemokines 
associated with arthritis.  These chemokines are abundantly 
expressed in the sera, synovial fluids and synovial tissues 
of RA patients (18-23).  Synovial macrophages are major 
producers of IL-8/CXCL8, ENA-78/CXC5 and gro-
alpha/CXCL1 (19-22,24), however, synovial lining cells,

 
fibroblasts and endothelial cells may also release these 
chemokines (19-22,24,25).  There is a relationship between 
the genetic code and function of these chemokines, as 
genes coding these chemokines are clustered on 
chromosome 4q12-13 and all three chemokines 
chemoattract primarily neutrophils (16).  The regulation of 
IL-8/CXCL8 production by synovial fibroblasts is 
controlled by NF-kappa-B (26).  As an IL-8/CXCL8 
binding site was discovered on endothelial syndecan-3, this 
suggests a role of chemokine-syndecan interactions during 
leukocyte trafficking into the arthritic synovial tissue (27).  
An intraarticular injection of IL-8/CXCL8 induced synovial 
inflammation in rabbit knee joints (28).  In the rat adjuvant-
induced arthritis (AIA) model for RA, the development of 
arthritis was associated with abundant ENA-78/CXCL5 
production in the sera and, later, in the joints of rats (29).  
Gro-alpha/CXCL1 also enhances collagen deposition by 
RA fibroblasts and thus synovial fibrosis (30).  
 
 Connective tissue activating protein III (CTAP-
III)/CXCL7 is produced by platelets and it has been 
detected in RA sera and synovial tissue samples (31).  This 
inflammatory chemokine stimulates the proliferation of 
synovial fibroblasts, extracellular matrix deposition and 
thus synovial fibrosis (2,31,32).  Cytokines and growth 
factors including IL-1, fibroblast growth factors and 
epidermal growth factor act in concert with CTAP-
III/CXCL7 during proteoglycan synthesis (31,32).  This 
chemokine also induces angiogenesis (2,31,32). 
 
 There is also abundant production of granulocyte 
chemotactic protein 2 (GCP-2)/CXCL6 in RA (33).  GCP-
2/CXCL6 expression is up-regulated on RA synovial 
fibroblasts via Toll-like receptor 2 (TLR2) signaling 
pathways (33).  
 
 Interferon-gamma-inducible protein 10 (IP-
10)/CXCL10, monokine induced by interferon-gamma 
(Mig)/CXCL9 and platelet factor 4 (PF4)/CXCL4 exert 
pro-inflammatory, but anti-angiogenic effects in RA 
(2,17,34-36).  These chemokines have been detected in the 
sera.  Synovial macrophages and fibroblasts release these 
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chemokines (34-36).  In contrast to other CXC chemokines 
described above, the genes of PF4/CXCL4 and IP-
10/CXCL10 are located on different chromosomes, and 
these chemokines recruit lymphocytes and monocytes 
rather than neutrophils (15,16).  The induction of IP-
10/CXCL10 on synovial fibroblasts requires intercellular 
adhesion molecule 1 (ICAM-1) and beta2 integrins (35).  
 
 While other CXC chemokines described above 
have common receptors, stromal cell-derived factor 1 
(SDF-1)/CXCL12 is a specific ligand for CXCR4.  SDF-
1/CXCL12 is primarily a homeostatic chemokine involved 
in lymphoid organization, however, it has also been 
implicated in synovial inflammation and synovial lymphoid 
neogenesis (37-39).  SDF-1/CXCL12 is expressed by 
synovial endothelial cells and this chemokine induces 
strong integrin-mediated adhesion of T cells to ICAM-1 
(40).  T cells are also able to migrate beneath cultured RA 
synovial fibroblasts.  This process is termed 
pseudoemperipolesis.  SDF-1/CXCL12 has also been 
implicated in this process (37).  In a SCID mouse model, 
this chemokine stimulated monocyte recruitment into 
human synovial tissue engrafted onto the mice (34).  
Synovial T cell adhesion to fibroblasts upregulate SDF-
1/CXCL12 production.  This process involves IL-17- and 
CD40-CD40 ligand-dependent mechanisms (41).  SDF-
1/CXCL12 binds to endothelial proteoglycans and thus it 
mediates integrin-dependent leukocyte transendothelial 
migration, osteoclastogenesis, the development of bone 
erosions and thus radiographic progression in RA (39,42-
44). 
 
 The crucial role of B cells in the pathogenesis of 
RA has been acknowledged in recent years (45-47).  
Among homeostatic chemokines involved in B cell 
migration and lymphoid tissue organization, B-cell 
activating chemokine-1 (BCA-1)/CXCL13, the specific 
ligand for CXCR5, is also expressed by synovial 
fibroblasts, endothelial cells and follicular dendritic cells 
within the RA synovium (48). 
 
 CXCL16, the specific ligand for CXCR6, 
primarily mediates lymphocyte recruitment and lymph 
node organization.  Yet, large amounts of CXCL16 were 
detected in RA synovia (49,50).  Both synovial 
macrophages and fibroblasts secrete CXCL16 (49,50).  
Monocytes begin to express CXCL16 upon differentiation 
into macrophages (51).  In the SCID mouse chimera model, 
CXCL16 recruited human mononuclear cells to the 
engrafted human RA synovial tissues (50).  CXCL16-
mediated leukocyte extravasation into the synovial tissue 
involved MAP kinase (MAPK) pathways (50). 
 
3.2.  CC chemokines 
 Monocyte chemoattractant protein 1 (MCP-
1)/CCL2, macrophage inflammatory protein 1-alpha (MIP-
1-alpha)/CCL3 and Regulated upon Activation, Normal T-
cell Expressed and Secreted (RANTES)/CCL5 exert 
chemotactic activity towards T cells, monocytes and natural 
killer (NK) cells (6,52-54).  All these chemokines have 
been detected in RA sera and synovia (19,35,52-54).  The 
synovial release of MCP-1/CCL2 and MIP-1-alpha/CCL3 

may be further augmented by pro-inflammatory 
cytokines, such as TNF-alpha or IL-1 (19,53,55).  
Among other triggers, IL-18 also induces MCP-1/CCL2 
production by macrophages (56).  Hypoxia decreases 
(57), while TLR2 ligands stimulate MCP-1/CCL2 
expression by synovial fibroblasts (33).  The injection of 
MCP-1/CCL2 into rabbit knees induced arthritis (58).  
MCP-1/CCL2 has been implicated in TNF-mediated 
osteoclast differentiation of peripheral blood monocytes.  
Thus, this chemokine, similarly to SDF-1/CXCL12, is 
involved in periarticular bone resorption in arthritis 
(59).  MIP-1-alpha/CCL3 production is augmented by 
TNF-alpha, IL-1 and IL-15 (60,61).  A single nucleotide 
polymorphism (SNP) within the RANTES promoter 
gene promotes susceptibility to RA in Chinese patients 
(62). 
 
 MIP-3-alpha/CCL20, the specific ligand for 
CCR6, is chemotactic for monocytes and lymphocytes 
(2,63).  RA synovial fibroblasts produce this chemokine in 
response to TNF-alpha, IL-1, IL-17 and IL-18 (63-66).  
This chemokine has been implicated in the recruitment of 
IL-17-producing CCR6+ Th17 cells into the synovium (67).  
MIP-3-alpha/CCL2 induces both osteoblast proliferation 
and osteoclast differentiation.  Furthermore, increased 
expression of this chemokine was detected in the 
subchondral bone of RA patients.  MIP-3-alpha/CCL20 
may collaborate with the RANK ligand system  in the 
uncoupling between new bone formation and bone 
resorption in RA (68). 
 
 CCL18 facilitates T cell attraction by antigen-
presenting cells.  Serum CCL18 levels is increased in RA 
patients and correlate with disease activity in RA (69).  
Synovial fluid neutrophils release CCL18 during their 
recruitment into the joints (70). 
 
 MCP-4/CCL13 is expressed in the cartilage of 
the RA joint.  The combination of IFN-gamma, TNF-alpha 
and IL-1 stimulate the release of MCP-4/CCL13 from 
arthritic chondrocytes.  This chemokine stimulates synovial 
fibroblast proliferation (71). 
 
 Among primarily homeostatic CC chemokines, 
Epstein-Barr virus-induced gene 1 ligand chemokine 
(ELC)/CCL19 has also been detected in RA synovial 
tissues (40).  Secondary lymphoid tissue chemokine 
(SLC)/CCL21 has been implicated in lymphoid neogenesis 
within the arthritic synovial tissue (48,72).  Thymus and 
Activation Regulated Chemokine (TARC)/CCL17 and 
Pulmonary and Activation regulated Chemokine 
(PARC)/CCL18 also mediate T cell recruitment into the 
RA synovium (73-75). 
 
 In a single recent study, MCP-2/CCL8, MCP-
3/CCL7, hemofiltrate CC chemokine 1 (HCC-1)/CCL14, 
HCC-2/CCL15 and HCC-4/CCL16 have been detected 
in the RA synovium (76).  The function of these 
chemokines in RA has not been fully elucidated.  
Chemokine-like factor 1 (CKLF1) is a functional ligand 
of CCR4.  Its expression is up-regulated on activated 
CD4+ and CD8+ T cells in RA (77).  
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3.3.  C and CX3C chemokines in RA 
 The C chemokine family contains two members, 
lymphotactin/XCL1 and single C motif 1-beta (SCM-1-
beta)/XCL2 (5,6).  Lymphotactin/XCL1 is involved in T 
cell chemotaxis and it has been detected on CD8+ and 
CD4+/CD28- T cells in RA (78).  This chemokine 
stimulates T cell accumulation into the RA joint and down-
regulates matrix metalloproteinase 2 (MMP-2) production 
by RA synovial fibroblasts (79). 
 
 The single member of the CX3C family is 
fractalkine/CX3CL1, which is chemotactic for 
monocytes, lymphocytes and it also serves as a CD4+ T 
cell adhesion molecule (80-83).  Fractalkine/CX3CL1 
enhances the adhesion of senescent T cells to synovial 
fibroblasts.  In addition, this chemokine provides 
survival signals for and costimulates the production of 
pro-inflammatory cytokines by these T cells (83).  
Fractalkine/CX3CL1 regulates the cytoskeletal structure, 
proliferation and migration of synovial fibroblasts 
(84,85).  The activity of this chemokine involves JNK, 
ERK-1/2 and Akt (85).  RA synovial macrophages, 
fibroblasts, endothelial and dendritic cells produce 
fractalkine/CX3CL1 (81,83).  Fractalkine/CX3CL1 has 
been associated with disease activity in rheumatoid 
vasculitis (86), as well as with accelerated 
atherosclerosis and increased cardiovascular morbidity 
in RA (87-89).  
 
3.4.  Chemokine receptors in arthritis 
 Chemokine receptors are 7-transmembrane 
domain receptors expressed on the target cells.  Some 
chemokine receptors, such as CXCR2, CCR1 or CCR3 
have multiple ligands, while others including CXCR4, 
CXCR5, CXCR6, CCR8 or CCR9 are specific receptors for 
one single ligand (2,6,16) (Table 1). 
 
 Generally all CXCRs have been associated 
with the pathogenesis of arthritis.  CXCR1 and CXCR2 
exert abundant expression in the RA synovium.  These 
chemokine receptors recognize the most relevant 
inflammatory and angiogenic CXC chemokines 
described above (2,6).  CXCR3 may be the most 
important receptor in leukocyte homing into the RA 
synovium (81,90,91).  Most T cells in the RA synovial 
fluid express this chemokine receptor (92).  The high 
expression of CXCR3 on synovial T cells has been 
associated with a high IFN-gamma/IL-4 ratio, 
suggesting a preferential Th1 over Th2 phenotype of 
these T cells (93).  CXCR3 is also expressed on RA 
synovial endothelial and dendritic cells (90,94).  
CXCR4 is involved in SDF-1/CXCL12-dependent 
ingress of lymphocytes into the RA synovial tissue (39).  
CXCR5 is expressed by T, B cells, macrophages and 
endothelial cells (93) and it is involved in synovial 
lymphoid neogenesis underlying arthritis (95).  CXCR6 
mediates CXCL16-induced synovitis (50).  CXCR4, 
CXCR5 and CXCR6 bind their respective homeostatic 
chemokine ligands, SDF-1/CXCL12, BCA-1/CXCL13 
and CXCL16.  Thus, these CXC chemokine receptors 
are involved in both homeostatic and inflammatory 
processes (2,10,39,50,96). 

 Among CC chemokine receptors, CCR1 and 
CCR5 are abundantly expressed in the RA synovium 
(76,81,91,97).  These CCRs, as well as CCR2 and CCR3 
are also present on articular chondrocytes (98).  CCR4 has 
also been implicated in leukocyte ingress into the RA joint 
(94).  In some studies, a SNP leading to the production of 
the truncated delta-32-CCR5 non-functional receptor allele 
was found to be protective against RA (99).  However, this 
protective role could not be confirmed in other national 
cohorts (100,101).  CCR6, the single receptor for MIP-3-
alpha/CCL20 has also been detected on RA synovial 
leukocytes (63).  CCR6 is involved in the ingress of Th17 
arthritogenic lymphocytes into the joint (67).  CCR7 has 
been associated with synovial lymphoid neogenesis in mice 
(95).  A putative chemokine receptor, CCR-like receptor 2 
(CCRL2) has been identified on RA synovial fluid 
neutrophils and macrophages (102).  In comparative study 
on CCRs, peripheral blood monocytes mainly expressed 
CCR1 and CCR2 suggesting that these receptors were 
involved in monocyte recruitment from the circulation.  In 
contrast, CCR3 and CCR5 expression were up-regulated in 
RA SF indicating that these CCRs were important in 
monocyte retention in the joint (97). 
 
 Regarding the C and CX3C chemokine receptors, 
XCR1 is expressed on RA synovial lymphocytes, 
macrophages and fibroblasts (2,6), while CX3CR1 has been 
detected on macrophages and dendritic cells (82).  As 
described above, the fractalkine/CX3CL1-CX3CR1 system 
has been implicated in the pathogenesis of RA-associated 
atherosclerosis (87-89) (see later).  
 
4.  FUNCTIONAL ASPECTS OF CHEMOKINES 
AND CHEMOKINE RECEPTORS IN SYNOVIAL 
INFLAMMATION 
 
4.1.  Inflammatory and homeostatic chemokines in RA 

As described above, chemokines have been 
functionally classified into homeostatic and inflammatory 
subgroups, however, these functions often overlap (10).  
Homeostatic chemokines are constitutively produced in 
lymphoid or non-lymphoid tissues.  Lymphoid neogenesis 
has been associated with arthritis leading to lymphoid 
aggregates and germinal center-like structures within the 
inflamed synovial tissue.  The synovium, in many ways, is 
similar to the skin, as well as to other mucosa-associated 
lymphoid tissues (MALT) (10,48,96).  Some primarily 
homeostatic chemokines including SDF-1/CXCL12, BCA-
1/CXCL13, CXCL16, TARC/CCL17, PARC/CCL18, 
ELC/CCL19 and SLC/CCL21 may also be involved in 
synovial inflammation (10,39,40,48,50,96,103,104). 

 
 On the other hand, most CXC and CC 
chemokines, C and CX3C chemokines, as well as their 
respective receptors are primarily inflammatory 
chemokines (2,6,96).  As described above, IL-8/CXCL8, 
ENA-78/CXCL5, gro-alpha/CXCL1, CTAP-III/CXCL7, 
IP-10/CXCL10, Mig/CXCL9, PF4/CXCL4, GCP-
2/CXCL6, MCP-1/CCL2, MIP-1-alpha/CCL3, MIP-3-
alpha/CCL20, RANTES/CCL5, lymphotactin/XCL1 and 
fractalkine/CX3CL1 are involved in leukocyte migration 
into the synovium (2,5,6,9,48,77).  
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4.2.  The functional role of chemokine receptor 
expression patterns in inflammation 
 Certain chemokine receptor expression patterns 
have been associated with different types of chronic 
inflammation.  For example, Th0-Th1 type inflammation 
observed in RA has been primarily associated with the 
abundant synovial expression of CXCR3 and CCR5.  In 
contrast, asthma, a known Th2 type disease, rather involves 
CCR3, CCR4, CCR8 and their ligands (16,81,91,105). 
 
4.3.  Chemokines and chemokine receptors in synovial 
angiogenesis and RA-related atherosclerosis 
 RA has been associated with the perpetuation of 
synovial neovascularization dependent upon the imbalance 
between angiogenic and angiostatic mediators (1,3,5,8).  
Some chemokines and chemokine receptors may also 
promote or suppress synovial angiogenesis (3,5,8). 
 

In general, CXC chemokines containing the ELR 
(Glu-Leu-Arg) amino acid motif are angiogenic, while 
those, lacking this sequence are rather angiostatic (5,17).  
As one exception to this rule, SDF-1/CXCL12 is ELR-, 
nevertheless it still stimulates neovascularization (5,17).  
Among ELR+ CXC chemokines, IL-8/CXCL8, ENA-
78/CXCL5, CTAP-III/CXCL7 and gro-alpha/CXCL1 are 
chemotactic for endothelial cells and they stimulate 
synovial angiogenesis (1,5,15,17,31,106).  SDF-1/CXCL12 
cooperates with the hypoxia-hypoxia-inducible factor 
(HIF)-vascular endothelial growth factor (VEGF) pathway, 
which plays a central role in the regulation of angiogenesis 
(103,107,108).  SDF-1/CXCL12 expression has also been 
associated with tumor angiogenesis and its expression may 
serve as a prognostic marker in gliomas (109).  The ELR-

  
IP-10/CXCL10, Mig/CXCL9 and PF4/CXCL4 are 
angiostatic (5,15,17,110-112).  IP-10/CXCL10 inhibits 
VEGF-dependent angiogenesis, in turn, VEGF induces 
endothelial expression of IP-10/CXCL10 (5,17,110,111).  
Thus, IP-10/CXCL10 may be an important regulator of 
VEGF-dependent synovial neovascularization (110,111). 

 
 Much less information has become available 
regarding the role of CC chemokines in synovial 
angiogenesis.  For example, MCP-1/CCL2 induces 
endothelial cell chemotaxis and capillary formation via the 
CCR2 endothelial receptor (113,114).  These effects 
involve the Ets-1 transcription factor, as well as integrins 
and ERK-1/2 (114).  Myeloid progenitor inhibitory factor 1 
(MPIF-1)/CCL23 has also been implicated in endothelial 
cell migration and angiogenesis (115).  In contrast, the 
homeostatic chemokine SLC/CCL21 inhibits tumor 
progression and angiogenesis (116). 
 
 Chemokine receptors recognizing the most 
relevant angiogenic chemokine ligands described above 
exert inflammatory and angiogenic properties in RA.  
CXCR2 may be the most important chemokine receptor 
implicated in synovial angiogenesis as CXCR2 is a receptor 
for angiogenic, ELR+ CXC chemokines described above 
(5,98,113).  CXCR4 is involved in SDF-1/CXCL12-
mediated synovial neovascularization (39,117).  Hypoxia 
induces CXCR4 expression via the stimulation of HIF-1 
and VEGF production (118).  CXCR7 recognizing I-

TAC/CXCL11 and SDF-1/CXCL12 may also be involved 
in synovial angiogenesis (119).  CCR2 is a receptor for the 
angiogenic MCP-1/CCL2 (5,113).  In a murine model of 
skeletal muscle injury, CCR2-deficient animals exerted 
delayed muscular angiogenesis and decreased VEGF 
production (120).  In contrast to these angiogenic 
chemokine receptors, CXCR3, which binds the angiostatic 
chemokines IP-10/CXCL10 and Mig/CXCL9, may rather 
be involved in chemokine-mediated angiostasis 
(2,5,6,16,17). 
 
 Fractalkine/CX3CL1 and CX3CR1 have been 
implicated in arthritis-related angiogenesis, as well as 
atherosclerosis (82,87,89,121).  Indeed, CX3CR1 
expression on atherogenic CD4+/CD28- T cells correlated 
with vascular damage in RA (88).  Moreover, CX3CR1-
deficient mice develop lesser degree of atherosclerosis than 
do wild type animals (121).  The M280/I249 SNP in the 
CX3CR1 gene has been associated with decreased 
cardiovascular risk in humans (87). 
 
4.4.  Regulation of chemokine production during 
leukocyte recruitment 
 There may be a temporal regulation of 
chemokine and chemokine receptor production in the 
inflamed synovium.  When the temporal expression of 
CXC and CC chemokines was assessed in sera and joint 
homogenates of rats with AIA, the  production of ENA-
78/CXCL5 and MIP-1-alpha/CCL3 showed a very early 
increase, preceding clinical symptoms.  The release of these 
“early” chemokines occurred parallel with neutrophil 
recruitment and the production of acute-phase reactants.  In 
contrast, MCP-1/CCL2 was rather involved in the later 
phase of AIA (122).  In rat AIA, CCR1 exerted high 
constitutive expression on macrophages throughout the 
disease course.  CCR5 expression was up-regulated on 
synovial macrophages.  CCR2 expression on endothelial 
cells was down-regulated during the progression of the 
disease.  CCR3 expression on macrophages also decreased 
during the course of AIA.  These results suggest that CCR2 
and CCR5 may sustain inflammatory changes, while CCR2 
and CCR3 may play a role in initial recruitment of 
leukocytes into the synovial tissue (123). 
 
 A regulatory network of pro-inflammatory 
cytokines and chemokines exists in the arthritic synovium 
(2,5,6,124,125).  As discussed above, some cytokines 
including TNF-alpha, IL-1, IL-6, IL-15, IL-18 and others 
may enhance, while others rather suppress chemokine 
production (2,5,21,53,125).  For example, IL-8/CXCL8 
secretion by RA synovial fibroblasts is stimulated by IL-4 
but inhibited by IFN-gamma.  In contrast, RANTES/CCL5 
production is suppressed by IL-4 but augmented by IFN-
gamma (55).  On the other hand, some chemokines may 
also influence cytokine production (2,5,6,29,126).  For 
example, MIP-1-alpha/CCL3 stimulates the synthesis of 
TNF-alpha, IL-1 and IL-6 by synovial macrophages 
(5,126). 
 
 As described above, TLRs may also be involved 
in the regulation of chemokine function.  TLR2 ligands 
activate synovial fibroblasts.  Peptidoglycan, a TLR2 
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ligand, stimulated, among others, IL-8/CXCL8, Gro-
alpha/CXCL1, MCP-1/CCL2, MIP-1-alpha/CCL3 and 
RANTES/CCL5 mRNA expression by these fibroblasts 
(33). 
 
5.  TARGETING OF CHEMOKINES AND 
CHEMOKINE RECEPTORS 
 

Chemokines and chemokine receptors may be 
targeted by non-specific, as well as by chemokine-specific 
approaches.  These strategies have been tried in animal 
models of arthritis, in vitro cultures of human RA synovial 
cells and tissues, as well as in a very limited number of 
human RA clinical trials (2,5,6,9,127) (Table 1). 

 
5.1.  Non-specific agents 

Some non-steroidal anti-inflammatory drugs, 
corticosteroids, traditional disease-modifying antirheumatic 
drugs (DMARD) and anti-TNF biologics exert multiple 
anti-inflammatory properties including chemokine 
inhibition.  For example, diclofenac and meloxicam 
attenuated IL-8/CXCL8 production in the rat antigen-
induced arthritis (AgIA) model (128).  Dexamethasone, 
inhibited IL-8/CXCL8 and MCP-1/CCL2 release in RA 
patients (129).  Among DMARDs, sulfasalazine inhibited 
the production of IL-8/CXCL8, MCP-1/CCL2 and gro-
alpha/CXCL1 in cultured RA synovial tissue explants 
(130).  Sulfapyridine inhibited the expression of IL-
8/CXCL8 and MCP-1/CCL2 on cytokine-treated EC (131).  
In contrast, gold salts hardly had any effects on IL-
8/CXCL8 or MCP-1/CCL2 synthesis (129).  Methotrexate 
in combination with leflunomide suppressed MCP-1/CCL2 
expression within the RA synovium (132).  Methotrexate 
also suppressed the expression of CCR2 on RA peripheral 
blood monocytes.  This effect correlated with lower disease 
activity (133).  There have been increasing number of 
studies with anti-TNF agents.  Infliximab suppressec IL-
8/CXCL8, gro-alpha/CXCL1, CXCL16, MCP-1/CCL2 and 
RANTES/CCL5 production in RA (51,134-137).  
Infliximab also reduced CCR3 and CCR5 expression on T 
cells in RA patients.  The expression of these chemokine 
receptors was higher on non-responders than on responders 
(138).  Treatment of RA patients with either infliximab or 
etanercept resulted in the clearance of CXCR3+ T cells 
from the synovium (139).  Chemokine inhibition may have 
relevance for safety of anti-TNF therapy: infliximab 
reduced the secretion of IL-8/CXCL8, MIP-1-alpha/CCL3 
and MCP-1/CCL2 in response to Mycobacteria.  These 
authors suggest that the increased incidence of tuberculosis 
in infliximab-treated RA patients may be related, in part, to 
the inhibition of TNF-dependent chemokine gradients and 
impaired leukocyte migration (140). 

 
Among other non-specific small molecule 

compounds, antioxidants including N-acetyl-L-cysteine and 
2-oxothiazolidine-4-carboxylate, inhibited the expression 
of IL-8/CXCL8 and MCP-1/CCL2 mRNA by activated 
human synovial fibroblasts (141).  Simvastatin inhibited 
IL-8/CXCL8 production by TNF-alpha-stimulated RA 
synovial fibroblasts (142).  Triptolide, a diterpenoid 
triepoxide with potent anti-inflammatory effects, inhibited 
MCP-1/CCL2, MIP-1-alpha/CCL3 and RANTES/CCL5 

production in the rat AIA model (143).  Epigallocatechin-3-
gallate (EGCG), a compound derived from green tea, 
suppressed ENA-78/CXCL5, gro-alpha/CXCL1 and 
RANTES/CCL5 production by IL-1-stimulated RA 
synovial fibroblasts (144).  A recently developed dual 
cyclooxygenase-lipoxygenase inhibitor, ML3000, 
downregulated Mig/CXCL9, IP-10/CXCL10 and I-
TAC/CXCL11 expression on RA synovial fibroblasts 
(145).  Activation of peroxisome proliferator-activated 
receptor gamma (PPAR-gamma) suppresses MCP-1/CCL2 
expression in monocytes (59).  Thus, PPAR-gamma 
agonists, such as glitazones, may inhibit chemokine 
production. 
 
5.2.  Specific chemokine and chemokine receptor 
targeting  
 Neutralizing antibodies to IL-8/CXCL8 
prevented arthritis in rabbits (146).  In the rat AIA model, a 
neutralizing polyclonal anti-ENA-78/CXCL5 antibody 
administered intravenously prevented the onset of the 
disease, however, it failed to inhibit the progression of 
synovitis when administered therapeutically (29).  The 
preventative administration of an anti-gro-alpha/CXCL1 
antibody delayed the onset and severity of collagen-
induced arthritis (CIA) in mice (147).  A synthetic peptide 
derived from PF4/CXCL4 inhibited the development of 
murine CIA (104).  An antibody to CXCL16 suppressed 
synovitis and joint destruction in murine CIA (49).  Passive 
immunization of mice with anti-MIP-1-alpha/CCL3 
decreased the severity of murine CIA (147).  A monoclonal 
antibody to MCP-1/CCL2 reduced synovitis in rat CIA 
(148).  An anti-MCP-1/CCL2 antibody also prevented the 
recruitment of 111In-labeled T cells into the synovium in the 
rat model of streptococcal cell wall antigen (SCW)-induced 
arthritis (149).  A novel inhibitor of endogenous MCP-
1/CCL2, p8A-MCP-1, suppressed cytokine expression, 
synovial leukocyte infiltration, joint erosion and improved 
clinical signs of rat AIA (150).  Another peptide inhibitor 
of MCP-1/CCL2 suppressed the development of arthritis in 
MRL-lpr mice (151).  An anti-RANTES/CCL5 antibody 
inhibited the progression of murine CIA (152).  KE-298, a 
combined MCP-1/CCL2 and RANTES/CCL5 inhibitor, 
attenuated the severity of rat AIA (153).  A monoclonal 
antibody to fractalkine/CX3CL1 inhibited synovitis and 
joint destruction in murine CIA (154). 
 
 The efficacy of chemokine targeting may be 
increased by combining various specific strategies.  For 
example, in murine AIA, a combination of MCP-1/CCL2 
and gro-alpha/CXCL1 inhibition resulted in more 
pronounced effects than did MCP-1/CCL2 blockade alone 
(155).  In the rabbit endotoxin-induced arthritis model, the 
combination of anti-IL-8/CXCL8 and anti-groα/CXCL1 
antibodies inhibited knee arthritis better than did any of the 
two antibodies alone (156).  Certainly, an increased toxicity 
using combined anti-chemokine strategies may be an 
important issue in the future (2). 
 

Regarding chemokine receptor targeting, a 
nonpeptide oral antagonist of the CXCR2 receptor inhibited 
IL-8/CXCL-induced arthritis in rabbits (157).  DF2162, an 
allosteric CXCR1/CXCR2 inhibitor diminished murine and 
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rat arthritis (158,159).  In the AIA model, an anti-CXCR3 
antibody inhibited T cell recruitment and disease 
progression (160).  Some small molecule CXCR4 
antagonists gave promising results in arthritis studies (161).  
For example, AMD3100 inhibited CIA in IFN-gamma-
deficient mice (162), while T140 analogs ameliorated 
murine CIA (163).  Numerous CCR1 and CCR2 antagonists 
have been developed in recent years (164-169).  For example, 
J-113863, a small molecule CCR1 antagonist diminished 
synovitis and joint destruction in murine CIA (164).  Met-
RANTES, a dual CCR1/CCR5 antagonist, inhibited both 
murine CIA and rat AIA (170,171).  Some anti-chemokine 
receptor effects may be dose-dependent.  For example, while 
low doses of the MC-21 anti-CCR2 monoclonal antibody 
markedly improved murine CIA, high doses of this antibody 
rather had pro-inflammatory effects (172). 

 
Adenoviral gene transfer may also be a useful 

method in chemokine targeting.  The vaccinia virus 
expresses a 35 kDa soluble protein (35k), which 
inactivates a number of CC chemokines.  A recombinant 
adenovirus containing 35k reduced migration of CCR5-
transfected cells in response to RANTES/CCL5.  This 
vector also suppressed chemotaxis of both CCR5-
transfected cells and primary macrophages in mice 
(173). 

 
 There have been only limited number of 
published human anti-chemokine or anti-chemokine 
receptor trials.  An anti-MCP-1/CCL2 antibody, 
ABN912, has been introduced to a randomized, 
controlled human RA trial.  In this study, 33 patients 
received the active compound, while 12 received 
placebo.  Serial arthroscopic biopsies were performed.  
ABN912 treatment was well tolerated, but there was no 
detectable clinical benefit or significant change in 
synovial biomarkers (174).  A small molecule CCR1 
antagonist has been tried in a two-week phase Ib study.  
This inhibitor decreased the number of synovial 
macrophages.  About one-third of the patients also 
fulfilled the ACR20 criteria for clinical improvement 
(166).  CP-481,715, another CCR1 antagonist inhibited 
monocyte chemotactic activity present in human RA 
synovial fluid samples (165).  This compound has been 
evaluated in phase I for pharmacokinetics and safety 
(175).  Some CCR2 inhibitors have also entered clinical 
trials (168).  Among CCR5 inhibitors, maraviroc has 
been introduced to phase II-III trials in HIV infection 
and AIDS, as well as to phase II trial in RA (176). 
 
6.  SUMMARY 
 
 In this review, we have discussed the potential 
role of chemokines and chemokine receptors in the 
pathogenesis of arthritis.  Numerous CXC, as well as some 
CC and CX3C chemokines and their respective receptors 
have been implicated in leukocyte ingress into the inflamed 
synovium.  Some chemokines and chemokine receptors are 
also involved in synovial angiogenesis.  Anti-chemokine 
and anti-chemokine receptor targeting using either non-
specific compounds or specific inhibitors may control 
synovial inflammation. 
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