Introduction

Abnormal uterine bleeding (AUB) is a common health problem that affects 20% of all reproductive aged women and causes almost two-thirds of all hysterectomies. The upcoming prevalence of AUB has been associated with obesity due to new life standards [1-3]. AUB deteriorates quality of life by causing anemia and requiring blood transfusion, as well as negative effects on business life and sexual activity, besides increasing hospitalizations [4].

In 2011, the PALM-COEIN classification was created by FIGO because of the absence of a standard regulation in terms of both terminology and classification, although AUB is such an important health problem. According to this classification, the PALM group (polyp, adenomyosis, leiomyoma, malignancy, and hyperplasia) contains structural abnormalities and the COEIN group (coagulopathy, ovulatory dysfunction, endometrial dysfunction, iatrogenic reasons and unclassifiable) contains non-structural abnormalities [5, 6]. The PALM-COEIN-N, category which was first defined as “unclassified” is now being used for “pathology not otherwise classifiable” pathologies. Nevertheless, the menstrual disorders committee named EMDC of the FIGO has recently reported a requirement subclassification systems similar to the leiomyomas in the categories of some PALM-COEIN subclasses, which are to be used in clinical researches [7, 8].

Inflammation and hemostasis are pathophysiological processes that affect each other [9]. Platelets affect the period of inflammation when they are in coaction with leucocytes and vascular endothelia. Neuthrophils, lymphocytes, and platelets play important roles in immune response and inflammation by serving antigens, activating other cells, and producing mediators such as interleukins [10-13].

Mean platelet volume (MPV) is equivalent to the mean corpuscular volume (MCV) of the erythrocytes which gives the mean volume of peripheral platelets [14]. Normally, there is a negative correlation between the volume of the platelets and the number of the platelets. MPV, platelet distribution width (PDW), and erythrocyte distribution width (RDW) are simple markers of chronic inflammation. The ratio of platelet/lymphocyte reflects the balance of inflammation and thrombosis [15].

In recent years many studies have explored the relation between the diagnosis of several diseases and the markers of systemic inflammatory response (SIR). Neutrophil/lymphocyte ratio (NLR) is closely related to the presence of inflammation and oxidative stress and is a good marker of systemic inflammation. Many studies have shown the importance of monitoring with respect to cardiovascular
and, autoimmune rheumatological diseases, as well as the
prognostic effect on urinary, lung, esophageal, and gyneco-
logical cancers [15-17].

In this study, the authors aimed to discover whether there
is any difference between the patients in the category of
AUB-N and the ones with structural or functional patholo-
gies in terms of SIR markers, and to investigate whether
subclinical inflammation could be a cause of AUB.

Material and Methods

This retrospective cross-sectional study was held between Jan-
uary 2015 and September 2017 in the Obstetrics and Gynecology
Clinic of Izmir Katip Celebi University Ataturk Research and
Training Hospital. A total of 430 cases of ages between 23 to 85
years who suffered from AUB, in addition 99 healthy women that
received family planning advice, were involved in the study. The
study protocol was approved by the Ethics Board of the Izmir
Katip Celebi University (2016-144). Cases with chronic inflam-
atory diseases such as inflammatory bowel disease, systemic
lupus erythematosus or hematological diseases, patients using hor-
monal replacement therapy, corticosteroids or similar antiinflam-
matory drugs, patients with acute genital infections, and patients
who had a blood transfusion in the last three months before the
application were excluded. A written informed consent was com-
pleted by all patients.

All of the patients were examined by transvaginal ultrasonog-
raphy, and routine laboratory tests including serum human chori-
onic gonadotropin (hCG) and thyroid stimulating hormone (TSH),
complete blood count, C-reactive protein, prothrombin and active
partial thromboplastin time were done. Hemoglobin (Hb), number
of platelet, neutrophil, leucocyte, lymphocyte, monocyte, plat-
ocrit (PCT), and MPV levels were noted. NLR, lymphocyte/
neutrophil, platelet, lymphocyte, monocyte, plasma/leucocyte
ratios were calculated. For the detection of etiology, imaging methods such as
saline infusion sonography, pelvic magnetic resonance imaging,
and computerized tomography were used. After a first step eval-
uation, endometrial samples were taken from all cases by pipe-
elle canula, using dilatation and curettage or hysteroscopic biopsy.
During the period of treatment, the final pathology results were
used in pathological assessment in patients for whom hysterec-
tomy was applied to. Two cases who did not follow up after their
endometrial biopsy were excluded from the study.

Patients were classified according to the diagnostic categories
of PALM-COEIN as AUB-P (polyp), AUB-A (adenomyosis),
AUB-L (leiomyoma), AUB-M (malignancy or hyperplasia),
AUB-C (coagulopathy), AUB-O (ovulatory dysfunction), AUB-
E (endometrial reasons) or AUB-I (iatrogenic). The analyses
were performed in 527 cases. Cases were subclassified into six groups:
AUB-N (PALM-COEIN-N Group) as Group 1, AUB-O and
AUB-C as Group 2 (functional reasons), AUB-L, AUB-A, and
AUB-P as Group 3 (structural pathologies), AUB-M as Group 4,
AUB-E and AUB-I as Group 5 (endometrial reasons), and healthy
women as Group 6 (control group).

Because of the significant differences of age between the
groups, serum inflammatory markers, which are the main out-
come measures of the study were assessed by adjusting for age.

The data were analyzed via SPSS Statistics 22.0. Definitive
statistics were given as number (n), percentage (%), mean ± stan-
dard deviation (x ± ss) and median (Q1-Q3). The distribution of
normality of the numerical variables were calculated using a
Shapiro Wilks normality test and Q-Q graphics. The comparisons
between the groups were analyzed using a one way variant anal-
ysis in normally distributed variables and Kruskal-Wallis analysis
in abnormally distributed variables. For differences detected by
the one-way variant analysis, Dunnett and Tukey tests were done
for multi-comparison test. Relations between numerical variables
were assessed by Spearman’s correlation analysis. The compari-
son of the categorical variables of the groups for r x c tables was
done using Fisher’s exact test and a chi-square test. A p value
<0.05 was accepted as significant.

Results

The groups showed similar results for demographical
data such as body mass index (BMI), gravity, and parity.
The average age was significantly lower in Group 2 (AUB-
C, AUB-O) when compared with the other groups. Sev-
enty-nine percent of the cases were premenopausal, while
21% were postmenopausal. The number of postmenopausal
cases was significantly higher in Group 4 (AUB-M) (Table
1).

Among the study groups, 55.1% of the cases were sam-
ples for heavy menstrual bleeding (HMB), 16.4% for post-
menopausal bleeding (PMB), and 6.5% for intermenstrual
bleeding (IMB), while 2.3% of the cases were sampled with
endometrial biopsy for evaluating the effect of treatment
given for endometrial hyperplasia. The ratio of endometrial
samples for postmenopausal bleeding was similar in Group
1(AUB-N) and Group 4 (AUB-M). In Group 3 (AUB-L,
AUB-A, AUB-P), 19.3% of the cases were evaluated for
HMB but IMB and other biopsy results were similar be-
tween the groups (p = 0.292).

According to the biopsy results, 29.3% showed a prolif-
erative endometrium, 25.9% showed a secretory endo-
dometrium, 24.7% had disorganized tissue fragments, and
inadequate sampling was detected in 11.4% of Group 1
cases. Among Group 2, 76.2% showed proliferative en-

| Table 1. — Patient characteristics. | Group 1 (n=174) | Group 2 (n=42) | Group 3 (n=114) | Group 4 (n=55) | Group 5 (n=43) | Group 6 (n=99) | p  
| Age (years) | M (Q1-Q3) |  
| Gravity | 46.4±7.4 | 40.1±4.6 | 52.1±9.9 | 50.4±9.9 | 48.9±7.8 | 31.7±7.9 | <0.001  
| Parity | 2(2-3) | 2.5(2-3) | 2(2-3) | 3(2-3) | 2(2-3) | 2 (1-3) | 0.961  
| BMI (kg/cm²) | 27.7±4.1 | 28.6±3.1 | 27.2±4.2 | 29.1±4.3 | 27.7±3.7 | 27.5±3.2 | 0.108  
| Postmenopausal patients (%) | 31 | 11.9 | 20.2 | 43.6 | 11.6 | 0 | <0.001  
| Endometrial thickness (mm) | 8.4±3.7 | 9.8±3.1 | 8.4±3.7 | 10.6±4.4 | 9.5±3.8 | 9.7±4.1 | <0.001  

This study, the authors aimed to discover whether there
is any difference between the patients in the category of
AUB-N and the ones with structural or functional patholo-
gies in terms of SIR markers, and to investigate whether
subclinical inflammation could be a cause of AUB.
Table 2. — SIR markers differences between groups.

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (n=174)</th>
<th>Group 2 (n=42)</th>
<th>Group 3 (n=114)</th>
<th>Group 4 (n=55)</th>
<th>Group 5 (n=43)</th>
<th>Group 6 (n=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLR</td>
<td>2.1±0.2</td>
<td>2.8±0.3</td>
<td>2.6±0.2</td>
<td>2.2±1.3</td>
<td>2.6±0.3</td>
<td>2.05±0.7</td>
</tr>
<tr>
<td>LMR</td>
<td>10.5±3.0</td>
<td>6.7±6.3</td>
<td>4.6±3.8</td>
<td>4.8±5.3</td>
<td>6.2±6.0</td>
<td>3.6±2.0</td>
</tr>
<tr>
<td>LPR</td>
<td>0.1±14.0</td>
<td>0.6±29.5</td>
<td>0.3±17.7</td>
<td>69.0±24.9</td>
<td>0.5±28.0</td>
<td>0.8±24.0</td>
</tr>
<tr>
<td>PCT (%)</td>
<td>0.3±0.7</td>
<td>0.4±0.8</td>
<td>0.3±0.6</td>
<td>0.3±0.9</td>
<td>0.28±0.6</td>
<td>0.544</td>
</tr>
<tr>
<td>MPV (Fl)</td>
<td>10.0±1.01</td>
<td>9.8±1.01</td>
<td>9.9±1.6</td>
<td>10.2±1.8</td>
<td>10.1±0.9</td>
<td>10.32±1.08</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>12.0±1.6</td>
<td>11.7±1.7</td>
<td>11.7±1.9</td>
<td>12.1±1.3</td>
<td>11.9±1.7</td>
<td>12.5±1.3</td>
</tr>
</tbody>
</table>


Table 3. — Comparison of SIR markers between AUB groups.

<table>
<thead>
<tr>
<th></th>
<th>NLR-LPR p* rho</th>
<th>LMR-LPR p* rho</th>
<th>NLR-PCT p* rho</th>
<th>NLR-LMR p* rho</th>
<th>LMR-MPV p* rho</th>
<th>LMR-PCT p* rho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>0.048 -0.151</td>
<td>0.001 +0.993</td>
<td>0.001 +0.259</td>
<td>0.103</td>
<td>0.750</td>
<td>0.793</td>
</tr>
<tr>
<td>Group II</td>
<td>.001 -0.521</td>
<td>0.067 0.674</td>
<td>0.011 -0.394</td>
<td>0.006 -0.420</td>
<td>0.006 -0.466</td>
<td>0.006 -0.466</td>
</tr>
<tr>
<td>Group III</td>
<td>0.001 -0.374</td>
<td>0.001 +0.417</td>
<td>0.015 0.815</td>
<td>0.001 -0.350</td>
<td>0.787</td>
<td>0.959</td>
</tr>
<tr>
<td>Group IV</td>
<td>0.023 -0.310</td>
<td>0.147 0.835</td>
<td>0.001 -0.501</td>
<td>0.666</td>
<td>0.031 +0.293</td>
<td>0.918</td>
</tr>
</tbody>
</table>


Discussion

In the present study, no significant differences were detected for SIR markers between the PALM-COEIN-N group and other groups of PALM-COEIN, as well as healthy controls.

Diseases that are not yet clearly definable (e.g. chronic endometritis, arteriovenous malformations, myometrial hypertrophia) or pathologies that have not clearly proven as associated with AUB have been advised to be classified as AUB-N, in the original PALM-COEIN classification of FIGO [6]. As far as the present authors are aware, from the first classification, no further developments were achieved in defining specific pathologies in this category. Many studies have reported the diagnostic and prognostic importance of SIR markers, such as the number of leukocytes, platelets, NLR and PLR in various diseases in recent years [12-19].

In the present study, the authors tested whether subclinical inflammation could be an etiological factor in AUB cases with no clearly defined structural or functional abnormalities. The study groups were compared according to the ultrasonographic findings of the uterus and the endometrium, the presence of additional systemic factors and biopsy indications in addition to the SIR markers. The high number of postmenopausal patients in Group 4 (AUB-M) is thought to depend on the sight of the most of endometrial neoplasias (3/4) in the postmenopausal period. When compared to the biopsy indications, most of the biopsies performed for postmenopausal bleeding were detected in Groups 1 (AUB-N) and 4 (AUB-M).

Various studies have focused on the relationship between endometrial pathologies and SIR markers. The predictivity of SIR markers was assessed in the foresight of dissemination and prognosis in endometrial malignancies and the differential diagnosis of endometrial hyperplasia with atypia and benign-malignant endometrial diseases [20-22].

To the knowledge of the authors, the present study is the first study to investigate the predictive value of SIR markers in AUB cases with unknown etiologies. Although no significant differences for SIR markers were detected between AUB cases with unknown etiologies and healthy control groups in our study, when study groups were compared for SIR markers, a negative correlation with NLR and LPR was detected. When SIR markers were evaluated within the same group (i.e. Group 1), a different relation between SIR markers and endometrial pathologies and SIR markers. The predictivity of SIR markers was assessed in the foresight of dissemination and prognosis in endometrial malignancies and the differential diagnosis of endometrial hyperplasia with atypia and benign-malignant endometrial diseases [20-22].

To the knowledge of the authors, the present study is the first study to investigate the predictive value of SIR markers in AUB cases with unknown etiologies. Although no significant differences for SIR markers were detected between AUB cases with unknown etiologies and healthy control groups in our study, when study groups were compared for SIR markers, a negative correlation with NLR and LPR was detected. When SIR markers were evaluated within the same group (i.e. Group 1), a different relation...
was detected for NLR and platocrite in addition to NLR and the LMR. A positive correlation was found in Group 1 for NLR and platocrite in contrast to the insignificant relation among the other groups. There are studies in the literature that investigated the efficacy of SIR markers in predicting the prognosis of proinflammatory processes that play a role in the pathophysiology of myocardial ischemic dysfunction and preeclampsia [23, 24]. The mechanism leading to the change in SIR markers is reported to be the development of lymphocytopenia and thrombocytosis as a result of proinflammatory response and stress due to leukocyte activation. Lymphocytes contribute to healing through the modulation of mononuclear cell subtypes and the inhibition of metalloproteinase-1 expression. Increased NLR in patients with heart failure, as well as increased platelets, decreased lymphocyte levels have been shown to be associated with myocardial dysfunction and poor prognosis [25, 26]. Based on this information, it could be speculated that the proinflammatory response to endomyometrial tissue in AUB-N cases may be the cause of AUB. In the present study, it was stated that a positive correlation between NLR-platocrite and NLR-LPR in the AUB-N group, unlike other groups, may be indicative of the current proinflammatory response to endomyometrial inflammation.

The strength of the present study is the high number of patients examined by the same obstetrician and pathologist. As the authors did not perform hysterectomy in all cases, the major weakness of this study is the loss of the possibility of some diagnoses (e.g. adenomyosis), which can only be diagnosed after hysterectomy.

Conclusion

In this study, it has been concluded that there is no significant difference between SIR markers for AUB cases with functional or structural abnormalities and unclassifiable AUB cases according to the PALM-COEIN classification system. However, further studies are required at the molecular level for detecting subclinical endometrial inflammation which can contribute to the identification of the etiology in unknown AUB-N cases in order to better understand the relation between AUB and subclinical endometrial inflammation.

References

Is there a relationship between systemic inflammatory markers and abnormal uterine bleeding in unclassifiable cases according to...


Corresponding Author:
H. AYDOĞMUŞ, MD,
Obstetrics and Gynaecology
Department of Gynaecology and Obstetrics
Atatürk Research and Training Hospital
İzmir Katip Çelebi University
Karabağlar, İzmir (Turkey)
e-mail: huseyinaydogmus07@gmail.com