

Review

# Risk Factors and Predictors of Adverse Outcomes in Twin Pregnancies: A Review

Biaobiao Wang<sup>1</sup>, Weishe Zhang<sup>1,2</sup>, Yiran Fu<sup>1</sup>, Qi Wang<sup>1</sup>, Yanying Wu<sup>1</sup>, Jia Nie<sup>1</sup>, Lijuan Liu<sup>1</sup>, Xiaowen Zhang<sup>1</sup>, Hongtao Zeng<sup>1</sup>, Jingrui Huang<sup>1,2,\*</sup>

Academic Editor: Michael H. Dahan

Submitted: 12 July 2024 Revised: 12 September 2024 Accepted: 18 September 2024 Published: 18 November 2024

#### Abstract

Objective: Twin pregnancies are associated with a higher risk of adverse pregnancy outcomes than are singleton pregnancies. Although the risk factors and predictors of adverse outcomes in singleton pregnancies have been clearly identified in numerous studies, those specific to twin pregnancies remain less consistent. This study was performed to summarize and evaluate the risk factors and predictors of adverse outcomes in twin pregnancies. Mechanism: A comprehensive review was conducted using the PubMed and Web of Science databases to analyze and identify the relevant risk factors and predictors of avderse outcomes in twin pregnancies. Findings in Brief: The risk factors and predictors of adverse outcomes in twin pregnancies are largely similar to those in singleton pregnancies, particularly in relation to preeclampsia and preterm birth and especially for conditions not unique to twin pregnancies. However, there remains a gap in the study of complications specific to twin pregnancies, largely because of their chorionicity. Conclusions: Early identification of risk factors and predictors for adverse outcomes in twin pregnancies facilitates earlier prevention and intervention and lead to improved management of serious complications in twin pregnancies.

Keywords: twin pregnancy; adverse outcome; risk factor; predictor

#### 1. Introduction

Twin pregnancies carry a high risk of pregnancy complications, including preeclampsia (PE), preterm birth (PTB), selective fetal growth restriction (sFGR), and fetal brain injury, among others. Additionally, monochorionic twin pregnancies have a higher rate of complications because of the shared placenta, which may result in twin-to-twin transfusion syndrome (TTTS) or twin anemiapolycythemia sequence (TAPS) [1]. Newborns from twin pregnancies are at increased risk of adverse outcomes, including birth defects, brain injury, and stillbirth, due to these complications [2]. Although twin pregnancies account for only about 3% of all live births, they represent approximately 15% of neonatal intensive care unit admissions. The management of singleton pregnancies has reached a relatively advanced level, and the risk factors and predictors of adverse complications in singleton pregnancies have been extensively studied [3,4]. However, fewer studies have specifically addressed the risk factors and predictors of adverse outcomes in twin pregnancies, leading to less consistent management in clinical practice. Therefore, it is crucial to identify the risk factors and predictors of adverse complications in twin pregnancies to improve management and facilitate early intervention.

#### 2. Methods

The PubMed and Web of Science databases were searched for studies reporting on risk factors and predictors of adverse outcomes in twin pregnancies, such as PE, PTB, TTTS, sFGR, and brain injury. All literature related to risk factor and predictors of adverse outcomes in twin pregnancies was considered adequately. The search keywords were defined: twin pregnancy, preterm birth, preeclampsia, twin-to-twin transfusion syndrome, selective fetal growth restriction, fetal brain injury, risk factor, predictor. Subsequently, the exclusion criteria were defined: (1) not evaluating risk factors and predictors, (2) the literature type was neither an article nor a review, (3) full text not retrieved, (4) the language was limited to English. The literature search was led by one author (BW). Titles and abstracts of all related literature were screened independently by two authors (YF and QW). The results and conclusions reached consensus among all authors. Additionally, differences in risk factors and predictors between twin and singleton pregnancies were compared. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram is detailed in Fig. 1.

#### 3. PE

PE is a hypertensive disorder involving multisystem impairment, affecting 4.6% of pregnancies and representing

<sup>&</sup>lt;sup>1</sup>Department of Obstetrics, Xiangya Hospital Central South University, 410008 Changsha, Hunan, China

<sup>&</sup>lt;sup>2</sup>Hunan Engineering Research Center of Early Life Development and Disease Prevention, 410008 Changsha, Hunan, China

<sup>\*</sup>Correspondence: jingruihuang@hotmail.com; huangjingrui@csu.edu.cn (Jingrui Huang)

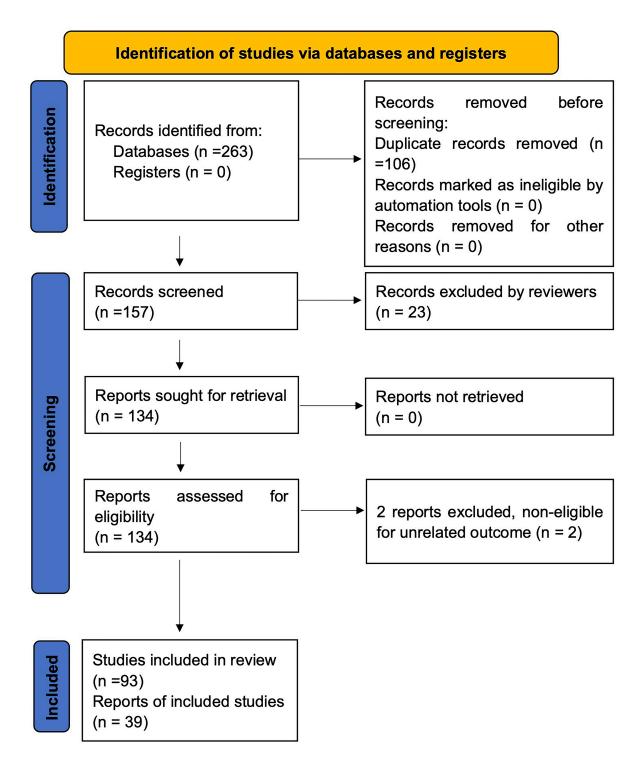



Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram of identification of studies.

a significant cause of perinatal morbidity and mortality [5]. The prevalence of PE is much higher in twin pregnancies than in singleton pregnancies [6], and in twin pregnancies, PE tends to be more severe and have a worse prognosis. Given that twin pregnancies often result in PTB, the relative risk of PE may be underestimated in this group. The incidence of twin pregnancies has increased rapidly over the last 30 years [7]. While significant progress has been made

in predicting PE in singleton pregnancies, less information is available for twin pregnancies. Therefore, predicting PE in twin pregnancies is of great significance.

The risk factors for PE in singleton pregnancies are well known, but those in twin pregnancies are less consistent. Hypertensive disorders of pregnancy, including PE, chronic hypertension, and gestational hypertension, are among the most prevalent diseases in pregnancy. Because



of its particular pathological mechanisms, PE is a risk factor for many placenta-related diseases. Taguchi et al. [8] found that a family history of hypertension and a history of hypertensive disorders of pregnancy are independent risk factors for PE in twin pregnancies, similar to findings in singleton pregnancies. A study at King Chulalongkorn Memorial Hospital among women with twin pregnancies who delivered after 23 weeks of gestation identified nulliparity and chronic hypertension as risk factors for PE after multivariate logistic regression analysis [9]. Women under 17 years of age with twin pregnancies have a higher risk of PE than those over 17 years of age [10]. Chantanahom et al. [9] pointed out that low gestational weight gain is a significant protective factor against the development of PE. Similarly, Lipworth et al. [11] found that gestational weight gain below Institute of Medicine (IOM) guidelines was associated with PTB before 32 weeks of gestation and a decrease in the risk of PE, while gestational weight gain above IOM guidelines was associated with a higher risk of PE. This suggests that inappropriate gestational weight gain affects more than half of twin pregnancies and is a modifiable risk factor for PE. Gestational diabetes, another prevalent pregnancy complication, continues to rise due to increasing obesity rates among pregnant women. Gestational diabetes is often related to complications such as higher infant weight and cardiometabolic disease. Dave et al. [12] identified gestational diabetes as a risk factor for PE in women with twin pregnancies. Dai et al. [13] conducted a five-year retrospective study and found that in preeclamptic dichorionic twin pregnancies, in vitro fertilization and growth discordance are risk factors for developing early-onset PE. Additionally, intrahepatic cholestasis of pregnancy increases the incidence of PE, highlighting the necessity of routine evaluation for PE in the treatment of women with moderate and severe intrahepatic cholestasis of pregnancy [14].

Several studies have identified predictors of PE. Stepan *et al.* [15] found that the soluble fms-like tyrosine kinase 1 (sFlt-1)/placental growth factor (PIGF) ratio can be applied to predict PE in twin pregnancies. It is worth noting that PIGF, sFlt-1, and the sFlt-1/PIGF ratio were initially utilized to predict and monitor PE, PTB, and other placentarelated disorders in singleton pregnancies, and their role in predicting placenta-related disorders in twin pregnancies is also significant. Lu *et al.* [16] reported that considering early pregnancy serum markers ( $\beta$ -human chorionic gonadotropin) and the uterine artery pulsatility index can provide better predictive value for PE in twin pregnancies, with higher sensitivity and specificity. However, another study indicated that the uterine artery pulsatility index has limited value in screening for PE in twin pregnancies [17].

Similar to singleton pregnancies, maternal age, parity, gestational weight gain, history of PE, ethnicity, and gestational diabetes are associated with a higher risk of PE in twin pregnancies [18]. The risk factors of assisted reproduction continue to be debated, with a study reporting

an increased risk of PE with assisted reproduction and others reporting no significant difference between spontaneous and assisted reproductive pregnancies [19]. It is possible that assisted reproduction shares risk factors with PE, leading to confounding factors in the analysis.

In singleton pregnancies, guidelines proposed by the American College of Obstetricians and Gynecologists (ACOG) and the National Institute for Health and Care Excellence (NICE), commonly used in clinical practice, suggest that women with one or more high-risk factors or two or more moderate-risk factors should be considered as at high risk for PE [20,21]. Various prediction models based on risk factors and predictors have been successfully applied in predicting PE in the first trimester of pregnancy by combining maternal risk factors, mean arterial pressure, uterine artery pulsatility index, and PIGF [22,23]. However, because of the inconsistency in studies on predicting PE in twin pregnancies, the risk factors and prediction models for such pregnancies remain elusive.

#### **4. PTB**

PTB refers to delivery before 37 completed weeks of gestation. Globally, approximately 15 million infants are born preterm each year. PTB complications are a leading cause of neonatal mortality and are associated with longterm neurodevelopmental and physical development issues, as well as significant public health challenges [24]. The PTB rate in twin pregnancies has increased significantly over the past three decades because of the rising incidence of twin pregnancies worldwide. The increased incidence of PTB in twin pregnancies, unlike in singleton pregnancies, may be associated with factors such as chorionicity, cervical insufficiency, maternal and fetal complications unique to twin pregnancies, uterine overdistension, and uterine hypoxia [24]. Given the unique physiopathology of twin pregnancies, it is crucial to study them separately from singleton pregnancies and to identify risk factors and predictors with a focus on chorionicity and other twin-specific complica-

Risk factors for PTB in singleton pregnancies include a history of previous PTB, ethnicity, low maternal body mass index, and periodontal disease. Both spontaneous PTB and medically indicated PTB (PTB in response to maternal or fetal complications) have been investigated. In twin pregnancies, a previous spontaneous singleton PTB is an important risk factor, as identified by Berveiller et al. [25] in a retrospective cohort study. With regard to maternal weight, gestational weight gain below IOM guidelines, compared with weight gain within IOM guidelines, has been linked to PTB before 32 weeks of gestation [11]. With regard to chorionicity, fetal complications have been linked with PTB in monochorionic twins, particularly TTTS, TAPS, and other severe conditions. For example, Marleen et al. [26] found that monochorionicity is significantly associated with spontaneous PTB before 28,



32, 34, and 37 weeks of gestation in women who are both symptomatic and asymptomatic for preterm labor. Single intrauterine death (sIUD) is a relatively common complication in twin pregnancies, with an incidence of approximately 0.5% to 6.8% [27]. sIUD often presents with PTB and cerebral palsy in the surviving twin. D'Antonio et al. [28] found that sIUD in twin pregnancies is linked with a significant risk of PTB, particularly in monochorionic twins. Twin pregnancies complicated by sIUD, regardless of chorionicity, are at higher risk of PTB before 34, 32, and 28 weeks of gestation [28]. Interestingly, Qiao et al. [29] found that exposure to fine particulate matter  $\leq$  2.5 µm (PM<sub>2.5</sub>) could be a risk factor for developing PTB in twin pregnancies, with the mid-stage of pregnancy identified as a critical window for the effects of exposure to PM<sub>2.5</sub> on PTB in twin pregnancies. A study has also addressed a history of cervical surgery as a potential cause of PTB in twin pregnancies. In a controlled cohort study, Pinborg et al. [30] found that cervical conization significantly increased the risk of PTB, and very PTB, in assisted reproductive twin pregnancies compared with spontaneous twin pregnancies.

With regard to predictors of PTB in twin pregnancies, transvaginal cervical length measurement before 24 weeks is the most significant and widely accepted predictor [31]. Many guidelines, such as those in the NICE guidelines for twin and triplet pregnancies and the ACOG Practice Bulletin for multifetal gestations, indicate that transvaginal cervical length is an effective measure for predicting PTB [32,33]. Kuhrt et al. [34] found that quantitative fetal fibronectin measured between 22 and 27<sup>+6</sup> weeks of gestation was a precise predictor of spontaneous PTB before 30 weeks in twin pregnancies. Similarly, Marleen et al. [35] observed that fetal fibronectin was a significant predictor of PTB among twin pregnancies in women both asymptomatic and symptomatic for preterm labor. Therefore, a combination of quantitative fetal fibronectin concentration and short cervical length could be the strongest predictor of spontaneous PTB [36]. Further studies should address the combination of quantitative fetal fibronectin concentration and transvaginal cervical length in the prevention of PTB in twin pregnancies. One cohort study reported that maternal 25-hydroxyvitamin D concentrations below 75 nmol/L in the late second trimester were associated with an increased risk of PTB in twin pregnancies [37].

Risk factors for developing PTB in singleton pregnancies include prior PTB, low gestational weight gain, monochorionicity, sIUD, and exposure to PM<sub>2.5</sub>. An interesting study also identified increasing maternal age as a risk factor for PTB in twin pregnancies after *in vitro* fertilization [38]. It is important to note that short cervical length and quantitative fetal fibronectin concentration are highly associated with spontaneous PTB.

#### 5. TTTS and sFGR

TTTS and sFGR are unique complications in monochorionic pregnancies. TTTS is a severe condition that occurs in 10% to 15% of monochorionic diamniotic twin pregnancies [39]. The Quintero staging system is a critical tool for assessing the severity of TTTS, dividing it into four stages (I–IV). Sonographic examination should be considered for twin pregnancies with a monochorionic diamniotic placenta to monitor the progression and severity of this disease [40]. The natural history of stage I TTTS is relatively favorable, with a perinatal survival rate of 86% and no need for invasive intervention. However, the prognosis of advanced TTTS is very poor, with single or double twin death occurring in 90% to 100% of cases [41]. Fetoscopic laser surgery is considered the best approach for advanced TTTS between 16 and 26 weeks, but data analysis reveals no significant survival benefit, and long-term neurological outcomes remain disappointing [42].

sFGR is characterized by one fetus growing normally while the other is growth-restricted; it affects 10% to 15% of monochorionic diamniotic twin pregnancies. It is defined as one fetus being less than the 10th percentile for fetal weight at the same gestational age, with an estimated fetal weight difference between the two fetuses of  $\geq$ 25%. sFGR is associated with a high incidence of stillbirth, miscarriage, and PTB, and the risk of brain injury in newborns is also high, significantly affecting quality of life. Gratacós et al. [43] classified sFGR into three types based on the characteristics of the diastolic blood flow spectrum of the umbilical artery. Type I sFGR has a good prognosis, with 90% of the two fetuses surviving without serious sequelae and an intrauterine mortality rate of only 2% to 4%. The management of sFGR with abnormal umbilical artery Doppler findings (types II and III) remains challenging. Treatment options for sFGR include conservative management and intrauterine interventions, such as selective fetal reduction and selective placental vascular communication laser coagulation. Therefore, detecting the risk factors and predictors of TTTS and sFGR is crucial.

Stagnati et al. [44] found that monochorionic twin pregnancies with intertwin nuchal translucency discrepancy, nuchal translucency at the >95th percentile, intertwin crown-rump length discrepancy of >10%, or abnormal ductus venosus flow on first-trimester ultrasound examination are at significantly increased risk of developing TTTS. Although few studies have explored risk factors and predictors in twin pregnancies, one has linked abnormal blood flow patterns with single fetal demise in women with TTTS after fetoscopic ablation [45]. Willner et al. [46] observed differential expression of amniotic fluid microRNAs between TTTS recipient fetuses with severe cardiomyopathy and those without, suggesting that amniotic fluid microRNAs could be important biomarkers of disease severity in TTTS. Anh et al. [47] found that vascular endothelial growth factor receptors 1 and 2 as well as interleukin-6,



Table 1. Risk factors and predictors of adverse outcomes in twin pregnancies.

| Complications | Risk factors                                                                         | Predictors                          |
|---------------|--------------------------------------------------------------------------------------|-------------------------------------|
| PE            | Nulliparity, chronic hypertension, history of hypertension and history of hyperten-  | sFlt-1/PlGF ratio, β-HCG, UTPI      |
|               | sive disorders of pregnancy, young mother, high gestational weight gain, gestational |                                     |
|               | diabetes, IVF, ICP                                                                   |                                     |
| PTB           | Previous spontaneous singleton PTB, low gestational weight gain, monochorionicity,   | Transvaginal cervical length, fetal |
|               | sIUD, exposure to PM <sub>2.5</sub>                                                  | fibronectin                         |
| TTTS          | Intertwin NT discrepancy, NT >95th percentile, intertwin CRL discrepancy >10%,       | Amniotic fluid microRNAs,           |
|               | abnormal DV flow on first-trimester ultrasound examination                           | VEGF-R1, VEGF-R2, IL-6              |
| sFGR          | Types II and III sFGR                                                                | L-phenylalanine, L-leucine, and L-  |
|               |                                                                                      | isoleucine                          |
| Brain injury  | TTTS or TAPS following laser surgery, sIUD, lower gestational age at birth           | None                                |

PE, preeclampsia; PTB, preterm birth;  $PM_{2.5}$ , fine particulate matter  $\leq$  2.5  $\mu$ m; NT, nuchal translucency; CRL, crown–rump length; DV, ductus venosus; TTTS, twin-to-twin transfusion syndrome; TAPS, twin anemia–polycythemia sequences; FGR, selective fetal growth restriction; IVF, *in vitro* fertilization; ICP, intrahepatic cholestasis of pregnancy; sIUD, single intrauterine death; sFlt-1, soluble fms-like tyrosine kinase 1; PIGF, placental growth factor;  $\beta$ -HCG,  $\beta$ -human chorionic gonadotropin; UTPI, uterine artery pulsatility index; VEGF-R, vascular endothelial growth factor receptor; IL-6, interleukin-6.

which are involved in vascular regulation and stabilization, may facilitate the pathogenesis of TTTS in twin pregnancies.

Chen et al. [48] and Zumaeta et al. [49] found that types II and III sFGR were associated with adverse perinatal outcomes in univariate and multivariate logistic regression analyses, suggesting that these types of sFGR are risk factors for adverse outcomes in sFGR. Similarly, Monaghan et al. [50] found that pregnancies complicated by type II sFGR are associated with a higher risk of adverse perinatal outcomes compared with those complicated by type I sFGR. With regard to the predictors of sFGR, a prospective longitudinal cohort study revealed that the combination of L-phenylalanine, L-leucine, and L-isoleucine in the second trimester significantly predicted the occurrence of sFGR [51].

With regard to TTTS and sFGR, few studies have explored the risk factors and predictors in twin pregnancies, likely because of the low incidence of these conditions. Therefore, more research and attention are needed to better understand these two diseases.

#### 6. Brain Injury

Fetal brain injury can lead to serious long-term neurodevelopmental impairment. The five types of perinatal brain injuries include hypoxic-ischemic encephalopathy, intraventricular hemorrhage, periventricular leukomalacia, perinatal stroke, and cerebral palsy. Hypoxic-ischemic encephalopathy affects approximately 3 in 1000 live births [52], and therapeutic hypothermia and postnatal erythropoietin could potentially prevent it [53]. Intraventricular hemorrhage primarily affects preterm infants (<32 weeks), and possible prevention strategies include the use of antenatal corticosteroids and delayed umbilical cord clamping [54,55]. In clinical practice, magnesium sulfate is often used to reduce the risk of cerebral palsy, along with other

measures to prevent PTB. Few strategies are available to reduce the risks of periventricular leukomalacia and perinatal stroke.

An increased incidence of brain injury has been observed in monochorionic twins, and the window for potentially effective treatment is narrow. Close monitoring of intrauterine growth and development, emphasizing the importance of umbilical artery Doppler blood flow monitoring and evaluation, and timely termination of pregnancy or selective fetal reduction by vascular occlusion and laser ablation are effective measures to prevent brain injury in surviving fetuses [56].

To date, most studies on fetal brain injury have focused on TTTS. Sileo et al. [57] reported that the overall incidence of diagnosed fetal brain injury in twin pregnancies with TTTS following laser surgery is approximately 2%. Duyos et al. [58] found that in monochorionic twins, the risk of brain injury is higher when sIUD occurs spontaneously. The main risk factors for prenatal brain injury in the surviving twin include gestational age at sIUD, sFGR, and anemia. Spruijt et al. [59] found that fetal brain injury in TTTS is related to recurrent TTTS, TAPS following laser surgery, and lower gestational age at birth. The limited number of studies on fetal brain injury reflects the technical limitations in screening for antenatal brain injury [60]. From a pathological perspective, maternal factors such as gestational hypertension, gestational diabetes mellitus, and intrahepatic cholestasis of pregnancy could be risk factors for fetal brain injury. Risk factors and predictors of the adverse outcome in twin pregnancies are shown in Table 1.

#### 7. Conclusions

Twin pregnancies are more likely to involve serious maternal and neonatal complications, making it crucial to identify the risk factors and predictors of adverse outcomes in twin pregnancies for primary prevention. Some risk fac-



tors for adverse outcomes in twin pregnancies are similar to those in singleton pregnancies. However, because of the specific characteristics of twin pregnancies, risk factors for certain conditions, such as sFGR, TTTS, and brain injury, differ significantly from those in singleton pregnancies.

Ultrasonography and clinical staging are important tools for predicting and monitoring unique complications in twin pregnancies, such as TTTS and sFGR, with ultrasonography being a key diagnostic and staging modality. Fetal brain injury is primarily related to PTB and TTTS or TAPS following laser surgery, as well as sIUD.

Future studies on risk factors and predictors should explore the mechanisms underlying the occurrence and development of adverse outcomes in twin pregnancies, many of which remain unclear. In clinical practice, it is essential to recognize the differences between twin and singleton pregnancies. Early identification of risk factors for adverse outcomes in twin pregnancies facilitates earlier prevention and intervention. Better control of predictors can lead to improved management of serious complications in twin pregnancies and prevent poor maternal and infant outcomes.

#### **Author Contributions**

Conceptualization, BW, WZ, and JH; Data curation, BW, YF, and QW; Formal analysis, BW, YF, and QW; Funding acquisition, WZ and JH; Investigation, BW, YW, JN, LL, XZ, and HZ; Methodology, BW, WZ and JH; Resources, YW, JN, LL, XZ, and HZ; Writing – original draft, BW; Writing – review & editing, JH. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript. All authors have participated sufficiently in the work and agreed to be accountable for all aspects of the work.

#### **Ethics Approval and Consent to Participate**

Not applicable.

### Acknowledgment

We would like to express our gratitude to all those who helped us during the writing of this manuscript. Thanks to all the peer reviewers for their opinions and suggestions.

#### **Funding**

This research was funded by the Natural Science Foundation of Hunan Province (2022JJ40789), and the National Natural Science Foundation of China (82301927, 82371700, 81974236, 81571516).

## **Conflict of Interest**

The authors declare no conflict of interest.

#### References

[1] Van Mieghem T, Abbasi N, Shinar S, Keunen J, Seaward G, Windrim R, et al. Monochorionic monoamniotic twin preg-

- nancies. American Journal of Obstetrics & Gynecology MFM. 2022; 4: 100520. https://doi.org/10.1016/j.ajogmf.2021.100520
- [2] Khalil A, Liu B. Controversies in the management of twin pregnancy. Ultrasound in Obstetrics & Gynecology: the Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2021; 57: 888–902. https://doi.org/10.1002/uog.22181
- [3] Bartsch E, Medcalf KE, Park AL, Ray JG, High Risk of Preeclampsia Identification Group. Clinical risk factors for preeclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ (Clinical Research Ed.). 2016; 353: i1753. https://doi.org/10.1136/bmj.i1753
- [4] Huang Y, Xu J, Peng B, Zhang W. Risk factors for adverse pregnancy outcomes in Chinese women: a meta-analysis. PeerJ. 2023; 11: e15965. https://doi.org/10.7717/peerj.15965
- [5] Dimitriadis E, Rolnik DL, Zhou W, Estrada-Gutierrez G, Koga K, Francisco RPV, et al. Pre-eclampsia. Nature Reviews. Disease Primers. 2023; 9: 8. https://doi.org/10.1038/ s41572-023-00417-6
- [6] Krotz S, Fajardo J, Ghandi S, Patel A, Keith LG. Hypertensive disease in twin pregnancies: a review. Twin Research: the Official Journal of the International Society for Twin Studies. 2002; 5: 8–14. https://doi.org/10.1375/twin.5.1.8
- [7] Monden C, Pison G, Smits J. Twin Peaks: more twinning in humans than ever before. Human Reproduction (Oxford, England). 2021; 36: 1666–1673. https://doi.org/10.1093/humrep/deab029
- [8] Taguchi T, Ishii K, Hayashi S, Mabuchi A, Murata M, Mitsuda N. Clinical features and prenatal risk factors for hypertensive disorders in twin pregnancies. The Journal of Obstetrics and Gynaecology Research. 2014; 40: 1584–1591. https://doi.org/10.1111/jog.12408
- [9] Chantanahom N, Phupong V. Clinical risk factors for preeclampsia in twin pregnancies. PloS One. 2021; 16: e0249555. https://doi.org/10.1371/journal.pone.0249555
- [10] Coonrod DV, Hickok DE, Zhu K, Easterling TR, Daling JR. Risk factors for preeclampsia in twin pregnancies: a population-based cohort study. Obstetrics and Gynecology. 1995; 85: 645–650. https://doi.org/10.1016/0029-7844(95)00049-w
- [11] Lipworth H, Barrett J, Murphy KE, Redelmeier D, Melamed N. Gestational weight gain in twin gestations and pregnancy outcomes: a systematic review and meta-analysis. BJOG: an International Journal of Obstetrics and Gynaecology. 2022; 129: 868–879. https://doi.org/10.1111/1471-0528.17011
- [12] Dave ED, Bodnar LM, Vani K, Himes KP. Perinatal outcomes in twin pregnancies complicated by gestational diabetes. American Journal of Obstetrics & Gynecology MFM. 2021; 3: 100396. https://doi.org/10.1016/j.ajogmf.2021.100396
- [13] Dai F, Pan S, Lan Y, Tan H, Li J, Hua Y. Pregnancy outcomes and risk factors for preeclampsia in dichorionic twin pregnancies after in vitro fertilization: a five-year retrospective study. BMC Pregnancy and Childbirth. 2022; 22: 830. https://doi.org/ 10.1186/s12884-022-05184-y
- [14] Raz Y, Lavie A, Vered Y, Goldiner I, Skornick-Rapaport A, Landsberg Asher Y, *et al.* Severe intrahepatic cholestasis of pregnancy is a risk factor for preeclampsia in singleton and twin pregnancies. American Journal of Obstetrics and Gynecology. 2015; 213: 395.e1–8. https://doi.org/10.1016/j.ajog.2015. 05.011
- [15] Stepan H, Galindo A, Hund M, Schlembach D, Sillman J, Surbek D, et al. Clinical utility of sFlt-1 and PIGF in screening, prediction, diagnosis and monitoring of pre-eclampsia and fetal growth restriction. Ultrasound in Obstetrics & Gynecology: the Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2023; 61: 168–180. https://doi.org/10.1002/uog.26032
- [16] Lu Y, Ding Z, Li W, Mei L, Shen L, Shan H. Prediction of twin pregnancy preeclampsia based on clinical risk factors, early



- pregnancy serum markers, and uterine artery pulsatility index. Pakistan Journal of Medical Sciences. 2021; 37: 1727–1733. https://doi.org/10.12669/pjms.37.7.5041
- [17] Chen J, Zhao D, Liu Y, Zhou J, Zou G, Zhang Y, et al. Screening for preeclampsia in low-risk twin pregnancies at early gestation. Acta Obstetricia et Gynecologica Scandinavica. 2020; 99: 1346–1353. https://doi.org/10.1111/aogs.13890
- [18] Francisco C, Gamito M, Reddy M, Rolnik DL. Screening for preeclampsia in twin pregnancies. Best Practice & Research. Clinical Obstetrics & Gynaecology. 2022; 84: 55–65. https: //doi.org/10.1016/j.bpobgyn.2022.03.008
- [19] Bensdorp AJ, Hukkelhoven CW, van der Veen F, Mol BWJ, Lambalk CB, van Wely M. Dizygotic twin pregnancies after medically assisted reproduction and after natural conception: maternal and perinatal outcomes. Fertility and Sterility. 2016; 106: 371–377.e2. https://doi.org/10.1016/j.fertnstert.2016.03. 042
- [20] Webster K, Fishburn S, Maresh M, Findlay SC, Chappell LC, Guideline Committee. Diagnosis and management of hypertension in pregnancy: summary of updated NICE guidance. BMJ (Clinical Research Ed.). 2019; 366: 15119. https://doi.org/10. 1136/bmi.15119
- [21] Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstetrics and Gynecology. 2020; 135: e237–e260. https://doi.org/10.1097/AOG.0000000000003891
- [22] O'Gorman N, Wright D, Syngelaki A, Akolekar R, Wright A, Poon LC, et al. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks gestation. American Journal of Obstetrics and Gynecology. 2016; 214: 103.e1–103.e12. https://doi.org/10.1016/j.ajog.2015.08.034
- [23] Tan MY, Wright D, Syngelaki A, Akolekar R, Cicero S, Janga D, et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: results of SPREE. Ultrasound in Obstetrics & Gynecology: the Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2018; 51: 743–750. https://doi.org/10.1002/uog.19039
- [24] Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet (London, England). 2016; 388: 3027–3035. https://doi.org/10.1016/S0140-6736(16)31593-8
- [25] Berveiller P, Rousseau A, Rousseau M, Bitumba I, Goffinet F, Rozenberg P. Risk of preterm birth in a twin pregnancy after an early-term birth in the preceding singleton pregnancy: a retrospective cohort study. BJOG: an International Journal of Obstetrics and Gynaecology. 2020; 127: 591–598. https://doi.org/10.1111/1471-0528.16071
- [26] Marleen S, Dias C, Nandasena R, MacGregor R, Allotey J, Aquilina J, et al. Association between chorionicity and preterm birth in twin pregnancies: a systematic review involving 29 864 twin pregnancies. BJOG: an International Journal of Obstetrics and Gynaecology. 2021; 128: 788–796. https://doi.org/10.1111/1471-0528.16479
- [27] Woo HH, Sin SY, Tang LC. Single foetal death in twin pregnancies: review of the maternal and neonatal outcomes and management. Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi. 2000; 6: 293–300. https://www.hkmj.org/abstracts/v6n3/293.htm
- [28] D'Antonio F, Thilaganathan B, Dias T, Khalil A. Influence of chorionicity and gestational age at single fetal loss on risk of preterm birth in twin pregnancy: analysis of STORK multiple pregnancy cohort. Ultrasound in Obstetrics & Gynecology. 2017; 50: 723–727. https://doi.org/10.1002/uog.17426
- [29] Qiao P, Fan K, Bao Y, Yuan L, Kan H, Zhao Y, et al. Prena-

- tal exposure to fine particulate matter and the risk of spontaneous preterm birth: A population-based cohort study of twins. Frontiers in Public Health. 2022; 10: 1002824. https://doi.org/10.3389/fpubh.2022.1002824
- [30] Pinborg A, Ortoft G, Loft A, Rasmussen SC, Ingerslev HJ. Cervical conization doubles the risk of preterm and very preterm birth in assisted reproductive technology twin pregnancies. Human Reproduction (Oxford, England). 2015; 30: 197–204. https://doi.org/10.1093/humrep/deu260
- [31] Roman A, Ramirez A, Fox NS. Screening for preterm birth in twin pregnancies. American Journal of Obstetrics & Gynecology MFM. 2022; 4: 100531. https://doi.org/10.1016/j.ajogmf .2021.100531
- [32] Twin and triplet pregnancy. National Institute for Health and Care Excellence (NICE). 2024. https://www.nice.org.uk/guidan ce/ng137
- [33] Multifetal Gestations: Twin, Triplet, and Higher-Order Multifetal Pregnancies: ACOG Practice Bulletin, Number 231. Obstetrics and Gynecology. 2021; 137: e145–e162. https://doi.org/10.1097/AOG.00000000000004397
- [34] Kuhrt K, Hezelgrave-Elliott N, Stock SJ, Tribe R, Seed PT, Shennan AH. Quantitative fetal fibronectin for prediction of preterm birth in asymptomatic twin pregnancy. Acta Obstetricia et Gynecologica Scandinavica. 2020; 99: 1191–1197. https://doi.org/10.1111/aogs.13861
- [35] Marleen S, Dias C, MacGregor R, Allotey J, Aquilina J, Khalil A, et al. Biochemical predictors of preterm birth in twin pregnancies: A systematic review involving 6077 twin pregnancies. European Journal of Obstetrics, Gynecology, and Reproductive Biology. 2020; 250: 130–142. https://doi.org/10.1016/j.ejogrb.2020.04.015
- [36] Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet (London, England). 2008; 371: 75–84. https://doi.org/10.1016/S0140-6736(08)60074-4
- [37] Bodnar LM, Rouse DJ, Momirova V, Peaceman AM, Sciscione A, Spong CY, et al. Maternal 25-hydroxyvitamin d and preterm birth in twin gestations. Obstetrics and Gynecology. 2013; 122: 91–98. https://doi.org/10.1097/AOG.0b013e3182941d9a
- [38] Wang Y, Shi H, Chen L, Zheng D, Long X, Zhang Y, et al. Absolute Risk of Adverse Obstetric Outcomes Among Twin Pregnancies After In Vitro Fertilization by Maternal Age. JAMA Network Open. 2021; 4: e2123634. https://doi.org/10.1001/jamanetworkopen.2021.23634
- [39] Miller JL. Twin to twin transfusion syndrome. Translational Pediatrics. 2021; 10: 1518–1529. https://doi.org/10.21037/tp -20-264
- [40] Lewi L, Lewi P, Diemert A, Jani J, Gucciardo L, Van Mieghem T, et al. The role of ultrasound examination in the first trimester and at 16 weeks' gestation to predict fetal complications in monochorionic diamniotic twin pregnancies. American Journal of Obstetrics and Gynecology. 2008; 199: 493.e1–7. https://doi.org/10.1016/j.ajog.2008.04.005
- [41] Lewi L, Gucciardo L, Van Mieghem T, de Koninck P, Beck V, Medek H, et al. Monochorionic diamniotic twin pregnancies: natural history and risk stratification. Fetal Diagnosis and Therapy. 2010; 27: 121–133. https://doi.org/10.1159/000313300
- [42] Sago H, Ishii K, Sugibayashi R, Ozawa K, Sumie M, Wada S. Fetoscopic laser photocoagulation for twin-twin transfusion syndrome. The Journal of Obstetrics and Gynaecology Research. 2018; 44: 831–839. https://doi.org/10.1111/jog.13600
- [43] Gratacós E, Lewi L, Muñoz B, Acosta-Rojas R, Hernandez-Andrade E, Martinez JM, et al. A classification system for selective intrauterine growth restriction in monochorionic pregnancies according to umbilical artery Doppler flow in the smaller twin. Ultrasound in Obstetrics & Gynecology: the Official Journal of the International Society of Ultrasound in Obstetrics



- and Gynecology. 2007; 30: 28-34. https://doi.org/10.1002/uo g.4046
- [44] Stagnati V, Zanardini C, Fichera A, Pagani G, Quintero RA, Bellocco R, et al. Early prediction of twin-to-twin transfusion syndrome: systematic review and meta-analysis. Ultrasound in Obstetrics & Gynecology: the Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2017; 49: 573–582. https://doi.org/10.1002/uog.15989
- [45] Mustafa HJ, Javinani A, Goetzinger K, Aghajani F, Harman C, Shamshirsaz AA, *et al.* Single fetal demise following fetoscopic ablation for twin-to-twin transfusion syndrome-cohort study, systematic review, and meta-analysis. American Journal of Obstetrics and Gynecology. 2022; 226: 843.e1–843.e28. https://doi.org/10.1016/j.ajog.2022.02.035
- [46] Willner EC, Galan HL, Cuneo BF, Hoffman HA, Neltner B, Schuchardt EL, et al. Amniotic fluid microRNA profiles in twintwin transfusion syndrome with and without severe recipient cardiomyopathy. American Journal of Obstetrics and Gynecology. 2021; 225: 439.e1–439.e10. https://doi.org/10.1016/j.ajog .2021.06.066
- [47] Anh ND, Thuong PH, Sim NT, Thao TTP, Anh LTL, Canh TTT, et al. Maternal vascular endothelial growth factor receptor and interleukin levels in pregnant women with twin-twin transfusion syndrome. International Journal of Medical Sciences. 2021; 18: 3206–3213. https://doi.org/10.7150/ijms.61014
- [48] Chen L, Zhou W, Zhang Y, Zhao W, Wen H. Natural evolution and risk factors for adverse outcome in selective intrauterine growth restriction under expectant management: A retrospective observational study. International Journal of Gynaecology and Obstetrics: the Official Organ of the International Federation of Gynaecology and Obstetrics. 2023; 162: 569–577. https://doi.org/10.1002/ijgo.14679
- [49] Zumaeta AM, Gil MM, Rodríguez-Fernández M, Carretero P, Ochoa JH, Casanova MC, et al. Selective Fetal Growth Restriction in Monochorionic Diamniotic Twins: Diagnosis and Management. Maternal-Fetal Medicine. 2022; 4: 268–275. https: //doi.org/10.1097/FM9.000000000000171
- [50] Monaghan C, Kalafat E, Binder J, Thilaganathan B, Khalil A. Prediction of adverse pregnancy outcome in monochorionic diamniotic twin pregnancy complicated by selective fetal growth restriction. Ultrasound in Obstetrics & Gynecology: the Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2019; 53: 200–207. https://doi.org/10.1002/uo g.19078
- [51] Huang N, Chen W, Jiang H, Yang J, Zhang Y, Shi H, et al. Metabolic dynamics and prediction of sFGR and adverse fetal outcomes: a prospective longitudinal cohort

- study. BMC Medicine. 2023; 21: 455. https://doi.org/10.1186/s12916-023-03134-9
- [52] Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Human Development. 2010; 86: 329–338. https: //doi.org/10.1016/j.earlhumdev.2010.05.010
- [53] Wu YW, Mathur AM, Chang T, McKinstry RC, Mulkey SB, Mayock DE, et al. High-Dose Erythropoietin and Hypothermia for Hypoxic-Ischemic Encephalopathy: A Phase II Trial. Pediatrics. 2016; 137: e20160191. https://doi.org/10.1542/peds .2016-0191
- [54] Wei JC, Catalano R, Profit J, Gould JB, Lee HC. Impact of antenatal steroids on intraventricular hemorrhage in very-lowbirth weight infants. Journal of Perinatology: Official Journal of the California Perinatal Association. 2016; 36: 352–356. https://doi.org/10.1038/jp.2016.38
- [55] Rabe H, Gyte GM, Díaz-Rossello JL, Duley L. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. The Cochrane Database of Systematic Reviews. 2019; 9: CD003248. https://doi.org/10.1002/14651858.CD003248.pub4
- [56] Shek NWM, Hillman SC, Kilby MD. Single-twin demise: pregnancy outcome. Best Practice & Research. Clinical Obstetrics & Gynaecology. 2014; 28: 249–263. https://doi.org/10.1016/j.bpobgyn.2013.11.003
- [57] Sileo FG, Curado J, D'Antonio F, Benlioglu C, Khalil A. Incidence and outcome of prenatal brain abnormality in twin-to-twin transfusion syndrome: systematic review and meta-analysis. Ultrasound in Obstetrics & Gynecology: the Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2022; 60: 176–184. https://doi.org/10.1002/uog.24895
- [58] Duyos I, Ordás P, Herrero B, Rodriguez R, Cabrero MJ, Fernández-Zubillaga A, et al. Single fetal demise in monochorionic twins: How to predict cerebral injury in the survivor cotwin? Acta Obstetricia et Gynecologica Scandinavica. 2023; 102: 1125–1134. https://doi.org/10.1111/aogs.14604
- [59] Spruijt MS, van Klink JMM, de Vries LS, Slaghekke F, Middeldorp JM, Lopriore E, et al. Fetal and neonatal neuroimaging in twin-twin transfusion syndrome. Ultrasound in Obstetrics & Gynecology: the Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2024; 63: 746–757. https://doi.org/10.1002/uog.27583
- [60] Rondagh M, Lopriore E, de Vries LS, Slaghekke F, Tollenaar LSA, van Klink JMM, et al. The Current Knowledge of Cerebral Magnetic Resonance Imaging in Monochorionic Twins: A Systematic Review of the Last 20 Years. Journal of Clinical Medicine. 2023; 12: 7211. https://doi.org/10.3390/jcm12237211

