

Review

Fertility Preservation for Young Women with Breast Cancer: Review and Perspective

Shuxin Zheng¹, Limei Cai², Zhiming Miao³, Yinlong Yang^{4,5,*}

Academic Editor: Michael H. Dahan

Submitted: 13 February 2024 Revised: 21 April 2024 Accepted: 23 May 2024 Published: 27 June 2024

Abstract

Objectives: Breast cancer is a common malignancy that poses a significant danger to women. Recently the risks of breast cancer have been increasing in younger populations, and treatments may affect the ability to conceive, requiring options for fertility preservation. The clinical management of breast cancer typically involves surgery, chemotherapy, and radiotherapy, all of which may present detrimental effects on fertility. Thus, it is crucial to consider fertility preservation when formulating treatment plans. Mechanism: A narrative review was conducted to analyze the available literature regarding the impact of breast cancer treatment modalities on fertility, as well as strategies for fertility preservation. Findings in Brief: Various breast cancer treatment modalities can result in varying degrees of damage to a patient's ovaries, potentially compromising their ovarian function and subsequently affecting their fertility. This article reviews various fertility preservation methods, including oocyte and embryo cryopreservation, controlled ovarian stimulation (COS), in vitro maturation (IVM), cryopreservation, and ovarian tissue transplantation. Additionally, we discuss several potential strategies, such as 3D bioprinting, Traditional Chinese Medicine (TCM), and Artificial Intelligence (AI) assisted treatment. Conclusions: The impact of breast cancer treatment modalities and fertility preservation strategies exhibits individual variability, necessitating the clinical selection of treatment based on the specific circumstances of each patient. The integration of 3D bioprinting, TCM, and AI is expected to provide a new perspective for young breast cancer patients seeking to maintain their fertility.

Keywords: breast cancer; in vitro maturation; fertility preservation; 3D bioprinting; traditional Chinese medicine

1. Introduction

Breast cancer is a common malignancy among women and a leading cause of female mortality worldwide [1-3]. With advancements in integrated treatments for breast cancer, an increasing number of women of reproductive age are surviving this pathology. However, these treatments can impact a woman's reproductive endocrine system. Chemotherapy, commonly used in treating breast cancer patients, is known to present cytotoxic effects on the ovaries [4]. Radiation therapy used in treating breast cancer can affect fertility by damaging germs cells or by altering the reproductive environment [5]. Some endocrine therapy drugs, such as tamoxifen (TAM), may interfere with fertility. In fact, TAM can lead to irregular menstruation cycles, ovulation disorders, and possibly premature ovarian failure [6]. Furthermore, the prolonged use of TAM over 5 to 10 years can impact fertility. Due to its described teratogenic effects, patients are advised against becoming pregnant while taking the drug [7]. These adverse effects become more pronounced as young female breast cancer patient's age, often putting them at risk impaired fertility in the future. These effects may not only lead to significant psychological and emotional stress, but may also impact their family and social relationships. Therefore, it is imperative to thoroughly consider these potential risks when formulating breast cancer treatment plans, with the focus to implement fertility preservation strategies [8,9].

Currently, a range of fertility preservation strategies have been proposed and implemented in clinical practice. These include oocytes and embryos cryopreservation, control of ovarian stimulation, *in vitro* maturation (IVM), and ovarian tissue transplantation. The emergence of these techniques offers hope for young breast cancer patients to preserve fertility while undergoing treatment. Various treatments impact fertility to differing extents, with individual patient conditions exhibiting substantial variation. Therefore, providers should carefully assess and select the most appropriate fertility preservation method based on factors such as the patients age, pathological characteristics present, and fertility intention manifested by the patient.

Young patients, especially those who have not yet been pregnant, are particularly concerned about the impact of anti-tumor treatment modalities on their reproductive function. According to Ruddy *et al.* [10], in a study involving women under the age of 40 diagnosed with breast

¹Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Wenzhou Medical University, 325200 Wenzhou, Zhejiang, China

²Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Wenzhou Medical University, 325200 Wenzhou, Zhejiang, China

³Department of Breast and Thyroid Surgery, Zhangjiagang Hospital Affiliated to Soochow University, 215000 Suzhou, Jiangsu, China

⁴Department of Breast Surgery, Fudan University Shanghai Cancer Center, 200000 Shanghai, China

⁵Department of Oncology, Shanghai Medical College, Fudan University, 200000 Shanghai, China

^{*}Correspondence: lancetyang@126.com (Yinlong Yang)

cancer, 26% of the patients reported concerns about fertility affecting their treatment decisions. These concerns included refusing chemotherapy, choosing one treatment regimen over another, declining endocrine therapy, or discontinuing endocrine therapy before the recommended five-year period [10]. While pursuing the therapeutic effects of treatment, it is imperative to prioritize and protect the fertility of these patients [11–13]. In this review, we will discuss the impact of antitumor therapy on reproductive function, along with various strategies available for fertility preservation. Our aim is to provide tailored fertility preservation strategy options for young breast cancer patients.

2. Breast Cancer Treatment and Its Effect on Fertility

Patients undergoing antitumor therapy may experience various effects on fertility, such as decreased libido, sexual dysfunction, and increased infertility rates.

2.1 Cytotoxic Chemotherapy

Cytotoxic chemotherapy is a fundamental component of adjuvant therapy for individuals with breast cancer. Extensive evidence supports its efficacy in significantly improving patient prognosis [14–16]. Commonly used chemotherapy drugs include anthracyclines, alkylating agents, platinum compounds, and 5-fluorouracil [17–20]. These drugs can cause damage to a patient's ovaries, potentially impacting their fertility. Studies have shown that chemotherapy induces ovarian dysfunction mainly through two main mechanisms: direct damage to the DNA of primordial follicle oocytes and the induction of primordial follicle activation, ultimately leading to the depletion of the primordial follicle reserve [21].

Doxorubicin, epirubicin, and pirarubicin are among the most frequently employed anthracycline drugs. Owumi et al. [22] discovered that doxorubicin treatment in mice increased the levels of oxidative and inflammatory stress biomarkers in the ovaries. Wang et al. [23] demonstrated that the application of epirubicin in mice could induce oxidative stress, inflammation, and ovarian damage by promoting cell apoptosis. Cyclophosphamide is also recognized for its ability to induce significant ovarian damage [24]. Specifically, cyclophosphamide triggers primordial follicle activation, cell apoptosis, and ovarian follicle damage, thereby promoting premature ovarian failure [25]. As a result, patients may experience menstrual irregularities, amenorrhea, and infertility [26]. Xu et al. [21] observed that cyclophosphamide may increase the secretion of transforming growth factor- $\beta 1$ (TGF- $\beta 1$) in the ovaries by inducing cellular senescence, thereby contributing to ovarian dysfunction. Some studies have reported that the toxicity of cyclophosphamide is significantly influenced by its administration schedule and dose, and it is closely associated with patient's age [27,28]. Interestingly enough, higher doses of cyclophosphamide are more likely to induce ovarian fail-

ure in older patients [29]. Cisplatin exerts its anticancer effects by inducing DNA damage during the G1/S phase and subsequently promoting apoptosis. Notably, the ovarian toxicity associated with platinum drugs is significantly less pronounced compared to that of more commonly used drugs such as cyclophosphamide. Cisplatin is associated with amenorrhea, reduced fertility, and an increased risk of premature menopause in women [30]. However, due to the limited clinical data on the use of cisplatin alone, it is difficult to explain the specific mechanism of cisplatin-induced ovarian toxicity in humans. Studies have shown that cisplatin adversely affects oocyte survival in rats by causing the depletion of follicular reserves, which in turn reduces fertility [31,32]. Additionally, the decreased level of anti-Müllerian hormone (AMH) is related to cisplatin exposure and may affect fertility by reducing the number of circulating AMH and AMH-positive follicles [33,34].

In current clinical practice, the combined administration of anthracyclines and taxanes is often employed to enhance therapeutic efficacy. Although the addition of taxanes to anthracycline-based/cyclophosphamide chemotherapy can further increase the risk of inducing amenorrhea, recent studies have found that there was no significant difference in the impact on amenorrhea between chemotherapy regimens with and without paclitaxel [35]. Hence, further investigation into the efficacy of combining anthracyclines with taxanes is warranted. Studies have demonstrated that melatonin can mitigate the fertility damage caused by chemotherapy drugs through the suppression of PTEN/AKT/FOXO3a pathway or reducing reactive oxygen species (ROS)-induced endoplasmic reticulum stress (ERS) [23,36].

2.2 Hormone Therapy: TAM and Aromatase Inhibitors

Breast cancer is characterized by abnormal expression of estrogen, progesterone, and human epidermal growth factor receptor 2 (HER2). Hormone disruptors are frequently employed in the treatment management of breast cancer patients who test positive for estrogen/progesterone receptors [37]. TAM is a non-steroidal anti-estrogenic drug [38]. In vitro experiments have demonstrated that TAM can prevent the loss of ovarian follicle reserves by inhibiting apoptosis, without compromising the anti-tumor effects of breast cancer treatment [39]. Nynca et al. [40] conducted a proteomics and transcriptomics study in a rat model treated with TAM. The authors observed that TAM alters the expression of genes associated with the activation or arrest of primordial follicles, thereby emphasizing the importance of preventing the loss of ovarian follicle reserves [40]. In clinical trials involving 1067 patients with breast cancer who received over 5 years of TAM treatment following chemotherapy, the results showed that 69% of patients resumed menstruation. Additionally, 98% and 74% of patients met the predefined criteria for ovarian function restoration based on serum follicle-stimulating hormone

(FSH) and estradiol levels, respectively [41]. The aforementioned results indicate that TAM effectively fulfills its function in breast cancer treatment and possesses gonadal protective properties.

Aromatase inhibitors constitute a class of pharmaceuticals capable of suppressing the activity of aromatase, an enzyme responsible for the conversion of androgens to estrogen [42]. In hormone receptor (HR)-positive breast cancer, estrogen can promote the growth of tumor cells. Therefore, by inhibiting aromatase, these inhibitors can reduce estrogen production within the body, thereby inhibiting tumor growth. Compared with TAM, aromatase inhibitors can more directly reduce estrogen levels, leading to a more effective tumor growth control. However, the use of aromatase inhibitors requires attention to potential risks and side effects. Since these drugs reduce estrogen levels, they may induce symptoms associated with estrogen deficiency, such as hot flashes, joint pain, and osteoporosis. Moreover, for younger patients, long-term estrogen deficiency may impact their reproductive system, including fertility, and bone health. Aromatase inhibitors, combined with gonadotropin-releasing hormone (GnRH) antagonists, are widely used in premenopausal breast cancer patients with HR-positive breast cancer. The Suppression Ovarian Function Trial (SOFT) and the TAM and Exemestane Trial (TEXT) demonstrated superior patient outcomes when ovarian suppression was added to antihormonal therapy for premenopausal patients with breast cancer [43]. Overall, aromatase inhibitors represent an effective therapeutic choice for young patients diagnosed with HR-positive breast cancer [44]. However, their administration requires careful consideration to strike a balance between maximizing efficacy and mitigating potential risks. Further investigation of the combination or sequential treatment strategies of aromatase inhibitors and other drugs, such as TAM, could offer insights into optimizing treatment outcomes.

2.3 Immunotherapy: Programmed Cell Death Protein 1/Programmed Death-Ligand 1 (PD-1/PD-L1) Immune Checkpoint Inhibitors

Pembrolizumab, Nivolumab, Atezolizumab, and Camrelizumab are among the common anti-PD-1 drugs employed in breast cancer treatment. Among these drugs, Pembrolizumab and Nivolumab are clinically approved PD-1 inhibitors, primarily employed in the management of advanced and metastatic tumors. They have exhibited promising efficacy in the treatment of advanced triplenegative breast cancer [45]. However, some studies suggest that these drugs may potentially induce adverse effects on the ovaries [46,47]. Xu et al. [46] discovered, through experiments conducted on prepubertal female mice with normal immune function and immunodeficiency, that the administration of Pembrolizumab or anti-mouse PD-1 anti-body led to a significant reduction in the number of primor-

dial follicles in mice with normal immune function. However, no change in the number of follicles was observed in immunodeficient nude mice. No differences were observed in the number of cumulus-oocyte complexes (COCs) and the onset of puberty between the control group and the anti-mouse PD-1 antibody treatment group, indicating no impact on short-term fertility. These results demonstrated that injecting Pembrolizumab into immunocompetent mice significantly reduced the number of their primordial follicles [46]. PD-L1 inhibitors commonly used in breast cancer treatment include Atezolizumab and Avelumab. Atezolizumab was the first PD-L1 inhibitor to receive approval, but there have been reports of its excessive use leading to menstrual irregularities and anovulation in female monkeys [47].

2.4 Molecular Targeted Therapy: Olaparib, Palbociclib, and HER2-Targeted Therapy

Olaparib, an ADP-ribose polymerase inhibitor, has been approved for the treatment of HER2-negative metastatic breast cancer in patients with germline BReast CAncer 1/2 (BRCA1/2) mutations [48]. In vitro experiments have demonstrated that although the use of Olaparib as adjuvant therapy after chemotherapy does not significantly affect the number of oocytes, direct treatment with Olaparib can reduce the number of oocytes, potentially impacting the fertility of mice [49]. Although Olaparib may modestly improve the prognosis of breast cancer patients, it is better suited as an adjuvant therapy when fertility preservation is a concern [50,51]. Cyclin-dependent kinases (CDK) 4/6 play crucial roles in the tumor cell cycle [52] and can also exert influence on meiosis in oocytes [53]. Palbociclib is one of the selective CDK4/6 inhibitors. Catlin et al. [54] found that Palbociclib does not affect the fertility of female or male mice or rabbits. The study also observed that the drug led to reduced maternal weight gain and food consumption, along with the observations of low fetal weight in rats and small forelimb digit bones in rabbits [54].

In the management of patients with HER2-positive breast cancer, the preferred treatment approach often involves the utilization of HER2-targeted therapy [55]. Key medications for HER2-targeted treatment include Trastuzumab, Pertuzumab, Ado-trastuzumab emtansine (T-DM1), and Lapatinib [56]. Levi et al. [57] observed a significant decrease in AMH levels among HER2-positive patients following chemotherapy administration. Nevertheless, treatment with Trastuzumab led to a restoration of AMH levels to baseline, suggesting a potential mitigation of chemotherapy-induced ovarian toxicity by Trastuzumab [57]. Additionally, other studies have proposed that the incidence of amenorrhea following adjuvant ado-trastuzumab emtansine (T-DM1) therapy is reduced by 26% compared to patients treated with Paclitaxel-Trastuzumab (TH) post-chemotherapy [58]. Lambertini et al. [59] con-

Table 1. Breast cancer treatments and their effects on fertility.

Treatment methods	Pharmaceutical drug	Effects on fertility		
Cytotoxic therapy	Doxorubicin, Epirubicin, Pirarubicin, Cyclophosphamide, Cisplatin	Direct damage to oocytes DNA and follicular func- tion may occur. Temporary or permanent amenor- rhea may occur.		
Hormone therapy	TAM	It may preserve ovarian follicular reserve function.		
Immunotherapy	Pembrolizumab, Nivolumab, Atezolizumab, Camrelizumab, Atezolizumab, Avemulab	It damages ovarian function and decreases the follicle count.		
Molecular targeted therapy	Olaparib, Palbociclib	It may affect the oocytes meiosis.		
	Trastuzumab, Pertuzumab, Lapatinib, Adotrastuzumab	HER2 targeted therapy can mitigate chemotherapy-induced damage to the ovary and reduce the amenorrhea rate.		

TAM, tamoxifen; HER2, human epidermal growth factor receptor 2.

ducted a comprehensive analysis of research involving premenopausal women undergoing various treatment regimens, including single-agent Trastuzumab, single-agent Lapatinib, and combination or sequential therapy with Trastuzumab and Lapatinib. These findings suggest a potentially favorable gonadal safety profile associated with the aforementioned medications.

Table 1 provides a summary of breast cancer treatments and their effects on fertility.

3. Fertility Preservation Strategies

Medical infertility poses a significant challenge for patients diagnosed with malignancies. Chemotherapyinduced ovarian damage and the postponement of pregnancy due to adjuvant endocrine therapy contribute to unsatisfactory fertility outcomes among breast cancer patients [60]. Furthermore, for patients who have undergone chemotherapy, even if they have been cured of cancer, certain risks may exist during pregnancy, including fetal abnormalities, premature birth, and miscarriage. Medications can also contribute to postnatal complications, such as birth defects and developmental issues [61-64]. It is crucial to prioritize fertility preservation for cancer patients before initiating treatment, a consideration often neglected in many conventional tumor treatments. It highlights the need for increased attention and comprehensive improvement in this area [65]. Currently, standard techniques for preserving fertility include oocyte cryopreservation, embryo cryopreservation, and ovarian tissue cryopreservation. Determining the most suitable preservation method requires careful consideration of factors such as the patient's tumor stage, age, marital status, treatment regimen, physical wellbeing, and personal preferences [66].

3.1 Oocyte Acquisition and Maturation in Fertility Preservation

Controlled ovarian stimulation (COS) represents a pivotal aspect of reproductive technology, entailing the administration of exogenous gonadotropins under rigorous monitoring to stimulate the development of multiple follicles, thereby aiming to obtain an appropriate number of high-quality oocytes. Traditional COS protocols initiate during the follicular phase and may not be adequate for preserving fertility in patients requiring immediate cancer therapy. However, progress in the understanding the menstrual cycle has led to the development of innovative random-start COS methods, enabling ovarian stimulation at any phase of the cycle [66]. Research by Baerwald and Pierson [62] has demonstrated that the efficacy of random-start COS in preserving fertility is comparable to that of conventional COS. As a result, a larger cohort of patients can preserve their fertility and proceed with tumor treatment after a brief delay of only 2-3 weeks through random-start COS, thereby effectively minimizing any potential setbacks in their tumor treatment [67]. Ovarian stimulation can induce a shortterm elevation in estrogen levels, consequently increasing the risk of breast cancer tumor recurrence [68,69]. Consequently, certain breast cancer treatment protocols incorporate the use of adjuvant drugs alongside standard ovarian stimulation medications. Commonly utilized options include the estrogen receptor modulator TAM and the aromatase inhibitor Letrozole. Randomized controlled trials have demonstrated no significant differences in oocyte quality among breast cancer patients undergoing standard ovarian stimulation, those receiving standard stimulation plus TAM, and those receiving standard stimulation plus Letrozole. This suggests that the addition of TAM or Letrozole to the standard ovarian stimulation regimen does not impact survival rates [70]. Importantly, studies have revealed no significant difference in the risk of breast cancer recurrence or disease-free survival between breast cancer patients undergoing fertility preservation using COS with Letrozole and those who do not pursue fertility preservation [71,72]. COS typically culminates with a trigger to induce oocyte maturation. Common trigger options include human chorionic gonadotropin (hCG), FSH, luteinizing hormone (LH), and GnRH agonist (GnRHa). Single triggering refers to the administration of a single COS trigger medica-

tion to induce maturation of multiple ovarian follicles, with the goal of inducing ovulation using only one drug. Dual triggering refers to the utilization of a combination of trigger medications, commonly involving the administration of both GnRHa and hCG [73]. Reddy *et al.* [74] have demonstrated that in breast cancer patients treated with Letrozole and gonadotropin stimulation, with the use of GnRHa trigger not only improves treatment cycle outcomes but also significantly reduces the risk of ovarian hyperstimulation syndrome.

IVM is classified as an adjunctive reproductive technology, wherein immature oocytes are retrieved without COS and subsequently matured through in vitro experimentation. This technique also represents a viable approach for breast cancer patients seeking to preserve their fertility [75]. Studies have shown that the retrieval of immature oocytes without COS, followed by IVM and vitrification of oocytes or embryos, neither increased serum estradiol levels nor delayed treatment for patients with breast cancer [75]. Shalom-Paz et al. [76] reviewed 66 patients with breast cancer who underwent extraction of immature oocytes without COS and subsequent IVM. Consequently, the maturity rate of oocytes was 64.2%, and the fertilization rate was 77.8%. Overall, IVM emerges as a more favorable strategy for fertility preservation in patients with breast cancer.

3.2 Cryopreservation in Fertility Preservation

Cryopreservation of oocytes or embryos constitutes a pivotal element of assisted reproductive technology (ART) and represents a fundamental method for preserving fertility in females diagnosed with cancer-related reproductive syndromes. For single female patients, oocyte cryopreservation serves as a crucial method for preserving fertility. Furthermore, for individuals with partners, embryo cryopreservation carries significant significance. Unlike oocyte cryopreservation, embryo cryopreservation involves periodic in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) subsequent to oocyte retrieval. Cryopreservation methods, such as slow freezing and vitrification, allow for the storage of oocytes or embryos for extended periods of time, sometimes spanning many years [77]. Oocyte cryopreservation is slower compared to embryo cryopreservation, requiring the use of additional cryoprotectants for the slow freezing process [78]. One study compiled data from 8824 cryopreserved embryos, comprising 7482 vitrified embryos and 1342 slow-frozen embryos, all fertilized through IVF or ICSI. These results indicated that compared with slow-freezing, the post-thaw survival rate of cleavagestage embryos and blastocysts was significantly higher following vitrification [79]. However, the majority of vitrification methods employ an open system, wherein oocytes are directly exposed to liquid nitrogen to facilitate ultrarapid cooling and minimize ice crystal formation. Nevertheless, there remains a risk of contamination in liquid nitrogen as a consequence of the direct exposure of oocytes. Hence, the development of methods for disinfecting liquid nitrogen disinfection is critical. Currently, certain methods such as microfiltration or ultraviolet light are being employed [80]. Guidelines from the American Society for Reproductive Medicine and the Society for ART indicate that following vitrification, the survival rate of oocytes ranges from 90% to 97%, the fertilization rate from 71% to 79%, the implantation rate from 17% to 41%, and the estimated clinical pregnancy rate per thawed oocyte from 4.5% to 12% [81]. Overall, vitrification offers robust technical support for fertility preservation in cancer patients.

The primary aim of ovarian tissue cryopreservation is to preserve and maintain a woman's fertility, enabling her to utilize her oocytes for future conception. This is particularly critical for pre-adolescent girls diagnosed with malignant tumors before experiencing their first menstrual cycle, as well as for patients who are unable to undergo COS due to urgent cancer treatment requirements. Typically, follicles or ovarian tissue are obtained from the patient's ovaries through surgery, promptly frozen in specialized cryoprotectant solutions, and then stored long-term in liquid nitrogen. Following the patient's treatment, when the decision to conceive is made, the tissue is thawed and re-implanted into the patient's body to restore fertility. The success of ovarian tissue cryopreservation may be influenced by various factors, including patient's age, tumor grade, storage duration, and tissue quality. Although clinical experience remains limited, numerous successful cases have been reported. Over 130 instances of full-term pregnancies have been documented following autotransplantation of cryopreserved ovarian tissue [82,83].

3.3 Function of GnRHa in Fertility Preservation

GnRHa plays several key roles in fertility conservation. Primarily, understanding the fundamental mechanism of GnRHa is essential. GnRHa primarily mimics the action of GnRH to regulate the secretion of gonadotropin in the pituitary gland, particularly FSH and LH [84].

In the fertility preservation of breast cancer patients, GnRHa is mainly employed in the following aspects: (1) Blocking FSH secretion: continuous administration of Gn-RHa inhibits the pituitary gland, thus reducing ovarian stimulation [85]. This is particularly important during chemotherapy, as chemotherapeutic drugs often exert toxic effects on the ovary. By reducing FSH secretion, GnRHa can decrease the ovarian sensitivity to these drugs, thus helping to protect the ovary from injury. (2) Reducing uterine-ovarian stimulation: GnRHa also reduces the uterus and ovary stimulation by lowering estrogen levels. This helps in creating more favorable conditions for subsequent fertility preservation procedures, such as cryopreservation of oocytes or embryos [86]. Furthermore, GnRHa can activate GnRH receptors on the ovary, despite its usual inhibitory effect. This activation may help 'prime' the ovary

Table 2. Viable fertility preservation techniques for breast cancer patients.

Technique name	Applicable user	Key points	Live birth rate/ fertilization rate
Oocyte cryopreser- vation	Single patient	It serves as the foundation for subsequent IVF-assisted reproduction.	34%~42%
Embryo cryopreservation	Patients with partner	Currently, it is the most advanced and optimal fer- tility preservation method.	14%~34%
Ovarian tissue cry- opreservation	Pre-adolescent girls/Patients requiring emergency treatment	It does not delay treatment time, does not affect the changes of hormone levels in the body, and can restore ovarian endocrine function. The survival rate of tissue transplantation is as high as 96 %, and presents a large fertility reserve.	40%~43.3%
Random-start ovarian stimulation	Non-prepubertal patient	It can start COS at any time and does not delay treatment time.	-
IVM	Non-prepubertal patient	It does not delay tumor treatment and does not affect changes in hormone levels for patients.	77.8%

Note: The corresponding index for oocyte cryopreservation, embryo cryopreservation, and ovarian tissue cryopreservation is the live birth rate; the index corresponding to the IVM of oocytes is the fertilization rate.

IVM, in vitro maturation; IVF, in vitro fertilization; COS, controlled ovarian stimulation.

before chemotherapy, increasing its sensitivity to subsequent fertility preservation measures. (3) Up-regulation of anti-apoptotic molecules in the gonad: chemotherapeutic drugs often impair ovarian function by inducing apoptosis. However, GnRHa can upregulate anti-apoptotic molecules such as Bcl-2 within the ovary. This action helps counteract apoptosis induced by chemotherapeutic agents, thus protecting ovarian cells from damage. (4) Protecting undifferentiated germline stem cells: preserving undifferentiated germline stem cells in the ovary is crucial for young women, as these cells are critical for future fertility. Gn-RHa can protect these stem cells from the damage caused by chemotherapy drugs through mechanisms mentioned before.

Overall, GnRHa plays multiple protective roles in fertility conservation in breast cancer patients. It not only directly protects the ovary from chemotherapeutic agents [87], but also creates more favorable conditions for subsequent fertility preservation measures by regulating the endocrine environment. This renders GnRHa an essential component of breast cancer treatment, particularly in young female patients aiming to preserve their fertility. Table 2 provides a synopsis of viable fertility preservation techniques for breast cancer patients.

4. Prospect of Potential Strategies for Fertility Preservation

Preservation of fertility is of paramount importance when addressing the treatment needs of young patients with breast cancer. Given contemporary clinical approaches, several potential strategies can be utilized for fertility preservation or to improve fertility outcome. This include

3D bioprinting and Traditional Chinese Medicine (TCM)-assisted treatment [66].

4.1 3D Bioprinting Technology

With advancements in 3D bioprinting technology and cell biology, it has become possible to create artificial organs or tissues that are biocompatible, biodegradable, and functional [88]. In the field of female reproductive therapy, 3D bioprinting technology has been extensively explored. In 2017, Laronda et al. [89] attempted to 3D bioprint ovaries, reporting that the 3D manufacturing of ovarian tissue could partially restore ovarian hormone secretion and oocyte production functionality. In 2022, Wu et al. [90] used gelatin-methacrylate for the 3D bioprinting of artificial ovaries, suggesting that it exhibited good moisture absorbency, degradation kinetics, and shape fidelity. This artificial ovary provided a suitable microenvironment for ovarian follicles, enabling their successful growth and ovulation [90]. Li et al. [91] demonstrated that 3D bioprinted artificial ovaries, devoid of drug-based in vitro activation technology and comprised of fat-derived stem cells, successfully restored ovarian insufficiency and ovarian dysfunction in mice. Their study further suggested that 3D bioprinting extends the viability of fat-derived stem cells, initiates early vascular microenvironment, regulates hormone levels, promotes follicle maturation, and ultimately improves premature ovarian insufficiency (POI) [91].

4.2 TCM Adjuvant Therapy

TCM has emerged as a prominent treatment approach for various health conditions in China and other Asian countries, including for POI, which is characterized by a decline ovarian function before the age 40 [92,93]. Breast can-

cer survivors experiencing ovarian damage resulting from chemotherapy may find potential benefits from insights derived from TCM approaches employed in the clinical management of POI. According to TCM principles, the kidneys are considered the foundation of innate essence, playing a crucial role in regulating the body's growth, development, and reproductive functions. Kidney essence is believed to transform into blood, which subsequently nourishes all bodily organs and systems in the body. Deficiencies in kidney essence can result in compromised female reproductive capabilities. Hence, TCM frequently employs kidneytonifying herbal remedies to address disorders associated with ovarian dysfunction. Zhang et al. [94] administered an herbal formulation called the "Yi Shen Yang Lvan Formula", specifically designed to nourish both the kidneys and ovaries in the treatment of POI. After a three-month treatment regimen, patients exhibited increased AMH levels, accompanied by decreased levels of FSH and LH. Additionally, the treatment resulted in the inhibition of apoptosis in ovarian granulosa cells, thereby enhancing ovarian reserve function in the patients [94]. Xie et al. [95] conducted a study suggesting that the "Hu Yang Yang Kun Formula" might inhibit granulosa cell apoptosis, decrease follicle atresia, and restore ovarian function by the Hippo-JAK2/STAT3 signaling pathway. Furthermore, other TCM treatments have been employed to restore ovarian function. Zhang et al. [96] applied moxibustion to the "Guan Yuan" and "San Yin Jiao" acupoints in rats with POI. This intervention was observed to inhibit the phosphorylation of the PI3K/Akt/mTOR signaling pathway in ovarian tissues, decrease Akt activation, suppress premature development and excessive apoptosis of primordial follicles, and enhance ovarian hormone levels while reducing inflammatory responses [96]. A meta-analysis revealed that combined treatment involving acupuncture alongside other therapies (TCM/Western Medicine) for POI is more effective compared to utilizing TCM or Western Medicine alone [97]. A recent meta-analysis has revealed that the combined treatment of acupuncture and Chinese herbal medicine for POI exhibits significantly greater overall efficacy in contrast to Western Medicine [98]. In summary, it appears feasible to develop innovative strategies based on TCM treatment methods for restoring ovarian function and preserving fertility among breast cancer patients.

4.3 Artificial Intelligence (AI)

AI is employed across diverse domains of the medical field, including image diagnostics, prediction of disease risk, and the development of new drugs. The careful selection of embryos for transplantation during the IVF treatment process is paramount, as it can significantly enhance the success rate of live births while mitigating potential complications. Embryologists frequently rely on their expertize when selecting embryos, resulting in significant variability. Introducing AI technology into the field of IVF facilitated

automated and standardized processes for assessing the success rate of fertilized embryos. This helps reduce current errors and inaccuracies in manual selection judgments, ultimately improving the success rate of IVF [99–101]. Hariton et al. [102] revealed that machine learning algorithms can optimize the timing of trigger injections to achieve the maximum yield of available oocytes and improve fertilization rates. Letterie and Mac Donald [103] developed a computer algorithm designed for IVF management, showcasing remarkable accuracy in decision-making across various stages: continuing or stopping ovulation stimulation (0.92), triggering and scheduling egg retrieval or canceling the cycle (0.96), adjusting medication dosage (0.82), and determining follow-up days (0.87). These advancements collectively contribute to the improvement of the success rate of IVF [103].

5. Conclusions

While the survival of cancer patients have notably improved, the ramifications of reduced fertility on the cancer survivors remain a complex and multifaceted issue. Cancer survivors encounter a multitude of challenges, including physical difficulties, the risk of disease recurrence, long-term side effects, as well as psychological, social, and emotional stress [104]. Among these challenges, the issue of fertility holds particularly importance for young female cancer survivors. Although there is currently no evidence suggesting that fertility impacts the prognosis of breast cancer patients, a significant proportion of young breast cancer patients express a strong desire to preserve their fertility [105,106]. The POSITIVE trial (NCT02308085) demonstrated that temporary interruption of endocrine therapy in women with previous hormone receptor-positive in early breast cancer, aimed at attempting pregnancy, did not result in a higher short-term risk of breast cancer events [107]. Therefore, it is crucial for doctors to actively explore appropriate treatment modalities and incorporate fertility preservation strategies to align the preferences of these patients [108].

Young female cancer patients should actively pursue approaches for preserving fertility during their treatment. This involves consulting a healthcare provider before starting treatment to understand the impact of chemotherapy on fertility and potential protective measures. Implementing appropriate measures during treatment, such as preserving ovarian function with hormone medications; and actively seeking fertility counseling and support prior treatment to determine the fertility program best suited for their individual needs. Moreover, social and family support is critical for cancer survivors. It is necessary to increase the research efforts and publicize fertility preservation for cancer survivors, aiming to improve the public awareness and attention toward this issue. Additionally, medical practitioners should be knowledgeable in diverse approaches, considering the unique clinical presentation of each patient, to attain

optimal outcomes. Integrating existing technologies with emerging ones, such as 3D bioprinting, TCM, and AI, is crucial in advancing the development of breast cancer treatment and fertility preservation methods.

Abbreviations

TAM, tamoxifen; HER2, human epidermal growth factor receptor 2; T-DM1, ado-trastuzumab emtansine; AMH, anti-Mullerian hormone; TH, paclitaxeltrastuzumab; TRA, treatment-related amenorrhea; CDK, cyclin-dependent kinases; HR, hormone receptor; COS, controlled ovarian stimulation; hCG, human chorionic gonadotropin; FSH, follicle-stimulating hormone; LH, luteinising hormone; GnRHa, gonadotropin-releasing hormone antagonists; SOFT, Suppression Ovarian Function Trial; TEXT, Exemestane Trial; COCs, cumulus-oocyte complexes; ART, assisted reproductive technology; IVF, *in vitro* fertilization; ICSI, intracytoplasmic sperm injection; TCM, Traditional Chinese Medicine; POI, premature ovarian insufficiency; AI, artificial intelligence.

Author Contributions

SZ, LC, ZM conducted the literature review and wrote the manuscript. YY contributed to the conceptualization of the review. YY also significantly revised and approved the manuscript. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.

Ethics Approval and Consent to Participate

Not applicable.

Acknowledgment

We thank YiGuo (http://www.ygtranslation.com/) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by grants from the Shanghai Municipal Science and Technology Project (21S11900400).

Conflict of Interest

The authors declare no conflict of interest.

References

- [1] Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chinese Medical Journal. 2021; 134: 783–791.
- [2] Paluch-Shimon S, Cardoso F, Partridge AH, Abulkhair O, Azim HA, Bianchi-Micheli G, *et al.* ESO-ESMO fifth international consensus guidelines for breast cancer in young women (BCY5). Annals of Oncology. 2022; 33: 1097–1118.
- [3] Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA: A Cancer Journal for Clinicians. 2022; 72: 7–33.

- [4] Basho RK, Gilcrease M, Murthy RK, Helgason T, Karp DD, Meric-Bernstam F, et al. Targeting the PI3K/AKT/mTOR Pathway for the Treatment of Mesenchymal Triple-Negative Breast Cancer: Evidence From a Phase 1 Trial of mTOR Inhibition in Combination With Liposomal Doxorubicin and Bevacizumab. JAMA Oncology. 2017; 3: 509–515.
- [5] Gu HF, Mao XY, Du M. Prevention of breast cancer by dietary polyphenols-role of cancer stem cells. Critical Reviews in Food Science and Nutrition. 2020; 60: 810–825.
- [6] Yildiz S, Bildik G, Benlioglu C, Turan V, Dilege E, Ozel M, et al. Breast cancer treatment and ovarian function. Reproductive Biomedicine Online. 2023; 46: 313–331.
- [7] Schuurman TN, Witteveen PO, van der Wall E, Passier JLM, Huitema ADR, Amant F, et al. Tamoxifen and pregnancy: an absolute contraindication? Breast Cancer Research and Treatment. 2019; 175: 17–25.
- [8] Lumachi F, Luisetto G, Basso SMM, Basso U, Brunello A, Camozzi V. Endocrine therapy of breast cancer. Current Medicinal Chemistry. 2011; 18: 513–522.
- [9] Johansen G, Dahm-Kähler P, Staf C, Flöter Rådestad A, Rodriguez-Wallberg KA. A Swedish Nationwide prospective study of oncological and reproductive outcome following fertility-sparing surgery for treatment of early stage epithelial ovarian cancer in young women. BMC Cancer. 2020; 20: 1009.
- [10] Ruddy KJ, Gelber SI, Tamimi RM, Ginsburg ES, Schapira L, Come SE, *et al.* Prospective study of fertility concerns and preservation strategies in young women with breast cancer. Journal of Clinical Oncology. 2014; 32: 1151–1156.
- [11] Lian W, Fu F, Lin Y, Lu M, Chen B, Yang P, *et al.* The Impact of Young Age for Prognosis by Subtype in Women with Early Breast Cancer. Scientific Reports. 2017; 7: 11625.
- [12] Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. International Journal of Stroke. 2018; 13: 612–632.
- [13] Saha P, Regan MM, Pagani O, Francis PA, Walley BA, Ribi K, et al. Treatment Efficacy, Adherence, and Quality of Life Among Women Younger Than 35 Years in the International Breast Cancer Study Group TEXT and SOFT Adjuvant Endocrine Therapy Trials. Journal of Clinical Oncology. 2017; 35: 3113–3122.
- [14] Yeo W, Li L, Lau TK, Lai KT, Chan VT, Wong KH, et al. Identification of optimal contemporary antiemetic prophylaxis for doxorubicin-cyclophosphamide chemotherapy in Chinese cancer patients: post-hoc analysis of 3 prospective studies. Cancer Biology & Medicine. 2021; 18: 825.
- [15] Zhai Y, Zhou X, Jia L, Ma C, Song R, Deng Y, et al. Acetal-Linked Paclitaxel Polymeric Prodrug Based on Functionalized mPEG-PCL Diblock Polymer for pH-Triggered Drug Delivery. Polymers. 2017; 9: 698.
- [16] Yamaguchi-Tanaka M, Takagi K, Miki Y, Sato A, Iwabuchi E, Miyashita M, et al. The Pro-Tumorigenic Role of Chemotherapy-Induced Extracellular HSP70 from Breast Cancer Cells via Intratumoral Macrophages. Cancers. 2023; 15: 1903.
- [17] Salah M, Sallam MA, Abdelmoneem MA, Teleb M, Elkhodairy KA, Bekhit AA, et al. Sequential Delivery of Novel Triple Drug Combination via Crosslinked Alginate/Lactoferrin Nanohybrids for Enhanced Breast Cancer Treatment. Pharmaceutics. 2022; 14: 2404
- [18] Shepelytskyi Y, Fox MS, Davenport K, Li T, Albert MS, Davenport E. *In-Vivo* Retention of 5-Fluorouracil Using ¹⁹F Magnetic Resonance Chemical Shift Imaging in Colorectal Cancer in a Murine Model. Scientific Reports. 2019; 9: 13244.
- [19] Imai A, Matsunami K, Takagi H, Ichigo S. Proposed medications for taxane-induced myalgia and arthralgia (Review). Oncology Letters. 2012; 3: 1181–1185.

- [20] Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Electronic address: bc.overview@ctsu.ox.ac.uk, Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Anthracycline-containing and taxane-containing chemotherapy for early-stage operable breast cancer: a patient-level metaanalysis of 100 000 women from 86 randomised trials. Lancet. 2023; 401: 1277–1292.
- [21] Xu Z, Takahashi N, Harada M, Kunitomi C, Kusamoto A, Koike H, et al. The Role of Cellular Senescence in Cyclophosphamide-Induced Primary Ovarian Insufficiency. International Journal of Molecular Sciences. 2023; 24: 17193.
- [22] Owumi SE, Adebisi GE, Odunola OA. Epirubicin toxicity in rat's ovary and uterus: A protective role of 3-Indolepropionic acid supplementation. Chemico-Biological Interactions. 2023; 374: 110414.
- [23] Wang N, Li H, Zhu Y, Li N, Chen ZJ, Zhang C. Melatonin protects against Epirubicin-induced ovarian damage. The Journal of Reproduction and Development. 2020; 66: 19–27.
- [24] Soleimani R, Heytens E, Darzynkiewicz Z, Oktay K. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging. 2011; 3: 782–793.
- [25] Alexandri C, Stamatopoulos B, Rothé F, Bareche Y, Devos M, Demeestere I. MicroRNA profiling and identification of let-7a as a target to prevent chemotherapy-induced primordial follicles apoptosis in mouse ovaries. Scientific Reports. 2019; 9: 9636.
- [26] Ai G, Meng M, Guo J, Li C, Zhu J, Liu L, *et al.* Adipose-derived stem cells promote the repair of chemotherapy-induced premature ovarian failure by inhibiting granulosa cells apoptosis and senescence. Stem Cell Research & Therapy. 2023; 14: 75.
- [27] Edimiris P, Krüssel JS. Fertility preservation options before gonadotoxic antirheumatic treatment: A review. Zeitschrift Fur Rheumatologie. 2021; 80: 726–732.
- [28] Kado R, McCune WJ. Ovarian protection with gonadotropinreleasing hormone agonists during cyclophosphamide therapy in systemic lupus erythematosus. Best Practice & Research. Clinical Obstetrics & Gynaecology. 2020; 64: 97–106.
- [29] Mathelin C, Brettes JP, Diemunsch P. Premature ovarian failure after chemotherapy for breast cancer. Bulletin du Cancer. 2008; 95: 403–412. (In French)
- [30] Maneschi F, Benedetti-Panici P, Scambia G, Salerno MG, D'Agostino G, Mancuso S. Menstrual and hormone patterns in women treated with high-dose cisplatin and bleomycin. Gynecologic Oncology. 1994; 54: 345–348.
- [31] Wang Q, Hutt KJ. Evaluation of mitochondria in mouse oocytes following cisplatin exposure. Journal of Ovarian Research. 2021; 14: 65.
- [32] Wang H, Guo S, Kim SJ, Shao F, Ho JWK, Wong KU, *et al.* Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Theranostics. 2021; 11: 2442–2459.
- [33] Özcan P, Fiçicioğlu C, Yıldırım ÖK, Özkan F, Akkaya H, Aslan İ. Protective effect of resveratrol against oxidative damage to ovarian reserve in female Sprague-Dawley rats. Reproductive Biomedicine Online. 2015; 31: 404–410.
- [34] Yeh J, Kim BS, Peresie J. Protection against cisplatininduced ovarian damage by the antioxidant sodium 2mercaptoethanesulfonate (mesna) in female rats. American Journal of Obstetrics and Gynecology. 2008; 198: 463.e1– 463.e6; discussion 463.e6–7.
- [35] Ünal Ç, Ordu Ç, Özmen T, İlgun AS, Çelebi F, Baysal B, et al. Evaluation of Anti-Mullerian Hormone Levels, Antral Follicle Counts, and Mean Ovarian Volumes in Chemotherapy-Induced Amenorrhea among Breast Cancer Patients: A Prospective Clinical Study. Current Oncology. 2023; 30: 9217–9229.
- [36] Jang H, Lee OH, Lee Y, Yoon H, Chang EM, Park M, et al.

- Melatonin prevents cisplatin-induced primordial follicle loss via suppression of PTEN/AKT/FOXO3a pathway activation in the mouse ovary. Journal of Pineal Research. 2016; 60: 336–347.
- [37] Lefojane RP, Sone BT, Matinise N, Saleh K, Direko P, Mfengwana P, et al. CdO/CdCO₃ nanocomposite physical properties and cytotoxicity against selected breast cancer cell lines. Scientific Reports. 2021; 11: 30.
- [38] Mohd Idris RA, Mussa A, Ahmad S, Al-Hatamleh MAI, Hassan R, Tengku Din TADAA, et al. The Effects of Tamoxifen on Tolerogenic Cells in Cancer. Biology. 2022; 11: 1225.
- [39] Nynca A, Swigonska S, Ruszkowska M, Sadowska A, Orlowska K, Molcan T, et al. Tamoxifen decreases ovarian toxicity without compromising cancer treatment in a rat model of mammary cancer. BMC Genomics. 2023; 24: 325.
- [40] Nynca A, Swigonska S, Molcan T, Petroff BK, Ciereszko RE. Molecular Action of Tamoxifen in the Ovaries of Rats with Mammary Neoplasia. International Journal of Molecular Sciences. 2023; 24: 15767.
- [41] Kim HJ, Noh WC, Nam SJ, Park BW, Lee ES, Im SA, et al. Five-year changes in ovarian function restoration in premenopausal patients with breast cancer taking tamoxifen after chemotherapy: An ASTRRA study report. European Journal of Cancer. 2021; 151: 190–200.
- [42] Séralini G, Moslemi S. Aromatase inhibitors: past, present and future. Molecular and Cellular Endocrinology. 2001; 178: 117– 131
- [43] Francis PA, Pagani O, Fleming GF, Walley BA, Colleoni M, Láng I, et al. Tailoring Adjuvant Endocrine Therapy for Premenopausal Breast Cancer. The New England Journal of Medicine. 2018; 379: 122–137.
- [44] Grizzi G, Ghidini M, Botticelli A, Tomasello G, Ghidini A, Grossi F, et al. Strategies for Increasing the Effectiveness of Aromatase Inhibitors in Locally Advanced Breast Cancer: An Evidence-Based Review on Current Options. Cancer Management and Research. 2020; 12: 675–686.
- [45] Kwapisz D. Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunology, Immunotherapy. 2021; 70: 607–617.
- [46] Xu PC, Luan Y, Yu SY, Xu J, Coulter DW, Kim SY. Effects of PD-1 blockade on ovarian follicles in a prepubertal female mouse. The Journal of Endocrinology. 2021; 252: 15–30.
- [47] Cui W, Francis PA, Loi S, Hickey M, Stern C, Na L, et al. Assessment of Ovarian Function in Phase III (Neo)Adjuvant Breast Cancer Clinical Trials: A Systematic Evaluation. Journal of the National Cancer Institute. 2021; 113: 1770–1778.
- [48] Tung NM, Robson ME, Ventz S, Santa-Maria CA, Nanda R, Marcom PK, et al. TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes. Journal of Clinical Oncology. 2020; 38: 4274–4282.
- [49] Winship AL, Griffiths M, Lliberos Requesens C, Sarma U, Phillips KA, Hutt KJ. The PARP inhibitor, olaparib, depletes the ovarian reserve in mice: implications for fertility preservation. Human Reproduction. 2020; 35: 1864–1874.
- [50] Geyer CE, Jr, Garber JE, Gelber RD, Yothers G, Taboada M, Ross L, et al. Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer. Annals of Oncology. 2022; 33: 1250–1268.
- [51] Tutt ANJ, Garber JE, Kaufman B, Viale G, Fumagalli D, Rastogi P, et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. The New England Journal of Medicine. 2021; 384: 2394–2405.
- [52] Piezzo M, Cocco S, Caputo R, Cianniello D, Gioia GD, Lauro VD, et al. Targeting Cell Cycle in Breast Cancer: CDK4/6 Inhibitors. International Journal of Molecular Sciences. 2020; 21:

6479

- [53] Dong F, Meng TG, Li J, Wang F, Li YY, Ouyang YC, et al. Inhibition of CDK4/6 kinases causes production of aneuploid oocytes by inactivating the spindle assembly checkpoint and accelerating first meiotic progression. Biochimica et Biophysica Acta. Molecular Cell Research. 2021; 1868: 119044.
- [54] Catlin NR, Bowman CJ, Engel SM, Sacaan A, Thibault S, Lewis EM, et al. Reproductive and developmental toxicity assessment of palbociclib, a CDK4/6 inhibitor, in Sprague-Dawley rats and New Zealand White rabbits. Reproductive Toxicology. 2019; 88: 76–84.
- [55] Gote V, Nookala AR, Bolla PK, Pal D. Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. International Journal of Molecular Sciences. 2021; 22: 4673.
- [56] Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, et al. Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network. 2022; 20: 691–722.
- [57] Levi M, Goshen-Lago T, Yerushalmi R, Granot T, Stemmer SM, Shalgi R, et al. Anti-HER2/neu Antibody Reduces Chemotherapy-Induced Ovarian Toxicity-From Bench to Bedside. Biomedicines. 2020; 8: 577.
- [58] Ruddy KJ, Zheng Y, Tayob N, Hu J, Dang CT, Yardley DA, et al. Chemotherapy-related amenorrhea (CRA) after adjuvant adotrastuzumab emtansine (T-DM1) compared to paclitaxel in combination with trastuzumab (TH) (TBCRC033: ATEMPT Trial). Breast Cancer Research and Treatment. 2021; 189: 103–110.
- [59] Lambertini M, Campbell C, Bines J, Korde LA, Izquierdo M, Fumagalli D, et al. Adjuvant Anti-HER2 Therapy, Treatment-Related Amenorrhea, and Survival in Premenopausal HER2-Positive Early Breast Cancer Patients. Journal of the National Cancer Institute. 2019; 111: 86–94.
- [60] Stearns V, Schneider B, Henry NL, Hayes DF, Flockhart DA. Breast cancer treatment and ovarian failure: risk factors and emerging genetic determinants. Nature Reviews. Cancer. 2006; 6: 886–893.
- [61] Cleary C, Leeman JE, Higginson DS, Katabi N, Sherman E, Morris L, et al. Biological Features of Human Papillomavirusrelated Head and Neck Cancers Contributing to Improved Response. Clinical Oncology. 2016; 28: 467–474.
- [62] Baerwald A, Pierson R. Ovarian follicular waves during the menstrual cycle: physiologic insights into novel approaches for ovarian stimulation. Fertility and Sterility. 2020; 114: 443–457.
- [63] Danet C, Araujo M, Bos-Thompson MA, Portolan G, Gautier S, Vanlemmens L, et al. Pregnancy outcomes in women exposed to cancer chemotherapy. Pharmacoepidemiology and Drug Safety. 2018; 27: 1302–1308.
- [64] Matikas A, Lambertini M. ESMO20 YO for YO: highlights on adjuvant CDK4/6 inhibitors in early hormone receptorpositive/HER2-negative breast cancer. ESMO Open. 2021; 6: 100014.
- [65] Diedrich K, Fauser BCJM, Devroey P, Evian Annual Reproduction (EVAR) Workshop Group 2009. Cancer and fertility: strategies to preserve fertility. Reproductive Biomedicine Online. 2011; 22: 232–248.
- [66] Anderson RA, Brewster DH, Wood R, Nowell S, Fischbacher C, Kelsey TW, et al. The impact of cancer on subsequent chance of pregnancy: a population-based analysis. Human Reproduction. 2018; 33: 1281–1290.
- [67] Cakmak H, Katz A, Cedars MI, Rosen MP. Effective method for emergency fertility preservation: random-start controlled ovarian stimulation. Fertility and Sterility. 2013; 100: 1673–1680.
- [68] Rosenberg E, Fredriksson A, Einbeigi Z, Bergh C, Strandell A. No increased risk of relapse of breast cancer for women who give birth after assisted conception. Human Reproduction Open.

- 2019; 2019: hoz039.
- [69] Nye L, Rademaker A, Gradishar WJ. Breast Cancer Outcomes After Diagnosis of Hormone-positive Breast Cancer and Subsequent Pregnancy in the Tamoxifen Era. Clinical Breast Cancer. 2017; 17: e185–e189.
- [70] Balkenende EME, Dahhan T, Beerendonk CCM, Fleischer K, Stoop D, Bos AME, et al. Fertility preservation for women with breast cancer: a multicentre randomized controlled trial on various ovarian stimulation protocols. Human Reproduction. 2022; 37: 1786–1794.
- [71] Kim J, Turan V, Oktay K. Long-Term Safety of Letrozole and Gonadotropin Stimulation for Fertility Preservation in Women With Breast Cancer. The Journal of Clinical Endocrinology and Metabolism. 2016; 101: 1364–1371.
- [72] Marklund A, Eloranta S, Wikander I, Kitlinski ML, Lood M, Nedstrand E, et al. Efficacy and safety of controlled ovarian stimulation using GnRH antagonist protocols for emergency fertility preservation in young women with breast cancer-a prospective nationwide Swedish multicenter study. Human Reproduction. 2020; 35: 929–938.
- [73] Blockeel C, Agius MP, De Rijdt S, Tournaye H, De Vos M, Drakopoulos P. O-294 Dual trigger versus hCG-only trigger in ICSI patients: an analysis of 8500 cycles. Human Reproduction. 2023; 38.
- [74] Reddy J, Turan V, Bedoschi G, Moy F, Oktay K. Triggering final oocyte maturation with gonadotropin-releasing hormone agonist (GnRHa) versus human chorionic gonadotropin (hCG) in breast cancer patients undergoing fertility preservation: an extended experience. Journal of Assisted Reproduction and Genetics. 2014; 31: 927–932.
- [75] Huang JYJ, Chian RC, Gilbert L, Fleiszer D, Holzer H, Dermitas E, et al. Retrieval of immature oocytes from unstimulated ovaries followed by in vitro maturation and vitrification: A novel strategy of fertility preservation for breast cancer patients. American Journal of Surgery. 2010; 200: 177–183.
- [76] Shalom-Paz E, Almog B, Shehata F, Huang J, Holzer H, Chian RC, et al. Fertility preservation for breast-cancer patients using IVM followed by oocyte or embryo vitrification. Reproductive Biomedicine Online. 2010; 21: 566–571.
- [77] Konc J, Kanyó K, Kriston R, Somoskői B, Cseh S. Cryopreservation of embryos and oocytes in human assisted reproduction. BioMed Research International. 2014; 2014: 307268.
- [78] Rezazadeh Valojerdi M, Eftekhari-Yazdi P, Karimian L, Hassani F, Movaghar B. Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. Journal of Assisted Reproduction and Genetics. 2009; 26: 347–354.
- [79] Loutradi KE, Kolibianakis EM, Venetis CA, Papanikolaou EG, Pados G, Bontis I, et al. Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and metaanalysis. Fertility and Sterility. 2008; 90: 186–193.
- [80] Parmegiani L, Cognigni GE, Bernardi S, Cuomo S, Ciampaglia W, Infante FE, et al. Efficiency of aseptic open vitrification and hermetical cryostorage of human oocytes. Reproductive Biomedicine Online. 2011; 23: 505–512.
- [81] Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. Mature oocyte cryopreservation: a guideline. Fertility and Sterility. 2013; 99: 37–43.
- [82] Dolmans MM, Falcone T, Patrizio P. Importance of patient selection to analyze in vitro fertilization outcome with transplanted cryopreserved ovarian tissue. Fertility and Sterility. 2020; 114: 279–280
- [83] Rosendahl M, Timmermans Wielenga V, Nedergaard L, Kristensen SG, Ernst E, Rasmussen PE, *et al.* Cryopreservation of ovarian tissue for fertility preservation: no evidence of ma-

- lignant cell contamination in ovarian tissue from patients with breast cancer. Fertility and Sterility. 2011; 95: 2158–2161.
- [84] Blumenfeld Z. How to preserve fertility in young women exposed to chemotherapy? The role of GnRH agonist cotreatment in addition to cryopreservation of embrya, oocytes, or ovaries. The Oncologist. 2007; 12: 1044–1054.
- [85] Schneider F, Tomek W, Gründker C. Gonadotropin-releasing hormone (GnRH) and its natural analogues: a review. Theriogenology. 2006; 66: 691–709.
- [86] Hsueh AJ, Jones PB. Extrapituitary actions of gonadotropinreleasing hormone. Endocrine Reviews. 1981; 2: 437–461.
- [87] Donnez J, Dolmans MM. Fertility preservation in women. Nature Reviews. Endocrinology. 2013; 9: 735–749.
- [88] Shiju TM, Carlos de Oliveira R, Wilson SE. 3D in vitro corneal models: A review of current technologies. Experimental Eye Research. 2020; 200: 108213.
- [89] Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, *et al.* A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nature Communications. 2017; 8: 15261.
- [90] Wu T, Gao YY, Su J, Tang XN, Chen Q, Ma LW, et al. Threedimensional bioprinting of artificial ovaries by an extrusionbased method using gelatin-methacryloyl bioink. Climacteric. 2022; 25: 170–178.
- [91] Li Q, Zheng J, Li Z, Xiao Y, Zhang M, Shi W, *et al.* Drug-free in vitro activation combined with 3D-bioprinted adipose-derived stem cells restores ovarian function of rats with premature ovarian insufficiency. Stem Cell Research & Therapy. 2022; 13: 347.
- [92] Xia L, Xia Y. Clinical research and the effect mechanism on premature ovarian failure treated with acupuncture in recent 20 years. Chinese Acupuncture & Moxibustion. 2018; 38: 5653– 5670. (In Chinese)
- [93] Xu F, Hou Y, Ge P, Chen H, Zhu X. Characteristic Treatment of Traditional Chinese Medicine on Premature Ovarian Failure. Journal of Liaoning University of Traditional Chinese Medicine. 2020; 25: 25–28. (In Chinese)
- [94] Zhang H, Li W, Zhang J. Effects of Yishen Yangluan Recipe on Ovarian Reserve Function, Expression of Bcl-2/Bax in Egg Granulosa Cells and PI3K/Akt Signaling Pathway in Patients with Early-Onset Ovarian Insufficiency. Guiding Journal of Traditional Chinese Medicine and Pharmacology. 2021; 27: 108– 111, 116. (In Chinese)
- [95] Xie L, Wu S, Cao D, Li M, Liu J, Nie G, et al. Huyang yangkun formula protects against 4-Vinylcyclohexene diepoxide-induced premature ovarian insufficiency in rats via the Hippo-JAK2/STAT3 signaling pathway. Biomedicine & Pharmacotherapy. 2019; 116: 109008.

- [96] Zhang CR, Deng JL, Zhu WN, Miao MX, Shen WW, Cao SJ, et al. Involvement of PI 3 K/Akt/mTOR Signaling in Protective Effects of Moxibustion for Premature Ovarian Failure in Rats. Acupuncture Research. 2018; 43: 75–79. (In Chinese)
- [97] Geng X, Cong PW, Ni FM, Cao R, Wu ZL. Clinical Metaanalysis of Treating Premature Ovarian Failure by Medicine and Acupuncture. Chinese Archives of Traditional Chinese. 2017; 35: 1295–1298. (In Chinese)
- [98] Li HF, Zhang JX, Chen WJ. Dissecting the efficacy of the use of acupuncture and Chinese herbal medicine for the treatment of premature ovarian insufficiency (POI): A systematic review and metaanalysis. Heliyon. 2023; 9: e20498.
- [99] Swain J, VerMilyea MT, Meseguer M, Ezcurra D. AI in the treatment of fertility: key considerations. Journal of Assisted Reproduction and Genetics. 2020; 37: 2817–2824.
- [100] Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthcare Journal. 2019; 6: 94–98.
- [101] Fanton M, Nutting V, Solano F, Maeder-York P, Hariton E, Barash O, *et al.* An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation. Fertility and Sterility. 2022; 118: 101–108.
- [102] Hariton E, Chi EA, Chi G, Morris JR, Braatz J, Rajpurkar P, et al. A machine learning algorithm can optimize the day of trigger to improve in vitro fertilization outcomes. Fertility and Sterility. 2021; 116: 1227–1235.
- [103] Letterie G, Mac Donald A. Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during *in vitro* fertilization. Fertility and Sterility. 2020; 114: 1026–1031.
- [104] Dahhan T, van der Veen F, Bos AME, Goddijn M, Dancet EAF. The experiences of women with breast cancer who undergo fertility preservation. Human Reproduction Open. 2021; 2021: hoab018.
- [105] Azim HA, Jr, Kroman N, Paesmans M, Gelber S, Rotmensz N, Ameye L, et al. Prognostic impact of pregnancy after breast cancer according to estrogen receptor status: a multicenter retrospective study. Journal of Clinical Oncology. 2013; 31: 73–79.
- [106] Lambertini M, Kroman N, Ameye L, Cordoba O, Pinto A, Benedetti G, et al. Long-term Safety of Pregnancy Following Breast Cancer According to Estrogen Receptor Status. Journal of the National Cancer Institute. 2018; 110: 426–429.
- [107] Partridge AH, Niman SM, Ruggeri M, Peccatori FA, Azim HA, Jr, Colleoni M, et al. Interrupting Endocrine Therapy to Attempt Pregnancy after Breast Cancer. The New England Journal of Medicine. 2023; 388: 1645–1656.
- [108] Kasum M, von Wolff M, Franulić D, Čehić E, Klepac-Pulanić T, Orešković S, et al. Fertility preservation options in breast cancer patients. Gynecological Endocrinology. 2015; 31: 846–851.

