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Abstract

Objectives: This review provides a comprehensive analysis of copper metabolism and cuproptosis in ovarian cancer (OC), evaluating
therapeutic strategies targeting copper to improve clinical outcomes. Mechanism: OC exhibits the highest mortality rate among gyneco-
logical malignancies, characterized by its insidious onset and poor prognosis, underscoring the urgent need for novel treatment strategies.
Copper metabolism and cuproptosis hold promising potential in regulating tumor progression and overcoming drug resistance, thereby
opening new avenues for OC treatment. This article aims to elucidate the biological basis and potential therapeutic applications of copper
metabolism and cuproptosis in treating OC. Findings in Brief: Cuproptosis, a copper-dependent mechanism of cell death mechanism,
disrupts mitochondrial function by inducing the aggregation of lipoylated proteins and the loss of iron-sulfur (Fe-S) clusters. Copper
metabolism imbalance promotes OC progression by modulating cancer cell function, contributing to chemotherapy resistance, and in-
fluencing responses to anti-angiogenesis, and immunotherapy. Copper ionophores, chelators, copper-based nanoparticles (NPs), and
certain natural molecules represent potential therapeutic strategies for the treatment of OC. Conclusions: Targeting copper metabolism
and cuproptosis offers innovative therapeutic strategies for OC, particularly in cases of treatment resistance. However, clinical valida-
tion of long-term safety, optimal dosing, and biomarker-guided therapies remains critical. Future research should prioritize translational
studies to bridge mechanistic insights with patient-centered applications.
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1. Introduction chemoresistance of OC [7,8]. A novel form of cell death,
termed “cuproptosis”, was introduced in March 2022 as a
groundbreaking concept [9]. This copper-dependent and
modifiable form of cell death may help reduce drug resis-
tance in cancer therapy and holds significant promise for

Due to the absence of specific detection methods, ap-
proximately 70% of ovarian cancer (OC) cases are diag-
nosed at an advanced stage, leading to a poor prognosis
[1]. According to global cancer statistics, OC accounted for
324,398 new cases and 206,839 deaths in 2022 [2]. Clinical cancer prevention and treatment [10]. Cuproptosis-related
treatments for OC include surgery, combination chemother- ~ Proteins have been identified as key players in OC [11].
apy, and targeted maintenance therapy. In recent years, the Despite advancements in understanding the roles of cop-
introduction of poly (ADP-ribose) polymerase inhibitors ~ Per metabolism and cuproptosis in OC, the specific mech-
(PARPis) has led to significant advancements in OC treat- anisms remain insufficiently elucidated. Leveraging the
ment [3]. Nevertheless, the overall cure rate remains low. ~ Mechanisms of copper metabolism and cuproptosis to de-
Many patients experience relapse within 18 months and ul-  Velop copper ionophores, copper chelators, or copper-based
timately succumb to chemotherapy resistance, with a 5-year nanoparticles (NPs) for the selective induction of cell death
survival rate of only 49% for those diagnosed at advanced in OC may offer a novel therapeutic strategy for the disease.
stages [4]. Chemotherapy and PARPis have been associated In this study, we present a comprehensive review and
with several adverse drug effects, including bone marrow ~ 2nalysis of the mechanisms underlying copper metabolism
suppression and gastrointestinal reactions. Therefore, itis  2nd cuproptosis in OC. The primary goal is to elucidate their
crucial to explore novel and safe treatment strategies for OC ~ regulatory roles in tumor progression and explore their po-
to enhance the prognosis of patients with this disease. tential applications in OC treatment. Through comprehen-

As an essential trace element, copper plays a catalytic sive research, we aim to strengthen the theoretical founda-
or auxiliary role in various biological processes. Serum tion and practical implications of copper metabolism and
copper levels are significantly elevated in patients with OC, cuproptosis in OC therapy, providing valuable insights for
suggesting its potential as a biomarker for this disease [5,6].  the development of effective treatment strategies.

The bioavailability of copper and the regulation of cellular
homeostasis influence cell proliferation, migration, and an-
giogenesis, processes that are critical in the progression and
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2. Copper Metabolism

Copper is an essential trace nutrient for normal organ
function and metabolic processes in animals and humans.
The body primarily acquires copper from food; however,
dietary copper in the form of copper (II) (Cu?*) cannot be
directly utilized by cells. Dietary copper absorption primar-
ily occurs in the small intestine and relies on copper trans-
porter 1 (CTR1), located on the apical membrane of intesti-
nal epithelial cells [12]. CTR1, a high-affinity copper im-
porter from the Solute Carrier Family 31 (SLC31), is cru-
cial for copper homeostasis. Six-transmembrane epithelial
antigen of the prostate (STEAP) and duodenal cytochrome
B (DCYTB) play a crucial role in the reduction of Cu?*
to Cu™, facilitating the subsequent transport of copper into
intestinal epithelial cells via CTR1 [13,14]. Once inside
the intestinal epithelial cells, Cu™ is released into the portal
circulation by the copper-transporting ATPase o (ATP7A)
and binds to soluble chaperones, such as albumin, copper
transporters, and a2-macroglobulin [15,16]. After reach-
ing the liver through the portal vein, Cu™ is taken up by
liver cells, mediated by CTR1. The liver serves as the ma-
jor storage repository for Cu™. Copper chaperones, such
as cytochrome c oxidase copper chaperone (COX17), cop-
per chaperone for Sod1 (CCS), and antioxidant chaperone
1 (ATOXI1), facilitate the transport of Cu™t within the cy-
toplasm to specific proteins or chelate it with metalloth-
ioneins (MTs) for storage [17]. ATPase 3 (ATP7B) in liver
cells, also known as Cu ATPase, transports Cu™ from the
liver into the bloodstream, where it binds to soluble part-
ners and is distributed to tissues and organs throughout the
body [18]. Within the target tissues, Cu® catalyzes vari-
ous physiological reactions, including redox homeostasis
and mitochondrial energy production [19,20]. If peripheral
copper levels decrease, Cu™ stored in the liver is released
into the blood to maintain an effective copper concentra-
tion in the peripheral circulation. This metabolic mech-
anism ensures cellular Cu™ ion stability, with either ex-
cess or deficiency leading to disecases such as Alzheimer’s,
Parkinson’s, and various types of cancer [21]. In OC, CTR1
and ATP7A/7B are significantly associated with resistance
to platinum-based chemotherapy [7]. It has been reported
that CTR1 is associated with the cellular entry of platinum,
while ATP7A and ATP7B contribute to platinum drug resis-
tance by facilitating the nuclear efflux of the drug, as well
as its subsequent sequestration within late endosomes [7].

The digestive tract is the primary route for copper
excretion, with approximately 80% of endogenous copper
excreted into the gastrointestinal tract via bile. A small
amount of this copper can be reabsorbed with saliva, gastric
acid, and intestinal fluid, while the remainder is excreted in
the feces [22]. Copper that enters the gastrointestinal tract
through food and is not absorbed, referred to as exogenous
copper, is excreted in the feces. While the primary route
for endogenous copper excretion is via bile, other excretion
pathways include urine, sweat, and menstruation [15].

3. Mechanisms of Cuproptosis

In 2019, researchers discovered two small molecules,
disulfiram (DSF) and elesclomol (ES), which can trans-
port copper ions across cell membranes [23]. They referred
to these molecules as copper ionophores, important tools
for studying copper-induced cell death [23]. Research has
shown that cells with a high dependency on mitochondrial
respiration are nearly 1000 times more sensitive to copper
ionophores than cells relying on glycolysis [23]. There is a
significant difference in the sensitivity of cells treated with
mitochondrial function inhibitors compared to those treated
with ferroptosis inhibitors targeting glutathione peroxidase-
4 (GPX4). Treatment of cells with the copper ionophore
ES disrupts the metabolism of tricarboxylic acid (TCA)
cycle-related products, further elucidating the close con-
nection between copper ionophore-induced cell death and
the TCA cycle. This copper-induced cell death process
was first named cuproptosis in 2022. The primary mech-
anism of cuproptosis depends on the accumulation of cop-
per ions within the cells. When an excess amount of Cu?*
enters the cells, it is transported to the mitochondria and
reduced to Cu™. This Cu™ interferes with the TCA cycle
and the electron transport chain (ETC), leading to oligomer-
ization of lipoylated proteins and loss of iron-sulfur (Fe-
S) cluster proteins, ultimately resulting in cell death. To
further investigate the metabolic pathways of cuproptosis,
Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR) and CRISPR-associated protein 9 (Cas9) tech-
nologies were used for loss-of-function screening, leading
to the identification of 10 key genes regulating cupropto-
sis activity [8]. The mechanisms of these genes are pre-
sented in Table 1 [9,24-57]. Lipoylation plays a vital role
in maintaining cellular metabolic pathways and normal mi-
tochondrial function [9]. Ferredoxin 1 (FDX1)/lipoyl syn-
thase (LIAS) are key upstream regulators of protein lipoy-
lation and play a crucial role in regulating cuproptosis in
cells. FDX1 possesses strong reducing capabilities, which
enable it to reduce Cu?* to Cu™ and lipoylate specific
enzymes in the mitochondria, such as dihydrolipoamide
S-acetyltransferase (DLAT), glycine cleavage system pro-
tein H, dihydrolipoamide S-succinyltransferase, and dihy-
drolipoamide branched chain transacylase E2 [9]. ES can
bind Cu?T outside the cell and transport it into the cell.
Once inside the cell, Cu?* is reduced by FDX1 to Cu™,
which can bind to lipoylated proteins, causing protein ag-
gregation and disrupting the structure, function, and activity
of enzymes, thereby interfering with the normal function of
the TCA cycle. Cu™ also affects the function of Fe-S clus-
ter proteins in the mitochondria, including electron transfer,
catalytic reactions, and DNA repair [58]. The mechanism
of cuproptosis is illustrated in Fig. 1.
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Table 1. Genes associated with cuproptosis and its mechanisms in OC.

Genes Regulation of cuproptosis Mechanism References

FDX1 (@) It facilitates electron transfer from NADPH to mitochondrial cytochrome P450. The copper ionophore binding to FDX1 can [24-26]
upregulate the accumulation of intracellular copper ions and promote the death of OC cells. It is associated with RNA methylation
modifications. It is involved in cisplatin resistance in OC.

LIPTI (+) It is an essential enzyme for the activation of mitochondrial 2-ketoacid dehydrogenase, participating in fatty acylation. It can regulate [27-29]
lipoic acid metabolism. Its overexpression is associated with a favorable prognosis in OC patients.
LIAS ) It participates in the synthesis of antioxidant lipoic acid in mitochondria and is closely related to mitochondrial energy metabolism [30-33]
and oxidative stress. Its high expression is related to the good prognosis in patients with OC.
DLD ) It is a key protein of the TCA cycle and constitutes the E3 component of the a-ketoglutarate dehydrogenase complex. Its high [34,35]
expression is associated with poor prognosis in OC.
DLAT (+) It catalyzes the decarboxylation of pyruvate to acetyl-CoA in the TCA cycle. It affects the energy supply of OC cells. [9,36-39]
PDHAI ) It catalyzes pyruvate decarboxylation and serves as a gate-keeper enzyme link between glycolysis and the mitochondrial TCA cycle. [40-42]

Its decreased expression predicts an unfavorable prognosis in OC. Its low expression is related to cisplatin resistance in OC.

PDHB () It catalyzes the conversion of glucose derived pyruvate to acetyl-CoA, thereby regulating oxidative phosphorylation. It serves as a [43-46]
glycolysis regulatory gene that can play a role in the development of cancers, including OC. It is upregulated in OC.

MTF1 =) As a protein-coding gene, it can activate the transcription of MTs gene by binding to MREs. It is upregulated in OC, and its high [47-49]
expression is associated with poor patient survival and disease relapse.

GLS ) It catalyzes the conversion of glutamine to glutamate. Knockdown of glutaminase in platinum-resistant cells results in re-sensitization [50-53]

to platinum treatment.

CDKN24 -) Also known as pl6, it is a tumor suppressor protein involved in regulating the cell cycle at the level of transition from G1 to S phase. [54-57]
Its mutation and promoter methylation are associated with OC. Its mutation is related to the recurrence of OC.

FDX1, ferredoxin 1; LIPT1, lipoyltransferase 1; LIAS, lipoyl synthase; DLD, dihydrolipoamide dehydrogenase; DLAT, dihydrolipoamide S-acetyltransferase; PDHA, pyruvate dehydrogenase E1 subunit
al; PDHB, pyruvate dehydrogenase E1 subunit 8; MTF1, metal-regulatory transcription factor 1; MTs, metallothioneins; MREs, metal response elements; GLS, glutaminase; CDKN2A, cyclin-dependent
kinase inhibitor 2A; (+), positive; (-), negative; TCA, tricarboxylic acid; OC, ovarian cancer; NADPH, Nicotinamide Adenine Dinucleotide Phosphate.
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In addition to copper ionophores, copper transporters
also regulate cuproptosis by influencing the intracellular in-
flux and efflux of copper ions. Solute carrier family 31
member 1 (SLC31A1), also referred to as CTRI, directly
transports Cu™ into cells, thereby increasing intracellular
copper ion concentration, inducing mitochondrial dysfunc-
tion, and promoting cell death. Conversely, ATP7A pri-
marily exports Cu™ from cells, thereby inhibiting copper-
dependent cell death [59]. Various substances can also
modulate the copper-dependent cell death process. For in-
stance, mitochondrial glutathione (GSH) serves as a molec-
ular partner for intracellular copper, slowing cuproptosis by
inhibiting the lipoylation of mitochondrial respiratory en-
zymes and promoting DLAT oligomerization. Inhibitors of
the mitochondrial succinate carrier, such as UK5099, and of
electron transport chain complexes I/I11, including rotenone
and antimycin A, can inhibit cuproptosis by attenuating the
activity of ES [60,61].

4. The Role of Copper Metabolism and
Cuproptosis in OC

Research has demonstrated a significantly elevated
copper ion concentration in OC cells compared to nor-
mal ovarian epithelial cells [6]. Cuproptosis-regulating en-
zymes and copper transporters play a crucial role in the
onset, progression, and prognosis of OC, highlighting the
therapeutic potential of inducing cuproptosis in OC cells to
enhance treatment outcomes [7]. The mechanism of cop-
per metabolism and cuproptosis in OC is described below
(Fig. 2; Fig. 3).

4.1 Regulating the Functions of Tumor Cells

Elevated levels of copper ions in cancer cells can pro-
mote tumor proliferation and metastasis [63]. Cupropla-
sia is defined as copper-dependent cell growth and pro-
liferation, which can contribute to tumorigenesis and ex-
cessive cellular proliferation. This process is associated
with mitochondrial respiration, autophagy, redox signal-
ing, and antioxidant defense mechanisms [64]. Copper
promotes cell proliferation by activating various signaling
pathways, including phosphatidylinositol 3-kinase /protein
kinase B (PI3K-AKT), which may contribute to tumor de-
velopment [65,66]. Furthermore, copper uptake through
CTR1 also stimulates the Ras/mitogen-activated protein ki-
nases (MAPK) signaling cascade [67]. Knockdown or inhi-
bition of copper chaperones such as CCS and ATOX1 sig-
nificantly reduces the proliferation of cancer cells without
affecting normal cell proliferation, thereby suppressing tu-
mor progression in mouse models [68]. Autophagy, a cel-
lular degradation process triggered by external stimuli such
as starvation and hypoxia, can facilitate tumor progression.
A recent study has shown that elevated intracellular cop-
per levels can regulate autophagy, as well as the growth
and survival of cancer cells, by modulating the phosphory-
lation of mammalian target of rapamycin (mTOR) via the
PI3K/AKT signaling pathway [69].

Copper-induced cell death may occur through several
mechanisms: induction of apoptosis, generation of reac-
tive oxygen species (ROS) exacerbating oxidative damage,
and caspase-independent programmed cell death [61,70].
However, the specific mechanisms remain unclear. DSF
induces apoptosis in OC cells by modulating apoptosis-
related markers, including B-cell lymphoma/leukemia 2
(Bcl-2), Bcl-2-associated X protein (Bax), and caspase-
3 [71]. DSF combined with copper decreases FDX1 ex-
pression, disrupts Fe-S cluster proteins, and significantly
reduces OC cell viability. The combination of DSF and
copper induces the production of ROS, which in turn ac-
tivates c-Jun N-terminal kinase (JNK), and promotes cell
apoptosis [72]. Research has also shown that copper is
involved in epithelial-mesenchymal transition (EMT), an
early step in metastasis that endows cancer cells with
the ability to migrate and invade [73,74]. DQ-Lipo/Cu
induces cell death in ARIDIA-mutant OC cells through
ROS-mediated imbalance of redox homeostasis, inhibiting
epithelial-mesenchymal transition, and inducing immuno-
genic cell death (ICD) [75]. An interaction exists between
copper levels and inflammation, with serum copper acting
both as a consequence and a driving factor in the inflamma-
tory response [76,77]. A novel copper (II)-based complex,
Cu-3, can significantly inhibit the in vitro growth of SKOV3
cells and disrupt the balance of intracellular ROS levels by
downregulating the expression of certain pro-inflammatory
cytokines [78].

4.2 Modulation of Platinum-Based Chemotherapy Drug
Resistance

While most OC patients initially respond to
chemotherapy, resistance often develops after multi-
ple relapses, resulting in treatment failure and increased
mortality rates [79]. Numerous studies have demonstrated
that copper efflux transporters ATP7A and ATP7B are
involved in the efflux of platinum drugs, and the expression
of ATP7A/7B can affect the sensitivity of OC cells to these
drugs [7,80]. Elevated copper levels may induce the
nuclear translocation of transcription factor EB (TFEB)
[81], upregulating the expression of copper transporter
ATP7B, which leads to platinum resistance [82]. The
efficient efflux of copper and platinum drugs through
ATP7A/B transporters is a crucial factor in promoting
platinum-drug resistance in cancer cells [83]. Compared
to platinum-sensitive cells, platinum-resistant OC cells
exhibit reduced platinum accumulation, increased copper
concentration, decreased total CTR1 levels, and a high
correlation between total CTR1 and platinum [84]. CTR2
promotes platinum resistance in OC patients, and the
CTR2/CTRI1 ratio serves as an indicator for predicting
platinum sensitivity in these patients. Cases exhibiting
positive CTR2 expression or a positive CTR2/CTR1 ratio
are associated with a poorer prognosis in OC [85]. A
phase I pilot study conducted at MD Anderson Cancer
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Lipoylated DLAT
aggregation

outside the cell and transport them into the cell. When an excess amount

*. This Cu™ interferes with the TCA cycle and the

electron transport chain, leading to the oligomerization of lipoylated proteins and the loss of Fe-S cluster proteins, ultimately resulting
in cell death. ES, elesclomol; TCA, tricarboxylic acid; FDX1, ferredoxin 1; DLAT, dihydrolipoamide S-acetyltransferase; LIAS, lipoyl
synthase; STEAP, six-transmembrane epithelial antigen of the prostate; SLC31A1, solute carrier family 31 member 1; ATP7A, ATPase
«a; ATP7B, ATPase 3. Fig. 1 was drawn using Adobe illustrator software 2023 (San Jose, CA, USA).

Center evaluated the treatment outcomes of five patients
with platinum-resistant high-grade serous OC (HGSOC)
using a copper-lowering agent and carboplatin.  The
results provide preliminary clinical evidence suggesting
that lowering copper levels may play a role in reversing
platinum resistance, warranting further clinical research
[86].

4.3 Anti-angiogenesis

In OC treatment research, inhibiting tumor angiogen-
esis has been proven to be an effective therapeutic strategy
[87]. Tumor angiogenesis is a critical step in tumor growth
and metastasis. Vascular endothelial growth factor (VEGF)
is a pivotal factor in angiogenesis, significantly contribut-
ing to the production of ascites. The copper levels in OC pa-
tients are significantly elevated, increasing ascites by induc-
ing angiogenesis. Moreover, the copper content in ascites is
positively correlated with VEGF levels, as well as the clini-
cal staging [88]. Copper ions are essential for the migration,
proliferation, and differentiation of endothelial cells, all of
which are critical processes in angiogenesis [89,90]. Cop-
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per is an essential cofactor in the vascular signaling cascade.
It regulates the synthesis and secretion of pro-angiogenic
factors, such as VEGF and fibroblast growth factor (FGF),
and directly binds to angiopoietin, modulating its affinity
for endothelial cells [91]. Important copper transporters, in-
cluding the CTR1 importer, ATP7A efflux pump, and metal
chaperones, regulate endothelial cell migration and vascu-
lar superoxide production, thereby activating angiogenesis
within narrow concentration ranges [91]. Inhibiting copper-
dependent angiogenesis may be a promising strategy for
combating OC and warrants further investigation.

4.4 Regulation of Immunotherapy

In recent years, the rapid development of immunother-
apy has introduced new prospects for the treatment of OC.
Notable examples include immune checkpoint inhibitors
(ICIs), such as inhibitors of programmed death receptor-
1 (PD-1) and its ligand programmed death-ligand 1 (PD-
L1) [92]. These therapies counteract the signals from the
immunosuppressive tumor microenvironment (TME) [93].
The interaction between PD-L1 expressed on tumor cells
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and PD-1 receptors on T cells suppresses the cytotoxic ac-
tivity of T cells, facilitating immune evasion by the tu-
mors [94]. Cuproptosis has been shown to activate im-
mune responses and mediate immune resistance [95]. In
neuroblastoma cells, increased expression of CTR1 leads
to a higher Cu?* content, which activates the epidermal
growth factor receptor signaling pathway, resulting in ele-
vated levels of PD-L.1 mRNA and protein expression [94].
Cuproptosis-related genes (CRGs) in OC have been re-
ported to potentially influence TME, clinical pathologi-
cal features, chemotherapy response, and prognosis [96].
As illustrated in Table 1, dihydrolipoamide dehydrogenase
(DLD) is a crucial component of the TCA cycle. The ex-
pression of DLD is linked to clinical prognosis and im-
mune infiltration across 33 tumor types, including OC [35].
In patients with OC, the expression of the CRG FDX1
mRNA is usually elevated [97]. Gene Set Enrichment Anal-
ysis (GSEA) indicates that FDX1 is significantly associated
with Notch signaling, PD1 signal transduction, and mito-
chondrial pathways [97]. Cuproptosis leads to the upregu-
lation of PD-L1 on tumor cells, which complements aPD-
L1 checkpoint inhibitors and enhances anti-tumor immu-
nity [98].

4.5 Establishment of Models for the Prognosis of OC

Research on CRGs in OC provides guidance for pa-
tient treatment and prognosis. Zhang et al. [96] devel-
oped an OC risk prediction model based on 13 CRGs.
This risk scoring model, based on expression differences
in OC tissues, predicts chemotherapy effectiveness and
guides drug selection. A study utilizing data from The
Cancer Genome Atlas (TCGA) and the Gene Expres-
sion Omnibus (GEO) datasets identified CRGs and devel-
oped the cuproptosis-related scoring (CuRS) model, which
demonstrated significant predictive value for OC progno-
sis [99]. OC patients were divided into two clusters (C1
and C2) based on 15 CRGs related to prognosis. ClI
exhibited better survival outcomes, less advanced stages,
enhanced immune infiltration, sensitivity to immunother-
apy, and enrichment in TCA-related pathways [100]. A
copper metabolism-related gene prognostic signature (CM-
RGPS) of 11 genes was developed to predict overall sur-
vival in OC patients, demonstrating reliable predictive abil-
ity. Based on the median copper metabolism risk score,
patients were categorized into low-risk (LR) and high-
risk (HR) groups, with higher survival rates in the LR
group, correlated with tumor immune-related pathways and
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copper and platinum-based drugs through ATP7A/B transporters contributes to the development of resistance to platinum drugs. Copper

regulates the synthesis and secretion of pro-angiogenic factors, including VEGF and FGF. After secretion from tumor cells, VEGF

and FGF bind to receptors on endothelial cells, thereby promoting angiogenesis through downstream signaling pathways. OC, ovarian

cancer; STEAP, six-transmembrane epithelial antigen of the prostate; TGN, trans-Golgi network; CTR1, copper transporter 1; PI3K-AKT,
phosphatidylinositol 3-kinase/protein kinase B; MAPK, mitogen-activated protein kinase; MEK, MAPK/ERK kinase; ERK, extracellular
signal-regulated kinase; VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor; VEGFR, vascular endothelial growth
factor receptor; FGFR, fibroblast growth factor receptor; Pt, platinum; ATP7A, ATPase «; ATP7B, ATPase 5; ATOX1, antioxidant
chaperone 1. Fig. 3 was created using BioGDP.com (https://BioGDP.com) [62].

better response to immunotherapy [101]. In some stud-
ies, long non-coding RNAs (IncRNAs) regulating cuprop-
tosis processes were used as prognostic prediction mod-
els, offering new insights into OC prognosis [102—104].
Four cuproptosis-related IncRNAs (CRLs)—AP004609.3,
AP003392.3, AP001372.2, and AC021851.1 were utilized
to construct an OC risk model. Based on the median
risk score value, patients were classified into LR and HR
groups, with the LR group demonstrating significantly
higher overall survival rates [102]. An analysis of the
TCGA-ovarian serous cystadenocarcinoma (OV) dataset
included 5 cuproptosis-related IncRNAs in a Cox propor-
tional hazard model. Kaplan-Meier curve analysis revealed
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a poorer prognosis in the HR group. Immune infiltration
analysis revealed a negative correlation between HR scores
and the presence of immune-related cells [103]. Data on
OC gene expression and clinical features were obtained
from the TCGA, International Cancer Genome Consortium
(ICGC), and GEO databases. They were categorized into
4 groups based on copper death-related IncRNAs, each ex-
hibiting distinct survival times, immune characteristics, and
somatic mutations. The 10 IncRNAs linked to prognostic
assessment exhibited significant correlations with OC prog-
nosis, indicators of the immune microenvironment, and
sensitivity to the chemotherapy drug paclitaxel [104].
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Table 2. Potential use of copper-related therapies and related clinical trials in OC.

Drugs Mechanism References Trial ID Status
Copper ionophores

ES Enhances oxidative stress, leading to the death of OC cells [105-108] NCTO00888615 Completed

DSF Induces cancer cell death and enhances sensitivity to chemotherapy by promoting oxidative stress. [107,109-113] / /

Furthermore, it improves resistance to PARP inhibitors by modulating the DNA damage repair pathway

Clioquinol Inhibits tumor growth and induces apoptosis [114-117] / /
Copper Chelators

Tetrathiomolybdate Inhibits tumor proliferation and angiogenesis, prevents metastasis, suppresses immune evasion, and [118-125] / /

improves chemotherapy sensitivity

D-penicillamine Inhibits angiogenesis and tumor growth [126-128] / /

Trientine Suppresses angiogenesis and resensitizes platinum-resistant cancer cells [129-132] NCT03480750 Completed

Cu-Based NPs Increase oxidative stress and induce apoptosis. CuS NPs induce apoptosis through photothermal therapy [133-140] / /
Others

[Cu(C(13)H(14)NO(3)S)(2)](2) (Cu-A) Suppresses cell proliferation, induces apoptosis, inhibits migration and metastasis, and inhibits [141] / /

angiogenesis by regulating the VEGF/VEGFR?2 signaling pathway. Decreases the expression of Bcl-2
while upregulating the expression of Caspase-9 and Bax to induce apoptosis in tumor cells

CPT8 Inhibits the migration and invasion of OC cells. It suppresses angiogenesis [142] / /

Theaflavin-3, 3'-digallate Enhances chemotherapy sensitivity through regulating genes related to cuproptosis [143] / /

Anisomycin Inhibits the transcriptional activation of key genes related to cuproptosis in OC stem cells [39,144] / /

CinOD-Cu Effectively generates abundant hydroxyl radicals (-OH), inducing oxidative stress in the mitochondria, [145] / /

which results in OC cell death
Cu(II)NP, Cu[Fe(CN) 5 NO] Induces the self-generation of hydrogen peroxide and produces peroxynitrite (ONOO") at the tumor site, [146] / /

which leads to OC cell death

Clinical trials information was obtained from the public database (http://www.clinicaltrials.gov/), accessed on 2 December 2024. OC, ovarian cancer; ES, elesclomol; DSF, disulfiram; NPs, nanoparticles;

PARP, Poly (ADP-ribose) polymerase; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; Bcl-2, B-cell lymphoma/leukemia 2; Bax, Bcl-2-associated X protein.
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5. Treatment Strategies for Copper-Related
ocC

Recognizing the significance of copper metabolism
and cuproptosis in OC, the strategy of targeting these
processes for treatment has garnered substantial interest
among researchers. In this context, we reviewed rele-
vant studies on treatment strategies for OC, including cop-
per ionophores, copper chelators, and nanotechnology, as
summarized in (Table 2, Ref. [39,105-146]). These ap-
proaches, as promising methods for managing OC, are gain-
ing increasing attention.

5.1 Copper lonophores

ES is an injectable small molecule compound that can
be used either alone or in combination with other anticancer
drugs. ES binds to Cu?™ in serum, which is then effectively
absorbed by cancer cells. Inside the cells, the copper in
the complex undergoes redox reactions, reducing Cu?* to
Cu™, thereby generating ROS and inducing oxidative stress
in the mitochondria [105]. Cancer stem cells (CSCs) that
are highly dependent on mitochondrial metabolism, such as
those found in OC, exhibit higher sensitivity to ES [106].
ES reduces the spheroid formation of OC stem cells (OC-
SCs) and lowers the expression of their markers, such as
CD133 and aldehyde dehydrogenase (ALDH) [107,108].

Compared to cisplatin alone, the combination of ES
with cisplatin enhances ROS production and oxidative
stress, promoting OC cell death [107]. However, a phase
IT multicenter clinical trial investigating the use of ES in
combination with paclitaxel for refractory OC revealed that
the anticancer efficacy was suboptimal, despite demonstrat-
ing good tolerability [147]. Elevated levels of lactate dehy-
drogenase (LDH) in hypoxic conditions are linked to more
aggressive tumors. ES is more effective in non-hypoxic
conditions as it disrupts the metabolic processes of oxygen-
dependent tumor cells [148].

DSF has shown significant anti-cancer potential by
targeting various human malignancies [149]. A study indi-
cates that tumor cells with high ALDH activity, or ALDH-
positive cells isolated from primary tumors, possess en-
hanced tumorigenicity and migratory capabilities. Elevated
ALDH levels in certain CSC populations contribute to resis-
tance against conventional chemotherapy [109]. DSF can
sensitize ALDH™T ovarian platinum-resistant stem-like cells
to platinum treatment by inhibiting ALDH activity and in-
ducing cell death [110]. In mouse models of OC xenografts,
DSF combined with copper gluconate significantly reduced
tumor volume and improved survival rates [71]. Compared
to carboplatin monotherapy, the combination of DSF and
carboplatin enhances OC cell death by elevating ROS and
oxidative stress [107]. DSF has also demonstrated effi-
cacy in in vivo models of recurrent OC post-surgery and
chemotherapy [107]. Mothers against decapentaplegic ho-
molog 3 (SMAD3) promotes OC progression by enhanc-
ing cell proliferation, migration, invasion, and inhibiting
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apoptosis [110]. When combined with cisplatin, DSF syn-
ergistically inhibits OC growth by downregulating SMAD?3
[111]. PARPis have demonstrated significant benefits in the
maintenance therapy of OC patients, particularly those with
BRCA mutations. However, resistance to PARPis may also
develop in some OC patients [112]. The combination of
PARPis with DSF significantly increases the expression of
the DNA damage marker gamma-H2AX (gH2AX) and in-
duces more PARP cleavage. Additionally, DSF inhibits the
expression of genes involved in DNA damage repair path-
ways. These findings suggest that DSF can enhance the
sensitivity of OC patients to PARPis through modulation of
the DNA damage repair pathway [113]. Although the mul-
tifaceted actions of DSF highlight its significant potential
in treating OC, clinical research involving solid tumors has
not yet yielded successful outcomes [150].

Clioquinol was initially synthesized as an antibacterial
agent for the treatment of shigellosis and intestinal amoebi-
asis between the 1950s and 1970s [151]. It was later in-
vestigated in various diseases, from Alzheimer’s disease to
cancer [152]. Initial study evaluating clioquinol as an anti-
tumor drug showed that it reduced survival rates by induc-
ing apoptosis in eight different cancer cell lines, and inhibit-
ing tumor growth of mouse OC xenografts [114]. Another
study found that the synergistic effect of clioquinol and do-
cosahexaenoic acid (DHA) could inhibit the activity of the
OC cell line A2780, mediated by Peroxisome Proliferator-
Activated Receptor o (PPAR«) signaling [115]. X-linked
inhibitor of apoptosis protein (XIAP), an apoptosis protein
inhibitor, regulates apoptosis cell death by modulating Cas-
pase activity. Clioquinol regulates the relocation of XIAP
from the cytoplasm to the nucleus, inducing apoptosis in
cancer cells. This effect selectively triggers apoptosis in
cancer cells while having minimal impact on normal cells.
Copper is necessary for clioquinol to affect XIAP [116].
Clioquinol can interact with cellular copper in vivo, disrupt
Cu/Zn balance, and convert Cu™ to Cu®t in tumor tissue,
potentially contributing to tumor growth suppression [117].
Although clioquinol shows promising prospects in cancer
treatment, it can also result in severe neurotoxicity, leading
to clinical contraindications [153].

5.2 Copper Chelators

Tetrathiomolybdate (TM) is a rapidly absorbed and
safe copper chelator with high specificity for copper bind-
ing [118]. TM exerts anticancer effects by inhibiting
angiogenesis, suppressing tumor proliferation, preventing
metastasis, and inhibiting immune evasion of cancer cells
[119-122]. Furthermore, it enhances the effectiveness of
chemotherapy drugs such as cisplatin [123,124]. TM en-
hances the cytotoxicity induced by doxorubicin and mod-
ulates key regulators of apoptosis in OC cells, including
PARP, caspases, INK, and p38 MAPK, which are associ-
ated with increased ROS production. TM also sensitizes
OC cells to cytotoxicity induced by paclitaxel, gefitinib,
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and 5-fluorouracil [125]. Although TM may cause side ef-
fects such as anemia and neutropenia, these are usually re-
versible [154—156].

D-penicillamine, a metabolic degradation product of
penicillin antibiotics, possesses strong copper-binding ca-
pabilities and can also chelate other divalent cations, such as
nickel, zinc, and lead [74]. Studies have demonstrated that
D-penicillamine inhibits angiogenesis and human endothe-
lial cell proliferation by chelating copper, thereby affecting
blood vessel formation and reducing tumor growth [126,
127]. Additionally, D-penicillamine upregulates specificity
protein 1 (Spl) to promote the expression of the human
copper transporter 1 (hCtrl). The overexpression of Spl
induces the translocation of p53 from the nucleus to the cy-
toplasm, resulting in its degradation through ubiquitination
and the subsequent inhibition of ATP7A. This simultane-
ous regulation of ATP7A and hCtrl by D-penicillamine can
enhance the therapeutic efficacy of platinum-based drugs
in cisplatin-resistant cervical cancer, particularly in pheno-
types characterized by downregulation of hCtr1 and overex-
pression of ATP7A [128]. While D-penicillamine is com-
monly used to treat Wilson’s disease, it is often associated
with severe adverse events (AEs) [157]. Currently, there is
limited research data on the application of D-penicillamine
in OC.

Trientine demonstrates superior tolerability compared
to D-penicillamine and is considered a first-line treatment
for Wilson’s disease [158]. Current research indicates that
trientine may also have potential as an anti-cancer drug.
Its chelating action inhibits copper’s role as a co-factor in
angiogenesis, leading to reduced interleukin-8 (IL-8) pro-
duction and suppression of angiogenesis in hepatocellu-
lar carcinoma cells [129]. A study using mouse xenograft
models have identified an interaction between trientine and
X-ray irradiation that inhibits fibrosarcoma growth [130].
The p38 MAPK pathway appears to play a significant
role in trientine-induced apoptosis in fibrosarcoma cells
[131]. Copper-lowering agents can resensitize platinum-
resistant cancer cells by enhancing platinum uptake medi-
ated by CTR1. A dose-escalation study of trientine com-
bined with carboplatin and pegylated liposomal doxoru-
bicin in first-recurrent epithelial ovarian, fallopian tube, and
peritoneal cancer demonstrated good tolerability and high
safety. However, it showed limited anti-tumor activity,
with no correlation observed between clinical response and
serum copper levels [132].

5.3 Copper-Based NPs

Nanotechnology provides an innovative strategy for
early diagnosis, prevention, and personalized treatment of
cancer through the application of NPs and quantum dots.

NPs can serve as direct anti-tumor therapeutic agents
or as carriers to enhance controlled drug delivery, thereby
improving efficacy and reducing side effects [159]. Cop-
per NPs, including Cu;O, CuO, and zero-valent copper

10

(CuNPs), have rapidly advanced in recent years and have
emerged as some of the most promising candidates for treat-
ing various cancers, including OC [133,134]. The particle
size of CuNPs typically ranges from 1 to 100 nanometers
and can be synthesized using various techniques, including
chemical reduction, physical methods, and biological syn-
thesis [133]. These NPs exhibit significant potential in can-
cer treatment due to their interactions with malignant cells.
Their small size and large surface area facilitate efficient
penetration of cell membranes. Upon entering the human
body, CuNPs release ROS, which increase oxidative stress
and ultimately induce apoptosis in cancer cells [135].

Research on CulNPs in OC has garnered increasing at-
tention. Copper sulfide NPs (CuS NPs), due to their unique
optical properties, small size, low production cost, and low
cytotoxicity, are a promising new nanomaterial for cancer
photothermal therapy (PTT). CuS NPs target tumor cells
and enter the cell nucleus, where subsequent activation by
near-infrared laser irradiation leads to increased tempera-
ture in the nucleus, resulting in tumor cell apoptosis [136].
Feasibility study using CuS NPs for OC PTT guided by
positron emission tomography (PET) and magnetic reso-
nance temperature imaging (MRTI) have demonstrated sig-
nificant tumor ablation in an OC mouse model, with mini-
mal impact on surrounding healthy tissues [137]. Folate re-
ceptors, which are overexpressed on the surface of OC cells,
make them ideal candidates for specific targeting through
functionalized NPs and other contrast agents. FA-CuS NPs
have been shown to be an ideal contrast agent capable of ac-
curately identifying circulating ovarian tumor cells in flow
cytometry using photoacoustic flow cytometry, providing
an opportunity for precise detection of early cancer metas-
tasis [138]. The integration of nanotechnology with tradi-
tional herbal medicine, aimed at enhancing the precision
of targeting specific areas and improving the efficacy of
herbal treatments, has emerged as a prominent therapeutic
strategy [139]. CuNPs synthesized from Camellia sinen-
sis leaf extract show excellent anti-OC properties and hold
potential as novel chemotherapy adjuvants [140]. Due to
their small size and unique surface properties, CuNPs ex-
hibit low toxicity and compatibility with biological systems
[135]. However, the safety of CulNPs remains under inves-
tigation. There is a scarcity of animal studies and preclini-
cal trials concerning CuNPs in OC, highlighting the urgent
need for more high-quality research to explore and validate
their potential in the future.

5.4 Others

Copper-based complexes have emerged as promising
alternatives to traditional platinum-based anticancer agents
[160]. A novel Cu?*-based complex, Cu-A, inhibits the
proliferation of SKOV3 cells and human umbilical vein
endothelial cells (HUVECs), induces cell apoptosis, and
suppresses angiogenesis by regulating the VEGF/VEGFR2
signaling pathway [141]. The low-toxicity Cu?>* complex
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CPT8 significantly inhibits the migration and invasion of
OC cells and demonstrates notable anti-angiogenic activ-
ity, as evidenced by its effects on tube formation and sphere
germination in HUVECs [142].

Currently, researchers have sought to identify nat-
ural molecules with potential applications in oncology.
Theaflavin-3,3’-digallate (TF3) is a polyphenol present in
black tea, which exhibits lower cytotoxicity to normal ovar-
ian cells than to OC cells. TF3 treatment significantly re-
duces GSH levels and upregulates CTR1 protein levels in
OC cells, enhancing their sensitivity to cisplatin [143]. Ani-
somycin is an antibiotic derived from gray mold that in-
hibits peptide bond formation and protein synthesis by bind-
ing to the 60S ribosomal subunit [144]. The study has
shown that Anisomycin significantly suppresses the activ-
ity of OCSCs. Anisomycin inhibits the transcriptional ac-
tivation of key genes in the fatty acid pathway, including
FDX1, DLD, DLAT, and PDHB, which may potentially
lead to cuproptosis in OCSCs [39].

Chemodynamic therapy (CDT) employs agents-
catalyzed decomposition of hydrogen peroxide (H2O5) into
highly toxic hydroxyl radicals (OH), thereby inducing cell
death [161]. However, the efficiency of ‘OH produc-
tion limits CDT’s overall efficacy. A novel metal com-
plex, Cin-OD-Cu, exhibits atomic-level structural preci-
sion and targets the mitochondria in OC A2780 cells.
Through a Cu'-mediated Fenton-like reaction, it effec-
tively generates abundant -OH, inducing mitochondrial ox-
idative stress and leading to OC cell death. In vivo exper-
iments have demonstrated that Cin-OD-Cu exhibits good
biocompatibility while inhibiting tumor growth [145]. Ad-
ditionally, a novel bimetallic Cu?* pentacyanonitrosylfer-
rate (Cu(II)NP, Cu[Fe(CN)5NO]) material induces the self-
generation of HoO9 and produces peroxynitrite (ONOO") at
the tumor site, acting as a multi-ROS generator. This mate-
rial demonstrates a significant anti-tumor effect on patients
with HGSOC, exhibiting low toxicity to normal hepatic tis-
sues, regardless of platinum resistance [146].

6. Conclusions

Through a comprehensive literature review, this arti-
cle systematically elucidates the intrinsic relationship be-
tween copper metabolism, copper-induced cell death, and
OC. Additionally, it explores various copper-related treat-
ment strategies in the context of OC, thereby offering novel
insights for potential therapeutic approaches to this malig-
nancy. Copper-based therapies, particularly those involv-
ing copper-based nanotechnology, represent a promising
emerging strategy for OC patients.

To date, there have been limited in vivo trials investi-
gating copper-related approaches for the treatment of OC,
and the safety of these strategies remains uncertain. Fur-
thermore, the efficacy of copper-based treatment modali-
ties across various types of OC has yet to be clearly es-
tablished. Organoid models can be developed to predict
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the drug sensitivity of copper-based therapeutic strategies
across various subtypes of OC. Further research involv-
ing OC animal models is necessary to evaluate the safety
of these copper-based treatment strategies. Ongoing scien-
tific advancements and innovation are expected to lead to
more precise and effective therapeutic approaches for OC
patients, ultimately improving treatment outcomes.
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