
Introduction

Uterine leiomyosarcoma (ULMS) always originating in

the myometrium, is a frequent malignant gynecologic mes-

enchymal tumor with an overall poor prognosis [1]. It ac-

counts for 30~40% of uterine sarcoma and approximately

1.3% of malignant tumors [2]. Surgery is the primary treat-

ment modality. Although surgical staging and nomograms

can help predict clinical outcome, the five-year survival

rate for uterus-confined disease remains less than 50% [3].

Most of the patients still suffer from local and distant re-

currence after radical surgical treatment [4]. At the same

time, the clinical benefit of adjuvant chemotherapy and ra-

diation therapy methods for the recurrent patients is also

very limited [5]. Thereby, to explore a new effective

method for the treatment of ULMS is necessary.

Over the past years, molecular targeting therapies have

shown remarkable achievements against tumours [6]. It had

been demonstrated that genes of OSTN, NLGN4X, NLGN1,

and so on were overexpressed in primary ULMS [7].

KLF6SV1 had been found to be a key genes in ULSM from

the transgenic mouse model to human disease [8]. Mäki-

nen et al. advocated it for the first time that genes of TP53,

ATRX, and MED12 were frequently mutated in ULSM [9].

In addition, Ad-ANS-886 had been indicated to provide a

potentially reliable diagnostic molecular bio-imaging tool

to triage patients with suspicious uterine mass [10]. Fur-

thermore, the entire genome sequence was obtained for

ULSM [11]. Unfortunately, the exact pathological mecha-

nism of this disease is currently still unclear.

Diseases are always associated with the perturbations of

the gene networks. Differential network analysis has been

largely applied to functional gene interaction networks [12],

protein-DNA interaction networks [13], genetic interaction

networks [14], and protein-protein interaction (PPI) net-

works [15]. The highly connected differentially expressed

genes called hub genes are the focus of the entire analysis.

However, it occurs frequently that the genes perturbed are

connected with the entire gene modules but not on their

own. To thoroughly understand the progress of the disease

, it is necessary to perform analysis on the coherently dif-

ferentially expressed gene modules. Fortunately, the infer-

ence of multiple differential modules (iMDM) algorithm,

which contains differential co-expression network (DCN)

construction and identification of multiple differential mod-

ules (M-DMs) in DCN, can identify these sets of genes that

are not differentially expressed but also exhibit corrected

expressed as a module. In this case, the gene modules with

differential activities can be captured, which might be
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Summary

Objective: To understand the pathogenesis and etiology of uterine leiomyosarcoma (ULMS) at its early age, as well as explore an ef-

fective method for the treatment of it. Materials and Methods: First of all, the gene expression profile data of ULMS and the protein-

protein interaction (PPI) data were recruited and preprocessed. Then, the inference of multiple differential modules (iMDM) algorithm,

which contained differential co-expression network (DCN) construction and identification of multiple differential modules (M-DMs)

in DCN was introduced to identify candidate M-DMs. In the following, the M-DMs were identified via statistical analysis was conducted.

Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted to disclose the function of

these M-DMs. Results: A DCN consisting of 1656 nodes (4182 edges) was built, and 16 seed genes were exacted from the DCN by rank-

ing the z-scores in descending order and setting the threshold value of the top 1%. After refinement, 12 candidate M-DMs were obtained

and all of these M-DMs resulted to be M-DMs. The pathway enrichment analysis indicated that five modules were enriched in mRNA

Splicing pathway, and three modules were enriched in Gene Expression pathway. The authors predicted that these two pathways and

the 12 seed genes might play important roles during the process of the occurrence and development of ULMS. Conclusions: This method

that was used in the present study to perform the analysis on ULMS was suitable. The authors predict that the results could offer in-

vestigators valuable resources for better understanding the underlying mechanisms ULMS on the gene level, and the results will give

great insights to reveal pathological mechanism underlying this disease, or even provide a hand for future study of related disease re-

search.
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closely associated with the occurrence and development of

the disease.

In this research, based on the PPI network, an M-module

algorithm was introduced to conduct analysis on the DCN

to mine M-DMs that were not only differentially expressed

under diseased states but that also exhibit correlated ex-

pression pattern in the network, in order to identify prog-

nostic biomarkers for ULMS. The results might provide

guidelines for understanding the pathogenesis and etiology

of ULMS at its early stage, as well as to explore effective

method for the treatment of it in the near future.

Materials and Methods

Prior to analysis, the gene expression profile of ULMS, with ac-

cessing number E-GEOD-64763, was obtained from European Mo-

lecular Biology Laboratory-European Bioinformatics Institute

(EMBL-EBI) database (https://www.ebi.ac.uk/). E-GEOD-64763

existed on A-AFFY-33 - Affymetrix GeneChip Human Genome

HG-U133A 2.0 [HG-U133A_2] platform, 54 samples (29 normal

myometrium and 25 ULMS) were selected to perform our research. 

Having obtained all of the data, robust multichip average (RMA)

method [16] and quantiles-based algorithm [17] were introduced to

eliminate the influence of non-specific hybridization. Then, perfect

match and mismatch values were revised by Micro Array Suite 5.0

(MAS 5.0) algorithm [18], and the value was selected through the

median method. Finally, the gene expression profile on probe level

was converted into gene symbol level, a total of 12,436 gene sym-

bols were obtained for further analysis.

Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING, http://string-db.org/) is a database of known and pre-

dicted protein interactions. In the present study, the global PPI net-

work was integrated from STRING. A total of 787,896 interactions

(16,730 genes) of human beings were gained. The interactions of

whose relationship value > 0.2 were retained to construct the orig-

inal PPI network. In addition, a novel new gene expression profile

consisted of 10,906 genes were gained by mapping the pre-

processed gene expression profile onto the original PPI network,

and the gene pairs were taken out to perform the further analysis.

To perform a coherently differentially expressed gene modules

analysis on the entire gene modules, a DCN was constructed to

perform the further analysis. To achieve this, a binary co-expres-

sion network was firstly built. Based on the gene pairs extracted

from the novel new gene expression profile, Pearson correlation

coefficients (PCC) [19] was implemented to determine the corre-

lation of each gene pairs in disease condition. |PCC| ≥ 0.8 of the

edges was chosen as the cut off value for selecting the genes pairs

to construct the binary co-expression network. Then, each edge

of the binary co-expression network was assigned a weight value

on account of differential gene expression between the disease

and the normal control condition. In the present study, EdgeR

[20], a Bioconductor package for differential expression analysis

of digital gene expression data was utilized to detect differential

gene expression for the microarray data. Prior to performing

analysis with EdgeR, p-values of differential gene expression be-

tween the disease and the normal control condition were deter-

mined via one-sided Student’s t-test. Then the weight ws,m on edge

(s, m) in the differential network was calculated as following:

Where psand
 pmwerep-values of differential expression f genes

s and m, respectively. N was the node set of the co-expression net-

work, and cor (s, m) was the absolute value of PCC between genes

s, m based on their expression profiles. Under this weighting

scheme, genes that were co-expressed and significantly differen-

tially expressed were assigned higher weights, which satisfied the

present authors’ assumption that those genes likely participated

in a pathway that exhibited differential activities between the two

conditions being compared. Therefore, a DCN for ULMS was

built.

To capture the dynamic changes in gene modules under differ-

ent conditions, M-DMs were mined via the M-module algorithm

[21]. M-DMs searching consisted of the following three steps:

seed prioritization, module searching by seeds expansion, and re-

finement of candidate modules.

First of all, the genes contained in the DCNs were ranked based

on the degree centrality features of the genes in the network. To

be specific, for each network G

q

= (N, E

q

) (1 ≤ q ≤ Q) with an ad-

jacency matrix A

U

, the importance of the gene u in each DCN

was calculated according to the following formula:

Where g (u) denoted the importance of vertex x in the corre-

sponding network; Nu (v) denoted the set of neighbors of v in G

q

;

A’u denoted the degree normalized weighted adjacency matrix.

The product A’-g denoted the information propagation on network

via the edges of networks, which indicated that the importance of

a node depends on the number of its neighbors, strength of con-

nection, and importance of its neighbors.

According to the computational formula given above, the au-

thors obtained the importance of the genes in all individual net-

works, which we denoted as z-score values. Then, all of the

z-score values were ranked in descending order in all individual

networks, and the authors obtained the rank for that gene across

all networks by averaging the z-scores across all networks. The

top 1% genes were treated as seed genes. First of all, each of the

seed genes was chosen as a differential module T. Then, com-

mencing from each seed gene u, the network gene v that adjacent

to u was added to T to form a module T’. The entropy decrease be-

tween these two modules was calculated according to the follow-

ing formula:

ΔH(T’, T) > 0 indicated that addition of vertex v improved the

connectivity of the former M-module T aIternatively added genes

that adjacent to u to the module T until there was no decrease in

the objective function of ΔH. In this case, all of the genes were

connected together to form M-DMs.

In the refinement step, the authors kept only those M-DMs of

whose sizes ≥ 5. In addition, the ratio of intersection over union

for two sets was measured by Jaccard index, and the two sets were

merged into a module while the Jaccard index ≥ 0.5.

In the present study, the method of random network was se-

lected to conducted statistical analysis of the candidate M-DMs to

identify M-DMs. Each random network contained the same num-

ber of the edges in DCN, and then module search analyses were

performed according to the method mentioned above; 1000 repe-

titions were performed so as to ensure the validity of the results.

In addition, the empirical p-value of each module was evaluated

as the probability of the module with smaller score by chance.
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Figure 1. — The main differential co-expression network for uterine leiomyosarcoma constructed based on the absolute value of Pear-

son correlation coefficients ≥ 0.8, as well as wiping off these nodes that rae not exhibited in close communication with the main net-

work. The orange nodes represent the seed genes.  
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The formula was shown as followed:

P-value = sum (H
R
> H

D
) / H

R

Where H
R

stood for the number of modules from randomized

networks, H
D

was the number of modules from DCN. In addition,

the Benjamini-Hochberg [22] method was introduced to adjust

the above p-value. Finally, the modules with adjusted p-value ≤

0.05 were considered to be significant as well as were treated as

the M-DMs.

The authors were aware that the difference of the genes between

the normal control and the disease condition were manifested via

the functions of them. In the present study, pathway enrichment

analysis were performed in the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database to disclose the function of these M-

DMs. The Fisher’s exact test [23] was utilized to determine the p-

values of the enrichment condition and Benjamini-Hochberg

method [24] was performed to conduct multiple testing on the p-

values. The cutoff value was set at adjusted p-value < 0.05, and

these pathways with the p-value < 0.05 were considered as the

pathways that the certain module enriched in. Moreover, the path-

way that with the minimum adjusted p-value was considered as

the significant pathway that the module enriched in.

Results

Having recruited and preprocessed the gene expression

profile of ULMS and the PPI data, a PPI network with

10906 genes (575,860 interactions) was built. As PCC was

introduced to measure the relationships of these interac-

tions between the normal and disease conditions (|PCC| ≥

0.8), a binary co-expression network consisted with 1,656

nodes (4,182 edges) was gained. Then, after the one-sided

Student’s t-test was introduced to determine the p-values

of differential gene expression between the disease and the

normal control condition and the EdgeR was utilized to

Figure 2. — The 12 multiple differential modules for uterine leiomyosarcoma under the threshold of p-value ≤ 0.05. The orange nodes

represent the seed genes.
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weight the edges, a DCN with each edge was assigned a

weight value was constructed. However, there were some

nodes that were not exhibited close communication with

the main network, hence the authors wiped off them and

only kept the main DCN (Figure 1). We could see that all

of the 16 seed genes were contained in the main DCN.

To identify the DMs in the DCN, first of all, the seed

genes were identified according the z-scores of the genes.

All of the genes were ranked according to the z-scores in

descending order. As the authors set the cut off value of the

top 1% z-scores, 16 genes were selected as the seed genes.

Each seed genes were chosen  as an original differential

module to perform module searching analysis and 16 orig-

inal M-DMs were gained. Furthermore, under the threshold

value of nodes > 5 as well as Jaccard index ≥ 0.5, 12 can-

didate M-DMs, which were named Module 1 ~ Module 12

were obtained for further analysis.

Further to determine the significance of these candidate

M-DMs, the randomization test was performed on these

candidate M-DMs to identify M-DMs. Under the threshold

value of p < 0.05, the authors found that the p values all of

the 12 candidate M-DMs were less than 0.05, which meant

that all of the candidate M-DMs were M-DMs (Figure 2).

The details of these M-DMs are listed in Table 1. The au-

thors found from the table that all of the p values were small

enough, or even close to zero, which meant that the statis-

tical results were effective. In addition, the seed genes of

Module 1 ~ Module 12 were as following: CANX,

SLC25A3, SRSF1, TMX1, TMED2, SNX2, ATP5B, PSMC3,

SNW1, M6PR, C1QBP, and C11orf58.

The 12 M-DMs were separately chosen to perform path-

way enrichment analysis according to the method men-

tioned above. As each result of the pathway analysis was

ranked in descending order, and the pathway that with the

minimum adjusted p-value, as well as satisfy the cutoff

value p < 0.05 was considered to be the significant path-

way that the M-DM enriched in. The details of the pathway

that these 12 M-DMs enriched in are listed in Table 2. The

authors could found from Table 2 that Module 1, Module 3,

Module 5, Module 9, and Module 12 were enriched in

mRNA Splicing pathway, and Module 2, Module 6, and

Module 11 were enriched in Gene Expression pathway. The

authors predicted that these two pathways might play im-

Table 2. — The KEGG pathway enrichment analysis results of the modules.
Module Pathway p-value Genes 

Module 1 mRNA splicing 0.0042 HNRNPA1, HNRNPF, HNRNPH1, HNRNPR, NCBP2, NUDT21, PAPOLA, PCBP1, SRSF1 
Module 2 Gene expression 0.0016 EIF3I, HNRNPR, IPO8, PCBP1, POLR2E, PSMC1, PSMD1, PSMD6, RAN, SEC11A,

SLBP, SNRPB, SRSF1, YWHAB, YWHAH, YWHAZ, YBX1, SUPT4H1 
Module 3 mRNA splicing 4.45*10

-16 CDC5L, DHX9, FUS, HNRNPA1, HNRNPF, HNRNPH1, HNRNPR, HNRNPU, NCBP2,

PAPOLA, PCBP1, PRPF4, SNRNP40, SNRPD3, SRSF1, SRSF3, YBX1, U2AF1 
Module 4 AMER1 mutants   0.022 CSNK1A1, PPP2CB 

destabilize the

destruction complex

Module 5 mRNA splicing 5.07*10

-6 HNRNPH1, HNRNPR, NCBP2, PAPOLA, PCBP1, SF3B5, SNRNP40, SNRPB, SRSF1, 

SRSF3, YBX1
Module 6 Gene expression 0.0058 CNOT8, EIF2S3, EIF3A, HNRNPA1, HNRNPF, PAPOLA, PCBP1, PSMA3, PSMC1, 

SEC11A, SNW1, SRSF1, EIF5, SSB, TP53, RPL19 
Module 7 Mitochondrial  6.27*10

-6 ACO2, ATP5A1, ATP5B, GRPEL1, HSPD1, SAMM50, TOMM22, VDAC1 
protein import

Module 8 Autodegradation of  5.21*10

-6 ANAPC5, PSMA3, PSMB1, PSMB7, PSMC1, PSMC3 
Cdh1 by Cdh1:APC/C

Module 9 mRNA splicing 4.13*10

-13 CDC5L, DHX9, FUS, HNRNPF, HNRNPH1, HNRNPM, HNRNPR, NCBP2, PAPOLA,

SNRNP40, SNRPB, SRSF1, SRSF3, U2AF1 
Module 10 Membrane trafficking 5.68*10

-6 CLINT1, M6PR, SNAP23, SNX2, UBA52, YWHAB, YWHAH, YWHAZ, TJP1, RAC1 
Module 11 Gene expression 9.28*10

-8 AIMP2, DDOST, EIF3I, HNRNPR, POLR2E, PRPF4, PSMA5, PSMB7, PSME3, RAN, 

RBBP4, SEC11A, SLBP, SNRNP40, SRP72, SRSF1, SNRPB, PSMC3, YBX1, YWHAE, 

POLR2F, POLR3K, SPCS2, SRSF3, TFDP1, TP53, TSN 
Module 12 mRNA splicing 2.45*10

-6 CDC5L, HNRNPA1, HNRNPF, HNRNPH1, HNRNPR, NCBP2, PCBP1, SRSF1, SRSF3

Table 1. — Details of the differential modules.
Module ΔH value Seed gene Nodes no. Edges no. p-value 

Module 1 0.769 CANX 114 539 0.00050  

Module 2 0.815 SLC25A3 57 246 0  

Module 3 0.841 SRSF1 100 497 0  

Module4 0.738 TMX1 44 173 0.0028  

Module 5 0.827 TMED2 118 594 0  

Module 6 0.779 SNX2 59 285 0.00022  

Module 7 0.811 ATP5B 95 439 0  

Module 8 0.699 PSMC3 37 144 0.013  

Module 9 0.772 SNW1 65 210 0.00041  

Module 10 0.830 M6PR 55 231 0  

Module 11 0.767 C1QBP 74 276 0.00068  

Module 12 0.839 C11orf58 72 278 0  

272



Haiyang Jiang, Luyun Qu, Zenghui Li, Xiaohong Li, Jing Wang, Jianqing Hou

portant roles during the process of the occurrence and de-

velopment of ULMS.

Discussion

ULMS is one of the most common neoplasms in the fe-

male genital tract, and is relatively rare mesenchymal

tumor. According to the data, surgical intervention is virtu-

ally the only means of treatment to improve the prognosis

of this disease. However, the effect is not desired enough

and little is known regarding the biology of ULMS [25].

The mainly reason is that ULMS is resistant to chemother-

apy and radiotherapy, and the surgical intervention is vir-

tually the only means of treatment [26]. In this case, it is

critical to understand the biology of ULMS, in order to take

steps to prevent the initial development of it at its early age.

In the present study, further to understand the exact

pathological mechanism of this disease, the authors per-

formed a comprehensive analysis on ULMS based on com-

bining iMDM algorithm and KEGG pathway enrichment

analysis to reveal the key pathway between the normal con-

trol and the disease condition. Finally, 12 M-DMs which

begin from 12 seed genes were identified, and 5 M-DMs

were enriched in mRNA Splicing pathway, and 3 M-DMs

were enriched in Gene Expression pathway. The authors

predicted that these two pathways might play important

roles during the process of the occurrence and development

of ULMS. To uncover the relationships of ULMS between

these pathways and seed genes, further discussion was con-

ducted in the following. 

As mentioned above, an important reason for the ULMS

remains a rare aggressive cancer is that little knowledge re-

garding the molecular events undergone by ULMS cells in

the process of metastasis has not yet been clearly under-

stood. Over the past years, some researchers have at-

tempted their best to clarify molecular events related to

ULMS metastasis. Davidson et al. indicated that 203

unique probes that were significantly differentially ex-

pressed in the two tumor groups based, comparing the

global gene expression patterns of primary ULMS and

leiomyosarcoma metastases [27]. Genes of OSTN,

NLGN4X, NLGN1, SLITRK4, MASP1, XRN2, ASS1,

RORB, HRASLS, and TSPAN7 had proved to be overex-

pressed in primary ULMS. Another study pointed out that

differentially expressed genes between ULMS and normal

myometrial samples identified overrepresentation of cell

cycle regulation, DNA repair, and genomic integrity [28].

According to the experimental results, the proteasome sub-

unit beta 9 (PSMB9)/β1i-deficient mice successfully sur-

vived for 12 months of age with a ratio of 37% [29].

Therefore, the gene expression abnormality has been

largely accepted to be associated with ULMS although its

exact molecular mechanism has not been disclosed. Com-

bining the existing research results with the present ones,

the authors predicted that the mRNA Splicing pathway and

Gene Expression pathway played important roles in the

process of the occurrence and development of the disease.

In the next study, these pathways and genes of CANX,

SLC25A3, SRSF1, TMX1, TMED2, SNX2, ATP5B, PSMC3,

SNW1, M6PR, C1QBP, and C11orf58 could be chosen as

biomarkers to perform overall thorough research on

ULMS. However, there were still some weaknesses in the

present study that must be taken into account. First of all,

the microarray data on which the authors performed analy-

sis were downloaded from the existed database instead of

obtaining themselves. Secondly, the results of the bioinfor-

matics methods were not verified via experimental verifi-

cation analysis, and the exact conclusion could only be

determined after experimental verification analysis on the

results, which the authors will perform next. Although dis-

advantages existed, the authors believed that this method

and the results offered investigators valuable resources for

better understanding the underlying mechanisms ULMS on

the gene level, and the results will give great insight to re-

veal pathological mechanism underlying this disease, or

even provide assistance in the future study of related dis-

ease research.
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