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Summary
Purpose of investigation: Ovarian Cancer (OC) is one of the most lethal gynecologic cancers worldwide. Despite the standard

treatment, including radical resection, systemic chemotherapy, and targeted drugs for patients, survival rates remain low. This study
provides new ideas for the diagnosis and treatment of Ovarian Cancer. Material and Methods: We performed Kaplan-Meier analysis on
the transcriptome of Ovarian Cancer based on RNA-Seq data from The Cancer Genome Atlas (TCGA). Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment were used for pathway and functional enrichment. Protein-protein
interaction (PPI) network was constructed and visualized by SRING and Cytoscape. Results: A total of 1693 genes associated with
survival were identified. The Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology enrichment analysis revealed
that these selected genes were differently enriched in numerous functional pathways. The top ten hub genes (RIPK4, HSPA8, FOS,
STAT1, CD40LG, FGF2, RAC1, CXCR4, PRPF19, and CXCL10) were identified in our PPI network. Three highly connected cluster
modules were differently enriched in several functional pathways. Conclusion: These key biomarkers in Ovarian Cancer may have
diagnostic and therapeutic value in the future.
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Background

Ovarian Cancer (OC) is one of the most lethal gyne-
cologic cancers worldwide [1]. It was predicted that ap-
proximately 22,240 women will be diagnosed with ovar-
ian cancer in 2018, and 14,070 will die from the disease
[2]. Although the standard treatment, including radical re-
section, systemic chemotherapy, and targeted drugs for pa-
tients, produces a high response rate of 40-60%, less than
half of women diagnosed with OC survive beyond 5 years
[1]. However, there are few established molecular prognos-
tic or predictive markers for this cancer type [3], and it is
important to develop novel biomarkers for prognosis pre-
diction of OC.

Accompanied by the arrival of the era of ‘big data’,
high-throughput experiments such as gene expression mi-
croarrays have expanded our understanding of the underly-
ing mechanisms between cancer development and genomic
background [4]. The Cancer Genome Atlas (TCGA) is one
of the biggest public databases for cancers, which contains
transcriptome sequencing data from 131,019 samples of 43
kinds of cancer. With the help of bioinformatic technolo-
gies for microarray data, a lot of research on the abnormal
regulation mechanisms in cancer has been conducted us-
ing the TCGA database. However, previous studies mainly
focused on the relationship between a single gene and sur-
vival, such as Sprouty 2 [5], IL-8 [6], to examine the poten-

tial etiology and prognosis of OC.
In the present study, we first identified a series of genes

associated with patient survival in OC using the TCGA
database. These selected genes were conducted for gene
ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis. Furthermore, protein-
protein interaction (PPI) networks and module analysis
were also visualized using Cytoscape software to search
for key genes that were related to survival and might be
involved in the development of OC.

Material and Methods

Data resources
RNA-seq data for the TCGA-OV project

was downloaded from TCGA official website
(https://cancergenome.nih.gov). The correspond-
ing clinical information was downloaded from
http://www.cbioportal.org. A total of 374 ovarian
serous cystadenocarcinoma samples with information of
RNA profile and clinical data were included. Data were
collated and extracted for further analysis.

Data processing and survival analysis
We applied the R package ‘survival’ to perform Kaplan-

Meier analysis and assess survival difference across cases
based on gene expression. Grouping depended on the me-
dian level of gene expression. These genes whose expres-
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Table 1. — KEGG pathway and GO enrichment analysis of genes in module cluster one.

Category Pathway ID Pathway description Count False discovery rate

GOTERM_BP GO.0006875 Cellular metal ion homeostasis 10 2.06E-07
GO.0007187 G-protein coupled receptor signaling pathway, coupled to cyclic

nucleotide second messenger
8 2.06E-07

GO.0007204 Positive regulation of cytosolic calcium ion concentration 8 2.06E-07
GOTERM_CC GO.0019005 SCF ubiquitin ligase complex 7 1.71E-11

GO.0005829 Cytosol 14 0.00948
GO.0005829 Plasma membrane part 11 0.0354

GOTERM_MF GO.0048248 CXCR3 chemokine receptor binding 3 0.000117
GO.0004842 Ubiquitin-protein transferase activity 7 0.00017
GO.0001664 G-protein coupled receptor binding 5 0.00503

KEGG_PATHWAY hsa04080 Neuroactive ligand-receptor interaction 7 2.84E-05
hsa04062 Chemokine signaling pathway 6 2.86E-05
hsa04060 Cytokine-cytokine receptor interaction 6 0.000131

Table 2. — KEGG pathway and GO enrichment analysis of genes in module cluster two.

Category Pathway ID Pathway description Count False discovery rate

GOTERM_BP GO.0000398 mRNA splicing, via spliceosome 10 3.81E-09
GO.0008380 RNA splicing 11 6.07E-09
GO.0006397 mRNA processing 11 3.17E-08

GOTERM_CC GO.0005681 Spliceosomal complex 6 0.000192
GO.0005905 Coated pit 4 0.00183

Ribonucleoprotein complex 8 0.00239
KEGG_PATHWAY hsa03040 Spliceosome 8 5.09E-09

hsa04961 Endocrine and other factor-regulated calcium reabsorption 3 0.00795
hsa04144 Endocytosis 4 0.0238

sion correlated with overall survival were identified. For
the overall survival rates, the log-rank test was used to com-
pare the significant differences in univariate analysis be-
tween subgroups. A p value of less than 0.05 was consid-
ered statistically significant.
Functional and pathway enrichment analysis of genes associated
with survival

The Gene Ontology (GO)
(http://www.geneontology.org) database can provide
functional classification for genomic data, including
categories of biological processes (BP), cellular com-
ponent (CC), and molecular function (MF) [7]. The
Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.genome.ad.jp/kegg/) pathway analysis aims
to identify and visualize significantly enriched pathways
of molecular interactions, reactions, and relations [8].
To investigate the potential functions of the selected
genes associated with survival, GO and KEGG pathway
enrichment analyses using Database for Annotation,
Visualization and Integrated Discovery (DAVID) were
conducted ( https://david.ncifcrf.gov/home.jsp )[9].
Protein-protein interaction (PPI) network building and
interrelation analysis

The PPI network generated by STRING (Version 10.5,
http://string-db.org/) was imported into Cytoscape software

(version 3.60, http://www.cytoscape.org) to collect and in-
tegrate interactions between proteins [10,11]. Significant
modules in the visible PPI network using the Molecular
Complex Detection (MCODE) plugin were screened. The
default parameters of MCODE were used: degree cutoff≥
2, node score cutoff ≥ 0.2, k-score ≥ 2, maximum depth
= 100 [12].

Results

Identification of genes associated with patients’ survival

Since survival rate is often used for evaluating cancer
prognosis and the value of basic research on molecular
mechanisms is ultimately assessed by clinical transforma-
tion, the study focused on the genes associated with sur-
vival. A total of 374 OC patients with information of RNA
profile and clinical data were analyzed. Wewrote the R lan-
guage code for ‘survival’ package to calculate the p values
and filter the genes (p < 0.05) associated with OS rate of
patient groups divided by the median level of gene expres-
sion. A total of 1693 genes associated with survival were
identified for further study (Supplementary Table 1). The
survival curves for the first eight genes with the minimum
p values are displayed in Figure 1.
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Table 3. — KEGG pathway and GO enrichment analysis of genes in module cluster three.

Category Pathway ID Pathway description Count False discovery rate

GOTERM_BP GO.0002696 positive regulation of leukocyte activation 8 1.46E-08
GO.0051249 regulation of lymphocyte activation 8 8.40E-08
GO.0032653 regulation of interleukin-10 production 5 1.29E-07

GOTERM_CC GO.0009897 external side of plasma membrane 7 1.34E-07
GO.0009986 cell surface 8 5.08E-06
GO.0098552 side of membrane 6 9.95E-05

KEGG_PATHWAY hsa04514 Cell adhesion molecules (CAMs) 6 1.06E-07
hsa04060 Cytokine-cytokine receptor interaction 4 0.00298
hsa04640 Hematopoietic cell lineage 3 0.00298

Figure 1. —A total of 1693 genes associated with survival were identified. The survival curves for the first eight genes with the minimum
P values were shown. (A) BATF2, (B) CD38, (C) NLRP12, (D) RXFP1, (E) LAMTOR5-AS, (F) ZNF561, (G) ITGAD, (H) SLC22A2.

GO and KEGG pathway enrichment analysis of genes associated
with survival

To identify potential functions of genes associated with
survival, the selected 1693 genes to DAVID for KEGG
pathways and GO enrichment analysis were uploaded. The
top 5 mostly enriched KEGG pathways of these genes were
pathways in cancer, cytokine receptor interaction, axon
guidance, cell adhesion molecules, and osteoclast differen-
tiation ( Figure 2A ). GO analysis revealed that these se-
lected genes were mostly enriched in DNA-templated tran-
scription, signal transduction, positive regulation of tran-
scription from RNA polymerase II promoter, negative reg-
ulation of transcription from RNA polymerase II promoter,
DNA-templated positive regulation of transcription for BP
term, extracellular space, cell surface, proteinaceous ex-
tracellular matrix, extracellular matrix, axon for CC term

and transcription factor activity of sequence-specific DNA
binding, sequence-specific DNA binding, identical protein
binding, RNA polymerase II core promoter proximal region
sequence-specific DNA binding, protein kinase binding for
MF term. (Figure 2B-D). The most significantly enriched
pathways and enrichment terms are displayed in Supple-
mentary Table 2.

PPI network modeling
Given a list of known proteins, the STRING database

can identify their interactions and predict proteins with as-
signed confidence scores [10]. The selected 1693 genes
were uploaded to the STRING website to perform PPI
network. As a result, a total of 1,240 nodes and 3,365
edges were established in our PPI network, with an av-
erage node degree of 5.41 and an average local cluster-
ing coefficient of 0.35. The top ten hub genes with the
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Figure 2. — GO and KEGG pathway enrichment analysis of genes associated with survival. (A) The top 5 enriched KEGG pathways of
these genes. (B-D) The top 5 enriched GO terms of these genes.

highest degree were receptor interacting serine/threonine
kinase 4 (RIPK4), heat shock 70 kDa protein 8 (HSPA8),
fos proto-oncogene (FOS), signal transducer and activator
of transcription 1 (STAT1), CD40 ligand (CD40LG), basic
fibroblast growth factor (FGF2), Ras-related C3 botulinum
toxin substrate 1 (RAC1), C-X-C chemokine receptor type
4 (CXCR4), pre-mRNA-processing factor 19 (PRPF19),
and C-X-C motif chemokine 10 (CXCL10)(Supplementary
Figure 1). Figure 3 displays the survival curves of these hub
genes in OC.

Furthermore, we used MCODE algorithm to establish
subnets of the PPI network that are likely to represent
molecular complexes. The top three highly connected clus-
ter modules aredisplayed in Figure 4. The functional an-
notations of the genes involved in the modules were deter-
mined using STRING. The most significantly enriched GO
terms were SCF ubiquitin ligase complex, cellular metal
ion homeostasis, G-protein coupled receptor signaling path-
way for the module cluster one (Table 1), mRNA splic-
ing via spliceosome, RNA splicing, mRNA processing for
the module cluster two (Table 2), and positive regulation
of leukocyte activation, regulation of lymphocyte activa-
tion, regulation of interleukin-10 production for the module
cluster three (Table 3). KEGG pathway enrichment anal-
yses showed that neuroactive ligand-receptor interaction,
spliceosome and cell adhesion molecules (CAMs) were the
most enriched pathways for the module cluster one, two and
three, respectively.

Discussion

Though there have been advances in current therapeu-
tics, OC remains one of the most deadly cancers. Re-
searchers are exploring significant prognostic biomarkers
for OC, in order to provide early intervention. Numer-
ous relevant genes associated with OC survival have been
demonstrated previously. Sprouty 2 expression was re-
vealed to significantly impact tumor behavior with predic-
tive value as an independent prognostic factor for survival
and recurrence [5]. KIF20A overexpression predicted un-
favorable clinical outcome and had potential to serve as a
useful prognostic biomarker for epithelial OC patients [13].
The high preoperative serum level of Creatinine was as-
sociated with poor survival, which indicated that it might
be an additional independent prognostic parameter in pa-
tients with epithelial OC [14]. Nucleus and/or cytoplasm
of β-catenin expression might be associated with tumor
progression and subsequently represent a predictive factor
of poor prognosis in OC patients [15]. Wilms’ tumor 1
(WT1), an antigen target, was a biomarker for poor prog-
nosis, particularly when combined with altered p53 in OC
[16]. Penzvalto Z. et al. (2014) reported that Mitogen ac-
tivated protein kinase/extracellular signal regulated kinase
1 (MEK1) represented a promising candidate prognostic
biomarker and correlated with response rates to platinum-
based chemotherapy in OC [17]. However, most studies
primarily focused on a single gene as a potential predictive
biomarker.
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Figure 3. —The survival curves for the ten hub genes. (A) RIPK4,
(B) HSPA8, (C) FOS, (D) STAT1, (E) CD40LG, (F) FGF2, (G)
RAC1, (H) CXCR4, (I) PRPF19, and (J) CXCL10.

In this study, for the first time, we performed Kaplan-
Meier analysis for all the genes in OC cases from TCGA
project using bioinformation technology. As a result, a to-
tal of 1693 genes associated with survival were identified.
KEGG pathway and GO enrichment analysis were then per-

formed. These selected genes were differently enriched in
numerous functional pathways. In addition, we carried out
the PPI network construction and modeling through Cy-
toscape. The top three highly connected cluster modules
were also enriched in several functional pathways.

As most medical bioinformation studies focused on dif-
ferently expressed genes between tumor and normal sam-
ples, we firstly paid attention to all the genes associated
with survival. Thus, for the first time, we identified a se-
ries of genes related to survival in OC, which would help
us comprehensively understand the molecular mechanisms
of OC. During the PPI network construction, the top ten
hub genes (RIPK4, HSPA8, FOS, STAT1, CD40LG, FGF2,
RAC1, CXCR4, PRPF19, and CXCL10) were demon-
strated. RIPK4 has been reported to be aberrantly ex-
pressed in several cancer types. It was overexpressed in
human ovarian adenocarcinomas compared to noncancer-
ous ovarian tissue samples (REF). Though interacting with
the adaptor protein DVL2, RIPK4 could stimulateWnt Sig-
naling pathway with the co-receptor LRP6, which suggests
that RIPK4 overexpression may contribute to the growth
of OC [18]. Gong et al. (2018) revealed that the expres-
sion of RIPK4 was up-regulated in nasopharyngeal car-
cinoma (NPC) tissues and it could promote the growth
and anchorage-independent growth of NPC cells, which
demonstrated the oncogenic roles of RIPK4 in NPC and
suggested that RIPK4 might be a therapeutic target [19].
High expression of RIPK4 was also observed in bladder
urothelial carcinoma tissues and was an independent pre-
dictor for poor overall survival [20]. HSPA8 could nega-
tively regulate MLK4β and MLK3, which revealed an im-
portant function for MLK4β in modulating MLK3 activity
in hot stress responses in OC cells [21]. In pancreatic cancer
cells, HSPA8 overexpression was able to enhance cell via-
bility, diminishing the effects of Maslinic acid [22]. c-FOS
overexpression could inhibit OC growth by changing adhe-
sion both in vivo and vitro [23]. In metastases, c-Fos and
Fos B expression were significantly lower than in the re-
spective primary OC tissues, which also indicated that FOS
might be a potential cancer suppressor gene [24]. Trinh B.
revealed that STAT1 could interact with DLX4 and promote
ovarian tumor angiogenesis in part by stimulating iNOS ex-
pression [25]. STAT1 was found overexpressed in patients
with high-grade serous OC after the development of clinical
platinum resistance. Further knockdown of STAT1 signif-
icantly enhanced apoptotic response to platinum treatment
in resistant OC cells, which suggests that STAT1might take
part in platinum resistance in OC [26]. Slattery ML. et al.
(20xx) demonstrated that CD40LG was one of the genes
that could be modified by diet and lifestyle factors, which
appeared to be important mediators in breast cancer risk
[27]. FGF2 down-regulated E-cadherin expression through
the activation of PI3K/Akt/mTOR andMAPK/ERK signal-
ing pathways in human OC cells [28]. A prognostic value
of serum FGF2 was also determined in OC [29]. RAC1
took part in angiogenesis in OC [30], and its overexpres-
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Figure 4. — Three highly connected clusters identified by MCODE algorithm. (A) cluster one, (B) cluster two, (C) cluster three.

sion was associated with cell epithelial-mesenchymal tran-
sition and poor OC prognosis [31]. CXCR4 could promote
cell proliferation, migration, invasion, andmetastasis of OC
[32,33]. Overexpression of CXCR4 was significantly asso-
ciated with cisplatin-based chemotherapy resistance and it
could be a prognostic factor in epithelial OC [34]. PRPF19
was one of the seven genes with different copy number
alterations between matched highly and minimally inva-
sive/migratory OC cell subclones, which could be specif-
ically targeted for the treatment and prognosis of advanced
OC [35]. High expression of CXCL10 was associated with
almost doubled overall survival and it was confirmed as an
independent validation set, which supported the notion that
CXCL10 exerted a tumor-suppressive function in OC [36].

Conclusion

The present study is the first to identify a series of genes
associated with survival in OC. KEGG pathway and GO en-
richment analysis revealed that these selected genes were
differently enriched in numerous functional pathways. In
addition, we carried out the PPI network construction and
modeling and the top ten hub genes (RIPK4, HSPA8, FOS,
STAT1, CD40LG, FGF2, RAC1, CXCR4, PRPF19, and
CXCL10) were identified. These findings may have diag-
nostic and therapeutic value in the future. However, more
research is necessary to clarify the roles of these genes.
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