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1. ABSTRACT

Aluminium (Al) is a ubiquitously distributed 
environmental toxicant that lacks biological functions; 
however, its accumulation in the brain has been 
demonstrated to be linked to several neuropathological 
conditions particularly Alzheimer’s disease (AD). Asiatic 
acid (AA), a triterpene extracted from Centella asiatica, 
has been reported to cross the blood brain barrier 
and also displayed antioxidant and neuroprotective 
activities. The present study was aimed to explore 
the neuroprotective effect of AA against aluminium 
maltolate (Al(mal)3) induced neurotoxicity by assessing 
cell viability, mitochondrial membrane potential, levels 

of reactive oxygen species (ROS), DNA damage and 
apoptosis (Hoechst and dual staining, comet assay; 
expressions of pro-apoptotic, anti-apoptotic and 
signaling indices) via AKT/GSK-3β signaling pathway 
in SH-SY 5Y  neuroblastoma cells. Pre-treatment with 
AA significantly enhanced cell viability, attenuated 
rotenone-induced ROS, mitochondrial membrane 
dysfunction and apoptosis regulating AKT/GSK-3β 
signaling pathway. Downregulation of Al induced 
neurodegeneration may be one of the approaches 
to control the impairment of metal ion homeostasis 
leading to neuronal injury in  early development of 
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AD. However, more extensive work in animal model is 
desirable to confirm its neuroprotective action. 

2. INTRODUCTION

Aluminium (Al) is an abundantly distributed 
metallic element and its exposure gets increased 
due to lifestyle modifications. It enters into humans 
through soil, water, food and pharmaceutical agents 
and accounted to cause various adverse effects on the 
axonal transport, neurotransmitter synthesis, synaptic 
transmission, phosphorylation or dephosphorylation 
of proteins, protein degradation, gene expression 
and inflammatory responses of mammalian Central 
Nervous System. Al has been linked to neurotoxicity 
(1,2) and implicated as a possible causative or 
contributing factor in neurodegenerative disorders 
particularly Alzheimer’s disease (AD) (3). Maltolate 
is found in human diets including coffee, chocolate 
milk, bread, cakes, baked cereals and browned 
foods. Maltolate readily reacts with Al due to its high 
affinity and forms aluminium maltolate Al(mal)3  in the 
intestine (4). Al(mal)3 enhances the levels of Al in the 
brain, thereby initiating apoptosis by inducing oxidative 
stress and mitochondrial dysfunction (5). 

Centella asiatica (CA), belonging to the family 
of Apiaceae, also known as Mandookaparni or Brahmi, 
is considered as a rejuvenating herb in Ayurvedic 
medicine. CA has been reported to promote cognitive 
performance due to its wound healing, memory 
enhancing and anti oxidative, anti inflammatory and 
anti apoptotic properties (6,7). Asiatic acid (AA), 
the triterpenoid of CA exhibited its neuroprotective 
properties in in vitro and in vivo studies such as 
glutamate-induced excitotoxicity, beta-amyloid 
neurotoxicity and rotenone- or H2O2-induced injury 
and mouse model of focal cerebral ischemia (8-11). 
Patil et al., (12) reported that AA modulated multiple 
targets associated with amyloid-β precursor protein 
processing and amyloid-β protein clearance. However, 
the underlying mechanistic pathways by which AA 
protects neuronal cell death in Al(mal)3 are largely 
unknown.

The PI3K/AKT/GSK-3β signaling pathway 
plays a vital role in promoting neuronal survival 
by augmenting the cell proliferation and inhibiting 
apoptosis. SH-SY 5Y, the most widely used human 
neuroblastoma cell line displays some of the molecular 
and cellular processes like AD and widely used as a 
in vitro model for various neurodegenerative diseases. 
Understanding those regulations may provide further 
insight towards the better understanding of therapeutic 
applications of AA against Al(mal)3-induced cell death 
in in SH-SY 5Y cells. Hence, the present study was 
aimed to shed light on the protective effect of AA by 
analyzing its antioxidant, mitochondrial protective and 
antiapoptotic role via AKT/GSK3β signaling pathways 

against Al(mal)3-induced cytotoxicity in SH-SY 5Y cells 
which were unexplored till now. 

3. MATERIALS AND METHODS

Aluminium chloride hexahydrate, Maltol, 
Asiatic acid, 2,5-diphenyl tetrazolium bromide (MTT) 
dye, 2,7-dichlorofluorescein diacetate (DCFHDA), 
rhodamine 123 (Rh-123), propidium iodide (PI), 
acridine orange/ethidium bromide (AO/EB), DMEM/
F12 cell culture medium, trypsin–EDTA, fetal bovine 
serum (FBS) and 100X antibiotic and antimycotic 
solution were purchased from Sigma Chemicals 
Co. (St. Louis, USA). Bax, Bcl-2, cyto-c, caspase-3, 
caspase-9, p-AKT, AKT, p-GSK3β, GSK3β, and β-actin 
antibodies, anti-mouse and anti- rabbit secondary 
antibodies were procured from Cell Signaling (USA).

3.1. Cell culture 

Human neuroblastoma SH-SY 5Y cell line was 
obtained from National Centre for Cell sciences (NCCS) 
Pune, India, and cells were grown in DMEM F12 Hams 
(1:1) medium with 10% fetal bovine serum, 1% antibiotic 
and antimycotic solution and maintained at 37°C, 5% 
CO2. Cell culture medium was changed thrice in a week. 

32. Preparation of Al(mal)3 

According to the method followed by Berthold 
et al., (13), Al(mal)3 was synthesized from maltol 
(3-hydroxy-2-methyl-4-H-pyran-4-one) and aluminium 
chloride hexahydrate. For 10- 15 g of complex, 40.9. 
mM (9.9. g) of AlCl3 .6H2O and 122.8. mM (15.5. g) of 
maltol were dissolved in 160 ml of deionized water by 
mild heating and the pH was adjusted to 8.3. While 
heating the mixture to 65°C, precipitate was formed by 
stirring the solution and after cooling off-white crystals 
were filtered, washed with acetone and dried in a 
vacuum-dessicator for overnight. 

3.3. MTT Assay 

The mitochondrial integrity and proliferation 
of cells were determined by MTT assay (14). Cells 
were seeded in 96 well plate at a density of  3x103 cells 
per well, incubated for 24 h and introduced to different 
concentrations of Al(mal)3 (100, 200, 400, 500 and 
600 µM) and AA (0.0.1, 0.1., 5, 10 and 100 nM) for 24 
hours. To evaluate therapeutic efficacy of AA against 
Al(mal)3 toxicity, cells were pretreated with different 
concentrations of AA  (0.0.1, 0.1., 5, 10 and 100 nM) 
for 2 h and then incubated with Al(mal)3 (effective dose) 
for 24 h followed by addition of MTT (5 mg/ml) for 4 h. 
Media was removed after the incubation, and 100 µL 
of DMSO was added to dissolve the formazan crystals. 
The absorbance of formazan product was examined 
by spectrophotometer at 570 nm using a microplate 
reader. Based on the results obtained from cell viability 
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assay, the effective dose of AA against Al(mal)3 toxicity 
was employed to study the effect of AA by evaluating 
various parameters. 

3.4. Measurement of intracellular ROS levels assay

 The levels of ROS found in control and 
experimental cells were determined by using 
fluorescence dye DCFH-DA (15). SH-SY 5Y cells (1x 
105)  were pretreated with AA (10 nM)  for 2 h and then 
incubated with Al(mal)3 (400 µM) for 24 h, followed by 
25 µM DCFH-DA for 30 mins at 37ºC, washed twice 
with PBS and visualized using fluorescent microscope. 
Percentage changes in ROS production of the treated 
groups were determined by comparing to the untreated 
control.

3.5. Measurement of mitochondrial membrane 
potential 

MMP changes were determined by the 
mitochondrial specific fluorescent dye - Rh-123. 
Cells were cultured in 6-well plate (1x 105) and were 
treated with AA for 2 h and Al(mal)3 for 24 h, followed 
by incubation of Rh-123 (5 mmol/ml) for 15 minutes 
(16). Then washed with PBS and fluorescence 
was quantified by using blue filter (450-490 nm) 
and fluorescence intensity was measured by using 
spectrofluorometer at 535 nm. 

3.6. Determination of apoptosis using the acridine 
orange/ethidium bromide dual staining assay

Apoptosis was analyzed by treating the 
control and experimental cells with fluorescent 
dyes (AO/EB) and quantified by using fluorescence 
microscope. Cells were incubated with Al(mal)3 alone, 
AA and Al(mal)3,  AA (10 nM) alone. After incubation 
period, cells were washed and followed by the addition 
of AO/EB reagent for 10 mins. Cells were observed by 
using fluorescence microscopy, live cells show normal 
green nuclei, whereas early apoptotic cells shows 
bright red nuclei and late apoptotic cells illustrates 
orange colored chromatin (17).

3.7. Analysis of cellular and nuclear morphology 
using Hoechst 33258 staining assay

SH-SY5Y cells were seeded in 6-well  
plate and then treated with Al(mal)3 and AA. After 
the treatment, cells were washed and stained with  
Hoechst 33258 dye for 10 mins in the dark (18). Then   
dye was removed and the cells were washed three  
times with PBS. Finally, the cells were visualized under 
fluorescence microscope.

3.8. Comet assay analysis 

Alkaline comet assay was performed as 
described by Nataraj et al., (18). Cells were washed 

with PBS, trypsinized and centrifuged at 1200 rpm 
for 5 mins. Subsequently, 100 µl cell suspension 
containing 1x 105 cells were mixed with 900 µl 0.7.5 
% low melting point agarose and instantly spread 
on frosted microscopic slides precoated with high 
melting point agarose, leave it to solidification for 
10 mins at 4°C. After that cells were immersed in 
ice-cold lysis solution for 1 h at 4°C. Slides were 
then placed in freshly prepared electrophoresis 
buffer for 20 mins to allow DNA unwinding before 
electrophoresis. Electrophoresis was run for 20 mins 
at 25 V (300 mA). After electrophoresis, slides were 
neutralized, washed and stained with propidium 
iodide (2.5. μg/ml). Then dried slides were observed 
under fluorescence microscope. The amount of DNA 
damage was measured by % head DNA, tail length, 
tail movement and olive tail movement in normal, 
Al(mal)3, AA+Al(mal)3 and AA alone treated cells.

3.9. Western blot analysis 

Cells in 6-well plate were harvested, washed 
with PBS and lysed in 100 μl lysis buffer (20 mM Tris–
HCl, pH 7.4., 150 mM NaCl, 1 mM EDTA, 30 μg/ml 
aprotinin and 1 mM phenylmethylsulfonyl fluoride) and 
centrifuge at 1000 g for 5 mins at 4°C. The supernatant 
was preserved and the pellets solubilized in the same 
volume of lysis buffer kept on ice and vortex for 20 
mins followed by pelleting at 10000 g for 10 mins 
at 4°C and subjected to 12.5.% polyacrylamide gel 
electrophoresis (18). A total volume of 40 μg of protein 
was loaded per lane. The separated proteins were 
blotted onto a nitrocellulose membrane. After blocked 
for 1 h with 5% BSA, blots were incubated with primary 
antibody against Bcl-2, Bax at a dilution of 1: 500, cyto c 
(1: 1000), p-AKT, AKT, p-GSK3β, GSK3β, Caspases-3, 
and 9 (1:1000) and β-actin (1:1000) overnight at 4°C. 
After washing, membrane was incubated with anti-
rabbit and anti-mouse HRP conjugated secondary 
antibody (1:2000) and bands were detected by 
treating the membranes with 3,3′-diaminobenzidine 
tetrahydrochloride and densitometry was done by 
using Image J analysis software.

3.10. Statistical analysis

Statistical analysis was performed by one-
way analysis of variance followed by Duncan’s multiple 
range test (DMRT) using Statistical Package for the 
Social Science (SPSS) software package version 
12.0. Results were expressed as mean ± SD for four 
experiments in each group. p < 0.0.5 were considered 
significant.

4. RESULTS 

4.1. Effect of AA on Al(mal)3 induced cytotoxicity

Cells exposed to different concentration 
of Al(mal)3 showed a significant (p<0.0.5) and dose 
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dependent cyto-toxicity. At a dose of 400 mM, it caused 
~ 50% of cell death as compared with control and 
considered as inhibitory dose. Different concentrations 
of AA (0.0.1, 0.1., 5, 10 and 100 nM) reduced toxicity 
caused by Al(mal)3 and maximum protection was 
offered at 10 nM concentration and was taken as 
protective dose (Figure 1). So 400 mM of Al(mal)3 and 
10 nM of AA were used as effective doses and used 
for further studies.

4.2. Effect of AA on Al(mal)3 induced intracellular 
ROS production 

Exposure of SH-SY 5Y cells to Al(mal)3 (400 
mM) increased the green fluorescence significantly 
(p<0.0.5), an indicator of high levels of ROS, whereas 
10 nM AA pretreatment to Al(mal)3 (400 mM) exposed 
cells reduced green fluorescence significantly 
(p<0.0.5), an indicator of decreased intracellular ROS 
levels (Figure 2). 

4.3. Effect of AA on Al(mal)3 induced reduction in 
MMP

Rh-123 steadily penetrates the normal cells, 
stains mitochondria and exhibits high fluorescent 
intensity. Al(mal)3 exposure diminished the intracellular 
green fluorescence significantly (p<0.0.5), indicating 
the mitochondrial membrane depolarization. However, 
incubation with 10 nM AA attenuated Al(mal)3 induced 
mitochondrial membrane depolarization significantly 
(p<0.0.5), which is revealed by increase in fluorescence 
intensity (Figure 3). 

4.4. mpact of AA on Al(mal)3-mediated apoptosis

SH-SY 5Y cells treated with Al(mal)3 and AA 
were used to determine apoptosis by using AO/EB 
in dual staining method. In, cells exposed to Al(mal)3 
induced the formation of orange/red luminescent 
apoptotic cells significantly (p<0.0.5) whereas 

Figure 1. Al(mal)3 (0, 100, 200, 400, 500 and 600 µM) treatment dose dependently diminished the cell viability as compared to control (A).  AA (0.01, 0.1, 
5 and 10 nM) alone treatment did not altered the cell viability, whereas high dose (100 nM) diminished the cell viability slightly (B). AA pretreatment (0.01, 
0.1, 5 and 10 nM) dose dependently enhanced the cell viability against Al(mal)3  toxicity, whereas 100 nM of AA reduced cell viability significantly  (C). 
Values are presented as mean ± SD in four experiments each groups. Values not sharing a common symbol differ significantly (p<0.05).
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Figure 2. Al(mal)3  treatment enhanced the ROS levels as compared to control, whereas AA pretreatment attenuated the levels of ROS in SH-SY 5Y 
neuroblastoma cells. Values are given as mean ± SD of four experiments in each group. *p<0.05 compared to control; p<0.05 compared to Al(mal)3  group 
(Duncan’s multiple range test-DMRT).

pretreatment of AA to Al(mal)3 exposed cells, increased 
the cell viability and decreased apoptotic cell death 
significantly (p<0.0.5) as compared to Al(mal)3  alone 
exposed cells (Figure 4).

4.5. Effect of AA on Al(mal)3 induced morphologi-
cal  changes 

Hoechst 33258 staining showed significant 
(p<0.0.5) DNA condensation and  nuclear fragmentation  
in  cells treated with  Al(mal)3 as compared to control 
cells. However, pretreatment with AA significantly 
inhibited significantly (p<0.0.5) the characteristics of 
apoptosis (Figure 5).

4.6. Impact of AA on Al(mal)3 induced DNA damage

DNA damage induced by Al(mal)3 was studied 
by comet assay (Figure 6). Al(mal)3 significantly 
(p<0.0.5) increased % head DNA, tail length, tail 
moment and OTM, whereas AA treatment prior to 
Al(mal)3 exposure significantly (p<0.0.5) reduced the 

DNA damage. Results were analyzed by Comet Assay 
Software Project (CASP).

4.7. Effect of AA on Al(mal)3 induced imbalance in 
the expression of apoptotic and signaling markers

Western blot analysis showed that Al(mal)3 
treatment significantly (p<0.0.5) downregulated the 
expression of Bcl-2 and increased the expression of 
Bax (Figure 7). AA pretreatment significantly (p<0.0.5) 
attenuated the Al(mal)3 induced reduction  in the 
expression of Bcl-2 and enhancement in the expression 
of Bax. We also observed that Al(mal)3 treatment 
significantly (p<0.0.5)  increased release of cyto c 
in cytosol and the expression of active caspases-3 
and 9 compared with control. Pretreatment with AA 
restored Al(mal)3 toxicity specifically  by withdrawing 
the release of cyto c in cytosol and the expression of 
apoptotic proteins significantly (p<0.0.5). In order to 
reveal the mechanism of Al(mal)3 induced cell death 
and protective effective of AA, the protein expression 
studies of signaling molecules were performed. 
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Expressions of p-AKT and p-GSK3β were significantly 
(p<0.0.5) decreased after Al(mal)3 treatment as 
compared with control. There is no significant reduction 
was found in the expressions of total AKT and total 
GSK3β after Al(mal)3 treatment as compared with 
control. Pretreatment with AA significantly (p<0.0.5)   
increased the expressions of p-AKT and p-GSK3β 
as compared with. However, treatment with AA alone 
unaltered the expression of p-AKT and p- GSK3β as 
compared to control (Figure 8).

5. DISCUSSION

The mitochondrial dehydrogenases catalyse 
the formation of blue formazan product by the 
reduction of the MTT tetrazolium salt and this assay 
is widely used for evaluating cellular survival (19). 
Neuronal apoptosis is a significant characteristics of 
neurodegeneration and well-known form of cell death 
in many NDDs including AD (20). The observation of 
Hoechst 33342 and dual staining techniques confirms 
these apoptotic changes in Al(mal)3 treated cells. 
Previous studies indicated that the treatment with 
Al(mal)3 induced cell death in brain (21,22) and as well 
in in vitro studies (23-25), which is corroborated with 
our study. The neuroprotective effect of AA in MTT 

assay paralleled the morphological analyses obtained 
with Hoechst- 33258 and dual staining. AA exposure 
increased the survival of PC12 cells against oxygen-
glucose deprivation/reoxygenation injury (26), SH-
SY5Y cells against glutamate toxicity (27) and cultured 
rat hepatocytes against D-galactosamine or carbon 
tetrachloride injury (28), which strengthen our finding.

Al disrupts the homeostasis of magnesium, 
calcium and iron (29, 30) and effectively mimics 
these metals in their respective biological functions, 
thereby triggering biochemical abnormalities. The 
accumulation of Al obstructs the activities of electron 
transport chain (ETC) complexes I, III and IV, which 
are heavily loaded with Fe–S clusters and hemes 
(31), thus limiting ATP synthesis via the inhibition of 
oxidative phosphorylation. The mitochondrial ROS 
production occurs mainly at two distinct points in the 
ETC: complexes I (NADH dehydrogenase) and III 
(ubiquinone–cytochrome c reductase) (32, 33). 

Dichlorodihydrofluorescein diacetate (DCFH-
DA) staining revealed that Al(mal)3 treatment induced 
ROS generation which could be suppressed by 10 
nM AA pretreatment (Figure 2)  These effects are 
reversed by antioxidants like N-acetyl cysteine (34, 

Figure 3. Al(mal) 3  treatment reduced mitochondrial membrane potential as compared to control, whereas AA pretreatment enhanced mitochondrial 
membrane potential in SH-SY 5Y neuroblastoma cells.  Values are given as mean ± SD of four experiments in each group. *p<0.05 compared to control; 
#p<0.05 compared to Al(mal)3  group (Duncan’s multiple range test-DMRT).
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35). AA exhibited significant neuroprotective effect 
against age related (36), glutamate (9) and rotenone 
(18) induced oxidative stress due to its antioxidant 
potential. Mitochondrial energization induces 

quenching of Rho 123 fluorescence and the rate of 
fluorescence decay is proportion to the ΔΨm (37). Our 
results demonstrated that the cells treated with Al(mal)3 
decreased the integrity of mitochondrial membrane, 

Figure 4. Al(mal) 3  treatment enhanced apoptosis as compared to control, whereas AA pretreatment showed antiapoptotic effect in SH-SY 5Y 
neuroblastoma cells.  Values are given as mean ± SD of four experiments in each group. *p<0.05 compared to control; #p<0.05 compared to Al(mal)3  
group (Duncan’s multiple range test-DMRT).

Figure 5. Al(mal)3  treatment showed morphological changes in SH-SY 5Y neuroblastoma cells as compared to control, whereas AA pretreatment 
reversed these changes.  Values are given as mean ± SD of four experiments in each group. *p<0.05 compared to control; #p<0.05 compared to Al(mal)3  
group (Duncan’s multiple range test-DMRT). Figures indicate treatment with A) Control, (B) Al(mal)3 (C) AA + Al(mal)3 and (D) AA.
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Figure 6. Al(mal)3  treatment showed oxidative changes in SH-SY 5Y neuroblastoma cells as compared to control, whereas AA pretreatment nullified 
these changes.  Values are given as mean ± SD of four experiments in each group. *p<0.05 compared to control; #p<0.05 compared to Al(mal)3  group 
(Duncan’s multiple range test-DMRT).

Figure 7. Al(mal)3  treatment altered the expressions of Bcl-2, Bax,  cyto c, caspases-3 and 9 in SH-SY 5Y neuroblastoma cells as compared to control, 
whereas AA pretreatment showed antiapoptotic effects. Values are given as mean ± SD of four experiments in each group.  *p<0.05 compared to control; 
#p<0.05 compared to Al(mal)3  group (Duncan’s multiple range test-DMRT).
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whereas cells pretreated with AA prevented the loss 
of mitochondrial membrane integrity (Figure 3). The 
neuroprotective effect of AA against ΔΨm caused by 
rotenone, a mitochondrial inhibitor has been shown 
by our lab recently, is consistent with the present 
results (18). The loss in ΔΨm leads to the opening 
of the permeability transition (PT) pore (38), which 
facilitates the release of cyto c into the cytosol. In 
cytoplasm, cyto-c binds to Apaf-1, activates caspase 
9 with subsequent activation of  the death-inducing 
caspase 3 (39). The Bcl-2 family of proteins is 
essential in controlling ΔΨm (40). The anti-apoptotic 
proteins Bcl-2 located in the outer mitochondrial wall 
and inhibit the release of cyto c. The pro-apoptotic 
Bcl-2 proteins such as Bad, Bid, Bax and Bim exist in 
the cytosol but translocate to mitochondria following 
ΔΨm loss, where they promote the release of cyto 
c. In the present study, we observed that, Al (mal)3 
induces cyto c translocation from mitochondria into 
the cytosol, Bcl-2 down-regulation, Bax up-regulation 
and caspases -9 and 3 activation, which indicates the 
progression of apoptosis. Moreover Al was shown 
to induce mitochondrial permeability transition by 
reducing ΔΨm (41) and bounding to the PT pore. It 
held the pore in an intermediate state, partially open 
position, which is sufficient to trigger cyto c release. 
Caspases are important mediators of apoptosis, and 
caspase activation has been demonstrated in Al(mal)3-

induced neurodegeneration (21,42). We found that AA 
pre treatment enhanced the Bcl-2 expression with 
diminished Bax expression and reduced cyto c release 
from mitochondria, thereby inhibiting the expressions 
of caspase-9 and -3 as compared to Al(mal)3 alone 
exposed  cells. Huang et al., (43) indicated that 
the treatment of AA inhibited myocardial ischemic 
reperfusion injury induced apoptotic cell death by 
downregulating the activities of caspase-3 and -9 and 
reverting Bax/Bcl-2 ratio in hypoxic H9c2 cells. 

The activation of Akt pathway promotes 
neuronal survival (44, 45), while its inhibition induces 
neuronal death (46). Akt exerts a wide range of biological 
effects mainly by promoting the phosphorylation of Bax 
(one of the apoptosis promoters of the Bcl-2 family), 
mTOR (mammalian target of rapamycin), glycogen 
synthase kinase-3 (GSK-3), and other downstream 
substrates (47). PI3K activates phosphorylation of 
Akt at Ser 473, which activate the phosphorylation of 
GSK-3β at serine 9 (GSK-3β Ser9), thereby preventing 
the activity GSK-3β (48, 49). AKT down regulation 
with elevated GSK-3β activity is associated to brain 
dysfunctional pathogenesis. Al(mal)3 is reported 
to reduce the phosphorylation of Akt and thereby 
increasing the activity of GSK-3β (49). In the active 
form, GSK-3β translocates from the cytoplasm to the 
nucleus and then participates in the development of 

Figure 8. Al(mal)3  treatment altered the expressions of AKT, p-AKT, GSK3β and p-GSK3β in SH-SY5Y cells as compared to control, whereas AA 
pretreatment reversed these changes. Values are given as mean ± SD of four experiments in each group. *p<0.05 compared to control; #p<0.05 
compared to Al(mal)3  group (Duncan’s multiple range test-DMRT).
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apoptosis activities. GSK-3β also induces apoptosis 
through phosphorylating Bax, which then enters 
the mitochondria and induces the release of cyto C 
to the cytoplasm. Al(mal)3 exposure decreased the 
expressions of Ser 9 pGSK3β in this study, which is 
consistent with our previous findings (50). AA co-
treatment upregulated the expression of Akt, thereby 
induces the phosphorylation of serine 9 pGSK3β 
that results in the inactivation of GSK-3β, which 
prevents cell apoptosis and confers neuroprotection. 
These findings demonstrated that AA treatment could 
alleviate Al induced apoptosis in in vitro model of AD 
likely by modulating oxidative stress, mitochondrial 
dysfunction and signaling pathways.

In conclusion, AKT/GSK-3β pathway is 
considered as a functional molecular event that prevent 
the learning and memory impairments induced by Al to 
a certain degree and to exploring some valid targets 
to treat diseases correlating to Al. Down regulation 
of Al induced neurodegeneration may be one of the 
approaches to control the impairment of metal ion 
homeostasis leading to neuronal injury in the early 
development of AD. However, pre clinical and clinical 
studies are warrented to elucidate the neuroprotective 
efficacy of AA in the management of AD. 
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