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Abstract

Healthcare-associated infections (HAIs) are a source of constant risk for inpatients and healthcare workers and a serious challenge to
human health services worldwide. Common surfaces, such as doorknobs, tables, and bedrails, can become contaminated and develop
into a reservoir of pathogens; thus, common surfaces can play an important role in the fomite-mediated pathway through which HAIs
are transmitted. Non-critical disinfection techniques are common practice in the nosocomial setting, aiming to reduce the bioburden
of common surfaces and prevent the spread of HAIs. However, these techniques are limited by factors such as the need for frequent
disinfectant reapplication and the potential recontamination that can occur at any moment after cleaning. Light-activated antimicrobial
nanocoatings are an interesting alternative to overcome these issues, since these nanocoatings can confer self-disinfection capacities to
nosocomial common surfaces, to supplement non-critical disinfection. Thus, this review aims to discuss the relevance of fomites and
gaps in common disinfection strategies that favor the propagation of HAIs. In addition, nanotechnology-based antimicrobial coatings
are considered, along with strategies for nanoparticle-based antimicrobial coating development. Furthermore, the use of titanium oxide
nanoparticles to formulate photo-responsive antimicrobial nanocomposites/nanocoatings and concerns related to toxicity, environmental
fate, and bacterial resistance development are discussed. Finally, emerging photo-responsive antimicrobial nanotechnologies and future
perspectives are considered.
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1. Introduction

The focus of this article is on photo-responsive an-
timicrobial nanocoatings, a category of composite nano-
materials used to coat and confer self-disinfecting proper-
ties to inanimate surfaces to disrupt the transmission of in-
fectious diseases. Infections occur when pathogens break
through the immune defenses to invade a susceptible indi-
vidual. Then the direct or indirect spread of infection to
other hosts, known as contagion or infection transmission,
may happen in different environments and by a variety of
routes. Fortunately, for most of these diseases, the immune
system fights and clears the infection within a few days.
However, in environments such as the nosocomial setting,
pathogens may be more virulent and can cause significant
infections or even death. This article will review hospital-
associated infections, the fomite route of contagion, and
common non-critical disinfection strategies. Then the role
of nanotechnology on the development of antimicrobial
coatings will be discussed, followed by a description of
commonly used strategies for antimicrobial coating devel-
opment, the use of nanoparticles as antimicrobial agents
with a focus on titanium oxide nanoparticles, and the formu-
lation of photo-responsive antimicrobial nanocomposites.
In the final sections, concerns related to toxicity, environ-
mental fate, and bacterial resistance development will be

discussed, followed by brief sections on emerging photo-
responsive antimicrobial nanotechnologies and future per-
spectives. As an important note, all along the text, the terms
antimicrobial coatings and antimicrobial nanocoatings are
used indistinctly.

1.1 Healthcare-Associated Infections

One environment that is prone to harbor dangerous
pathogens is the nosocomial setting. In there, an increased
number of patients are subject to modern therapies, such
as organ transplantation or chemotherapy, which can tem-
porarily weaken their immune systems. Other patients may
present limited immune responses due to their advanced age
or by the effect of debilitating diseases. All these factors
contribute to the patient’s increased risk of acquiring oppor-
tunistic infections during their stay at the healthcare facility,
also known as nosocomial or healthcare-associated infec-
tions (HAIs) [1,2]. These infections are particularly chal-
lenging to patients and health services worldwide because
of their potential long-term effects and increased risk of
death [3]. In the United States for instance, HAIs have a re-
ported incidence of 5-8%, which duplicates the likelihood
of death for affected patients. Concerningly, in some devel-
oping nations the incidence of HAls reaches a staggering
50%, adding a potential life threat to common hospitaliza-

Copyright: © 2025 The Author(s). Published by IMR Press.
BY This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://www.imrpress.com/journal/FBE
https://doi.org/10.31083/FBE38083
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2967-0502
https://orcid.org/0000-0003-2190-3439
https://orcid.org/0009-0001-6339-548X
https://orcid.org/0000-0003-3233-3021

tion procedures [4,5]. Moreover, these nosocomial infec-
tions involve microorganisms like E. faecium, S. aureus, K.
pneumoniae, A. baumannii, P. aeruginosa, and Enterobac-
ter species, aptly dubbed the ESKAPE pathogens [4,6]. Ad-
ditionally, other bacterial agents such as spore-forming C.
difficile, viruses like rhinovirus, respiratory syncytial virus,
parainfluenza, and coronavirus, or fungal species as Can-
dida spp. and Aspergillus spp. may be a source of HAIs
[7,8]. Besides their virulence and pathogenicity, these mi-
croorganisms possess an innate resistance that extends their
viability onto surfaces over extended periods [9,10]. For
example, recent studies confirmed that human pathogenic
bacteria can survive for months on dry surfaces [11,12].
Similarly, other studies demonstrated that the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) from
saliva droplets was able to survive up to seven days on con-
taminated surfaces [13,14]. Hence, besides infection by di-
rect exposure, another important route of HAI contagion is
by indirect contact with contaminated surfaces or fomites

[15].

1.2 Fomite-Mediated Infection Transmission

Fomites are defined as inanimate objects that can work
as a vector and reservoir to transfer infective agents [15,16].
Research shows that many infections of bacterial, fungal,
or viral origin can be indirectly transmitted via fomites
(Fig. 1). Their role as passive sources of HAI propaga-
tion has been recognized as an important health problem
and their involvement in nosocomial infection cases is es-
timated to be about 20-40% [16—19]. The mechanism of
transmission can be by direct soiled fomite to mouth con-
tact, or indirect, by touching the contaminated surface and
subsequently tapping or rubbing exposed mucosa in the
lips, nose, or eyes [20]. Fomites may get contaminated
by different means. For example, by contact with droplets
from coughing, touch by soiled hands, or by deposition of
airborne pathogens [15,21,22]. In the nosocomial setting,
surfaces that are touched by different people for distinct
reasons are known as high-touch or frequently touched sur-
faces (FTSs). Some examples are doorknobs, hand- and
bedrails, and bedside tables, among others. Contaminated
FTSs are regarded as vectors for contagion episodes due to
the persistence of pathogens [16], which may be transmit-
ted by direct contact with the hands of healthcare workers
to medical equipment, patients, visitors, or other personnel
[5,20]. For instance, researchers reported cross contamina-
tion of multidrug resistant bacteria between FTSs and staff
gloves [23]. In another instance, researchers found viable
methicillin-resistant S. aureus (MRSA) in the surroundings
of infected patients and on surfaces such as furniture, beds,
and clinical equipment, suggesting that the contamination
of surfaces near the patient may be an important factor in the
transmission of HAIs [9,24]. Hence, prevention to avoid
HAI contagion is especially important in this age where
treatment can be difficult to achieve, either due to bacterial

antibiotic resistance (AR) or the lack of treatment or vac-
cines for novel viral infections [25-28]. In fact, research
has shown that the incidence of HAI episodes is related
to improper disinfection practices of FTSs [16]. Conse-
quently, interrupting the fomite-mediated transmission cy-
cle by preventive surface disinfection is an effective method
to limit the spread of HAIs and is a common practice ob-
served in hospitals today, aimed at reducing the environ-
mental bioburden and incidence of infections [21,24,29]. In
the words of Page ef al. [30] “when it comes to the level of
surface contamination, particularly in a healthcare environ-
ment, the lower the microbial load the better”.

1.3 Low-Level Disinfection Strategies and Gaps in HAI
Prevention

The disinfection of noncritical surfaces, such as FTSs,
is an important infection prevention strategy to minimize
HALI transmission [5,29,31-33]. The classification system
from Spaulding, shown in Table 1, categorizes the amount
of disinfection needed as a function of the procedure to be
performed [34,35]. For instance, surgery and all interven-
tions that require opening sterile body cavities or organs
are considered critical and demand a high level of disin-
fection or sterilization. On the other hand, procedures that
involve touching the mucous membranes are classified as
semi-critical and the instruments can be disinfected by heat
or chemicals.

In contrast, non-critical conditions or procedures in-
volving only contact with healthy human skin require
less stringent disinfection procedures. Hence, FTSs can
be cleaned by applying low-level disinfection strategies,
which commonly use quaternary ammonium compounds,
sodium hypochlorite, iodophors, or alcohols. The U.S. En-
vironmental Protection Agency regulates these products,
which are labeled as “hospital disinfectants” and are as-
signed corresponding registration numbers [34,36]. They
are intended to inhibit or kill some bacteria, fungi, en-
veloped viruses, and some non-enveloped viruses [34,37].
Low-level disinfection is usually performed by liquid con-
tact for at least one minute using commercially avail-
able disinfectant cleaning wipes or sprays and can effec-
tively reduce the population of epidemiologically relevant
pathogens by about 99.99% [31]. The disinfectant’s pri-
mary mode of action varies with the substance used. For ex-
ample, alcohol disrupts membrane lipids and denatures pro-
teins causing cell lysis, while chlorine oxidizes thiol groups
destroying the cellular activity of proteins. On the other
hand, quaternary ammonium compounds denature essential
cell proteins and disrupt the lipid membrane, resulting in
generalized membrane damage [36,38].

However, a potential drawback of low-level disinfec-
tants is the continuous, uncontrolled release of biocides into
the environment, which can further contribute to the de-
velopment of AR [39]. Moreover, although the efficacy
of these products has been demonstrated, many FTSs re-
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Fig. 1. Simplified schematic of fomite-mediated routes of infection transmission. (A) An infected individual expels pathogen-

containing respiratory droplets which settle on an inanimate surface or fomite. (B) The contaminated surface becomes a vector of

transmission, able to harbor pathogens for long term, and facilitating the spread of disease through contact. (C) Pathogens are transmitted

by touching the contaminated surface. Transmission may reach other surfaces (D), individuals (E), or include self-infection (F), resulting

in sickness (G) and continuation of the cycle. Created with BioRender.com.

Table 1. Spaulding’s levels of disinfection.

Bacteria

Fungi

Viruses

Level - — — Examples
Vegetative Mycobacterl.um Spores Lipid 'envel.ope Non-lll?ld
tuberculosis medium size small size
Low (non-critical) v X Variable v Variable Disinfection of FTSs
Medium (semi-critical) v v v v Variable Disinfection of endoscopes
by heat or chemicals
High (critical) v v v v v v Sterilization of surgical

instruments

FTSs, frequently touched surfaces.

main improperly cleaned, and therefore, potentially con-
taminated due to the inadequate application of cleaning pro-
tocols [31,40,41]. To address these issues, some manu-
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facturers have developed systems that either use ultravio-
let light or hydrogen peroxide mist, but besides their cum-
bersome application procedures, these technologies still re-
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quire standard cleaning [32,37]. Moreover, even with the
application of these systems, the primary concerns related
to non-critical disinfection of FTSs still remain: (a) the need
for frequent disinfection, (b) the recontamination that can
occur at any moment after cleaning, (c) the lack of a system
to inactivate the collected pathogen particles, and (d) the
risk of infection by touching the re-contaminated surface.
Hence, considering the limitations of non-critical disinfec-
tion of FTSs, the development of supplemental approaches
to reinforce the established procedures is widely justified.
In this review, we discuss the role of nanotechnology-based
antimicrobial coatings in addressing the creation of com-
prehensive protection systems to prevent fomite-mediated
HAI transmission [42].

2. Nanotechnology and Antimicrobial
Coatings

The coronavirus disease 2019 (COVID-19) pandemic
was a wakeup call regarding the preparedness of public
healthcare systems around the world in handling devastat-
ing consequences of infection transmission. In that mo-
ment, some authors pointed out the enormous potential
of nanotechnology to address the prevention of fomite-
mediated infections by developing nanomaterials for con-
tinuous disinfection of FTSs [22,43,44]. Their visionary
declarations remain valid in this post-pandemic world and
apply to the emergent issues related to bacterial resistance
development and HAI transmission. Scientists have long
sought continuous disinfection of surfaces. For instance,
in 1964 Willard and Alexander reported efforts to keep
spacecraft surfaces sterile to prevent biological contami-
nation of extra-terrestrial samples. They addressed the is-
sue by developing a self-sterilizing coating formulated with
formaldehyde as an active agent, potassium silicate as a
binder, and aluminum silicate as a pigment [45]. Their work
might have been inspired by previous research in 1962 from
Kingston ef al. [46] on self-disinfecting surface coatings.
In 1985, Matsunaga et al. [47] reported the novel concept
of photodisinfection by semiconductor platinum-loaded ti-
tanium oxide particles, laying the foundation for the devel-
opment in 1988 of antimicrobials formed by titanium oxide
powder immobilized in polymeric membranes [48]. Sim-
ilarly, in 1995 Cooney [49] developed and tested copper-
based paints to render surfaces self-disinfecting, with re-
sults suggesting the potential of these materials to prevent
environmental causation of HAIs [50]. However, in that
same year, Rutala and Weber [50] raised concerns regard-
ing the toxicity and duration of the antimicrobial effect,
suggesting further investigation into the topic. In 2009,
Page et al. [30] published an interesting article estab-
lishing the major differences in antimicrobial coatings for
inanimate environments and those for use in medical de-
vices within the body, which can be considered a sepa-
rate field of research. Moreover, they classified antimi-
crobial surfaces for use outside of the human body as (1)

antifouling and resistant to bacterial adhesion, (2) biocide-
releasing, (3) contact-active, and (4) light activated. In
addition, they defined bioactive surfaces as those that can
prevent adhesion or destroy adherent microorganisms, and
which are crucial to tackle the issues associated with the
cycle of fomite-mediated HAIs by reducing or eliminat-
ing the formation of microbial reservoirs [30]. More re-
cently, in 2014 Humphreys [51] questioned the potential of
self-disinfecting surfaces to interrupt the spread of HAIs.
He concluded that although some approaches had shown
promissory effects, there was still a need to confirm the per-
sistence of antimicrobial activity as a function of repeated
soiling-cleaning cycles and to investigate the open question
regarding bacterial resistance development to these new
technologies [51]. In 2023, a publication by Butler et al.
[52] discussed the relevance of engineered nanomaterials,
their antimicrobial properties, and their potential in biomed-
ical applications, including nanocoatings to protect FTSs.
They described nanocomposites formed by hybrid nanoma-
terials used to confer properties such as durability and an-
timicrobial activity, but warned about lack of regulation in
safety, risk analysis, occupational exposure, and develop-
ment of bacterial resistance [52]. In this article, we review
self-disinfecting nanocoatings and mechanisms of action,
explore novel lines of research, and discuss the issues of
toxicity and bacterial resistance development.

2.1 Strategies for Antimicrobial Coating Development

Two main approaches aiming to protect FTSs and
prevent HAI transmission are cited in the literature. The
macroscale strategy is based on bulk materials such as
metallic sheet coatings or polycationic polymers loaded
with biocides and is out of the scope of this paper. The
nanoscale approach to develop antimicrobial coatings uses
nanomaterials such as nanoparticles or nanofibers com-
bined with bulk materials. Both methods use one or more of
the following functional principles: (a) formation of anti-
adhesive surfaces, (b) bacterial killing by contact, and (c)
continuous release of biocides [18,53—58]. In the following
sections, the nanoscale approach will be discussed, with a
focus on the application of nanoparticles and nanocompos-
ites to develop photoresponsive self-disinfecting surfaces.

2.1.1 Formation of Anti-Adhesive Surfaces

Anti-adhesive surfaces work by decreasing or re-
pelling microbial attachment (Fig. 2). The prevention of
planktonic bacterial adhesion is attained by means of hy-
drophobic or hydrophilic nano topographies, zwitterionic
polymers, or a combination of both [57,58]. In short, sur-
face modifications minimize the adhesion force between
surfaces and bacterial adhesive proteins, which in turn lim-
its bacterial attachment, interferes with quorum sensing,
and reduces or eliminates the subsequent biofilm forma-
tion in a process called antifouling [55]. Nanostructures
modify the surface topography, rendering a surface ei-
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Surface

Antiadhesive / Repelling

Fig. 2. Antiadhesive surface. Planktonic bacteria attachment
and subsequent biofilm formation is hindered by repelling, anti-
adhesive, and antifouling nanostructures. Created with BioRen-

der.com.

ther hydrophobic or hydrophilic. For instance, a structure
of nanopillars on an aluminum surface was coated with
Teflon® resulting in a 99.9% reduction of the adhesion of
S. aureus [59]. In another case, a surface was treated with
oxygen plasma to create nanofibers, which increased the
hydrophilicity of the surface and decreased the attachment
of E. coli due to its negative zeta potential (40 mV). Then
the surface was fluorinated to make it super hydrophobic
and self-cleaning by repelling bacterial adhesion [60]. Sim-
ilarly, zwitterionic polymers inhibit protein adsorption and
prevent bacterial adhesion [61,62]. Furthermore, the com-
bination of nanostructures and zwitterionic polymers has
also been explored. For example, nano-brushes made of
zwitterionic polymers were attached to a surface made of
stainless steel to prevent the adhesion of E. coli and S. au-
reus [63].

However, the most important drawback of this ap-
proach is the lack of biocidal activity from the antiadhesive
surfaces. Once bacterial proteins anchor and take hold on
the surface, microbial colonization and biofilm formation
are inevitable [64]. Moreover, anti-adhesive surfaces may
become soiled due to non-specific attachment of other ma-
terials and/or debris from dead microorganisms, thus reduc-
ing the repelling efficacy. Furthermore, since the repelling
activity is performed in a close range, the surface must be
free of defects that can harbor microorganisms, which can
make the surface coating process cumbersome and expen-
sive [65].

&% IMR Press

Surface

Contact killing

Fig. 3. Contact killing surfaces. (A) Biocidal chemical effect.
(B) Mechano-bactericidal effect. Created with BioRender.com.

2.1.2 Bacterial Killing by Contact

Contact-killing surfaces can overcome the limita-
tions of anti-adhesive surfaces and are mainly based on
two strategies: anchoring of polymeric chains conjugated
with biocides (Fig. 3A) or nanotopography modifications
(Fig. 3B), also called mechano-bactericidal surfaces [66].
They base their biocidal activity on nanostructures such as
nanospikes, nanopillars, and nanocones that interact with
and damage the bacterial wall. Some of those nanostruc-
tures mimic the natural biocide strategies found in insect
wings. For example, the nanopillar arrays present on the
wings of cicadas (Psaltoda claripennis) have been found
to be very effective in puncturing and killing P. aerugi-
nosa cells [67]. In another research study, nano-dagger
arrays were prepared with zeolitic imidazolate on a vari-
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ety of surfaces. The material demonstrated elevated bio-
cidal properties, reaching above 7 logyy reduction when
challenged with S. aureus or E. coli [68]. Moreover, the
combination of antibacterial materials conjugated to poly-
mer chains attached to surfaces has demonstrated signifi-
cant potential. In one case, polymeric brushes embedded
with silver nanoparticles on top of the brush demonstrated
improved antimicrobial properties as compared to nanopar-
ticles deposited at the base of the brush [69]. In another
example, polyethyleneimine equipped with nanospikes was
tested and demonstrated to efficiently kill bacteria by per-
foration of the cell membrane [70]. Nevertheless, in spite
of their safer mode of action, contact-killing materials may
present a potential limiting drawback. As on any other
surface, the microbial load can quickly dehydrate, which
may affect the contact area with the antimicrobial coating
to reduce the biocidal effect [55]. Furthermore, similar to
antiadhesive surfaces, debris from dead cells may remain
trapped, soiling the surface and reducing its antimicrobial
efficacy. Additionally, crevices and irregularities on the
surface may compromise its performance and make the fab-
rication process complex and expensive in order to mini-
mize those defects [65].

2.1.3 Continuous Release of Biocides

Active release surfaces, also known as biocide-eluting
surfaces, comprise most current antimicrobial coating tech-
nologies and are based on the combination of a carrier or
substrate with one or more nano biocides. In some cases,
the substrate is adhered to the surface, with biocide ele-
ments attached to the opposite face, from which the active
agent is released directly to the interface (Fig. 4A). In some
other cases, the antimicrobials are embedded into the car-
rier forming a nanocomposite (Fig. 4B), where the active
agent is mostly released into a porous matrix and is prob-
ably transported to the interface by diffusion [58]. In both
cases, after reaching the interface, the active agent kills bac-
teria in either a short or long range. Among the biocidal
nanomaterials most commonly used are silver, copper, zinc,
and titanium dioxide nanoparticles, but other strategies in-
clude inorganic nanoparticles such as carbon quantum dots
and graphene nanotubes [71-73]. The main advantage of
active release surfaces is also their main limitation. To ex-
ert an antimicrobial effect, the active component must be
able to act in proximity or over a long-distance range, im-
plying a continuous, uncontrolled release of biocide to the
environment. Although effective, this approach risks en-
vironmental contamination and potential AR development.
Moreover, another drawback is related to the duration of
the antimicrobial effect, due to the exhaustion of the biocide
source [65,74,75]. However, these issues can be addressed
using a combination of nanotechnology approaches. In the
following section, the specific details on the application of
nanoparticles in active release surfaces and strategies to sur-
pass their constraints will be discussed, with a focus on
metal oxide nanoparticles.

Substrate

Surface

Surface

Active release

Fig. 4. Active release surfaces. (A) Surface-bound biocide. (B)
Embedded biocide. Created with BioRender.com.

2.2 Nanoparticles as Antimicrobial Agents

Because of their extended surface areas and physico-
chemical properties, nanoparticles can present electrostatic
interactions with the cell membranes to exert their antimi-
crobial activity by direct contact. They also can be inter-
nalized by bacteria and release toxic ions or biocides. As
a result, they may attack multiple targets of bacterial repli-
cation simultaneously. Hence, nanoparticle antimicrobial
activity may be classified as either by direct contact or by
ionrelease (Fig. 5). Direct contact killing is mediated either
by nanoparticle intake or by nanoparticle interactions with
the bacterial wall. In the latter, nanoparticles that cannot
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A) Direct contact

induced

B) Ion release

(b1) (b2)
Genotoxicity Enzyme
disruption

membrane

destruction, /

e.g. lipid
peroxidation

Protein
dysfunction

(@)
Mechanical stretching
and membrane rupturing

"""""""""" (b3)
Protein
dysfunction

(b4)
ROS-induced
oxidative stress

ROS = Reactive Oxygen Species

Fig. 5. Potential mechanisms of nanoparticle-mediated bactericidal effect. (A) Nanoparticles in direct contact with bacterial mem-

branes can be up taken or remain at the surface, to exert different effects. Non-penetrating nanoparticles can (al) respond to external

stimuli to generate reactive oxygen species, which then induce lipid peroxidation and membrane destruction, or (a2) mechanically pull

and break apart the bacterial membrane, causing lysis. On the other hand, internalized nanoparticles can (a3) disrupt bacterial DNA to

cause genotoxicity, or (a4) denature proteins, interfering with their function. (B) Internalized nanoparticles can also release ions into

the cytosol, which can (b1) damage nucleic acids to cause genotoxicity, (b2) disrupt enzyme function, (b3) inactivate proteins, and (b4)

induce intracellular ROS formation and destruction of cell components. Created with BioRender.com.

penetrate the bacterial cell membrane may kill the microor-
ganism by mechanically stretching and rupturing the mem-
brane or by inducing reactive oxygen species (ROS) me-
diated chemical interactions, e.g., lipid peroxidation [76—
78]. In the former, internalized nanoparticles can severely
impair the membrane function, cause protein dysfunction,
and block cell replication via genotoxicity, thus resulting
in bacterial death [79—-81]. In comparison, bacterial killing
by ion release is correlated with the size and metallic na-
ture of nanoparticles. Smaller particle sizes correspond to
extended surface areas, which in turn lead to an increased
ion production. Hence, smaller nanoparticles are capable of
presenting a higher antimicrobial effect [82]. Additionally,
smaller particles may have a more efficient way to penetrate
the bacterial membrane, even following different endocytic
pathways as compared to larger nanoparticles [83]. Once
released in the cytosol, metal ions may wreak havoc by in-
activating proteins and enzymes, damaging nucleic acids,
and promoting the generation of reactive oxygen species for
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ulterior destruction of cell components [52,84]. Taken to-
gether, the direct contact and ion release mechanisms con-
tribute to the efficient antimicrobial effects of nanoparti-
cles. For instance, by generating oxidative stress, metal ion
release, or other non-oxidative factors, nanoparticles can
disrupt the bacterial membrane, trigger the destruction of
nucleic acids, and generate free radicals that can interfere
with protein synthesis, thus reducing the chances for bac-
terial adaptation and/or antibiotic resistance development
[85-87]. However, depending on the type of nanoparticles,
one mechanism may be more relevant than the other. For
example, metal oxide nanoparticles are capable of exerting
a potent bactericidal effect, which is mainly attributed to
their capacity to generate reactive oxygen species, although
ion release or physical structure may play an important role
[52,56,85,88,89].
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Table 2. Non-limiting list of antimicrobial nanoparticles.

Nanoparticle type  Materials Characteristics Limitations References
Polymeric Natural/artificial polymers ~ ® Biocides are encapsulated in the nanoparticle core or conjugated @ Loss of activity due to biocide reservoir depletion or biofouling. [90-97]
onto its surface. e Mainly used for antibiotic delivery.
e Cationic polymers like chitosan (CS) possess inherent antimicro-
bial activity attributed to their electrostatic interactions with micro-
bial membranes, e.g., depending on its molecular weight, CS can
function as a metal chelator or as disruptor of protein synthesis.
Non-metallic Carbon e Amphiphilic carbon dots can bind to and damage bacterial mem-  ® Limited understanding of their potential environmental safety. [72,98]
branes, besides generating ROS by enzymatic e Poor water dispersibility.
and photocatalytic processes.
Metallic Aluminum e Metallic nanoparticles can generate antimicrobial ions that cause @ Uncontrolled release of biocides to the environment. [52,82-85]
Copper intracellular genotoxicity and protein/enzyme disfunction. e Potential environmental toxicity.
Gold
Manganese
Platinum
Silver
Titanium
Iron

Metal Oxide

Aluminum Oxide
Cupric Oxide
Silver Oxide
Titanium Oxide
Zinc Oxide

e Metal oxide nanoparticles can generate a strong antimicrobial
effect by their ROS-generating photocatalytic capacity, ion release,
and physical structure.

o Largely unexplored avenue.

e Potential environmental toxicity.

[52,56,85,88,89]
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2.2.1 Types of Antimicrobial Nanoparticles

The different types of nanoparticles used as antimicro-
bials can be classified as polymeric, non-metallic, metal,
and metal oxide nanoparticles (Table 2, Ref. [52,56,72,82—
85,88-98]). Although the first three types possess interest-
ing and promising antibacterial activities, their character-
istics and modes of action are outside the relevant range
of this work. Conversely, the antimicrobial characteristics
of metal oxide nanoparticles, specifically titanium dioxide,
are particularly interesting to fabricate photoactivated self-
disinfecting surfaces and are discussed in the following sec-
tion.

2.2.2 Photocatalytic Nanoparticles

One interesting approach to develop antimicrobial
coatings is based on photocatalytic nanoparticles. The con-
cept of photocatalysis to eradicate bacteria was the sub-
ject of a study by Michael Wilson [99] in 2003. He ap-
plied a layer of cellulose acetate mixed with Toluidine Blue
O, a photosensitizer, and inoculated it with MRSA. After
24 hours of exposure to visible light (60 W, 780 lux), he
found the MRSA Kkilling efficacy was 94%. Furthermore,
he envisioned a coating useful in a nosocomial setting, es-
pecially considering that in hospitals most areas are illu-
minated with light intensities around 1000 lux [99]. Previ-
ously, Matsunaga et al. [47,48] had reported photodisinfec-
tion by titanium oxide nanoparticles immobilized in poly-
meric membranes. Nowadays, research on light-activated
antimicrobial coatings is an active field of research that still
requires more studies to confirm feasibility and safety of use
[10,41]. As stated by Cloutier ef al. [65], the use of metallic
nanoparticles as “plasmon-resonators for light-trigger re-
lease” is a largely unexplored avenue, but their potential to
generate heat or free radicals to interfere with germ replica-
tion is an inexpensive and effective strategy to face future
pandemics [65,100].

2.2.3 Photocatalysis and Titanium Oxide Nanoparticles

Out of the different types of photocatalytic metal ox-
ide nanoparticles, titanium oxide nanoparticles are very at-
tractive because of their availability, reduced cost, and pho-
toresponsiveness [101-104]. Under ultraviolet light irra-
diation, the nanoparticles of titanium oxide form electron-
hole pairs which react with moisture and oxygen produc-
ing reactive oxygen species [105—108]. This character-
istic has been used for antimicrobial development or for
water-contaminant degradation [77,109-111]. However,
for antimicrobial coating applications, where the material
is coated onto FTSs and is ideally activated by artificial
light, this same characteristic is the main drawback of tita-
nium oxide [112]. Moreover, only a few studies have been
published on the application of light-activated nanosized ti-
tanium oxide as antimicrobial coating [30,113—115]. For
instance, the TITANIC study, which evaluated the perfor-
mance of a commercial titanium oxide coating onto nosoco-
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mial frequently-touched surfaces, determined that the ma-
terials were able to limit E. coli colonization on surfaces,
but only had a limited effect on S. aureus [115,116]. Nev-
ertheless, the study pointed to future lines of research in-
cluding the improvement of artificial light responsive tita-
nium oxide based antimicrobial coatings and their charac-
teristics like morphology and microstructure, illumination
to activate the coating, durability, and testing against rele-
vant healthcare-associated infection pathogens.

Polydopamine shell

/

Titanium oxide core

Fig. 6. Schematic of photoresponsive polydopamine titanium
oxide nanoparticles. The core may be formed by aggregates or
primary titanium dioxide nanoparticles, particularly in the anatase
tetragonal form. A shell of polydopamine is coated onto the core
surface by oxidative polymerization of dopamine. Created with

BioRender.com.

To overcome their limitations and to improve their
performance under safer, non-ultraviolet indoor lighting, ti-
tanium oxide nanoparticles need to increase their spectral
response and quantum efficiency [101,117]. One proven
way to address this issue is by modifying the surface of ti-
tanium oxide nanoparticles via oxidative in-situ polymer-
ization of dopamine [118—122]. This technique, previously
reported by Mao et al. [118], allows the creation of a thin
layer of polydopamine onto the titanium oxide nanoparti-
cles (Fig. 6). Although its carbonaceous nature impedes
polydopamine to show any photocatalytic activity, it can
still improve the photocatalytic capacity of titanium oxide
by reducing its band gap from 3.25 eV to 2.35 eV, allow-
ing the absorption of visible light [106,117,119,123,124].
Additionally, polydopamine contributes to elevate the num-
ber of m-7* electron transfer channels available to form
excited-state electron-pair holes, which then react with oxy-
gen and environmental water adsorbed onto the nanoparti-
cle surface to produce reactive oxygen species with high
oxidizing potential, mainly superoxide anions (O2 ™) [106,
107,125]. This permits the polydopamine-titanium oxide
compound to present light-driven reactive oxygen species
formation for a significant antimicrobial effect under ar-
tificial visible light [108,126,127]. A similar strategy to
increase the light absorption band of titanium oxide was
followed by Krumdieck ef al. [123]. They used pulsed-
pressure-metalorganic chemical vapor deposition to create
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Table 3. Selected list of nanotechnology-based antimicrobial nanocomposites.

Nanocomposites ~ Advantages Applications Limitations References

Anti-adhesive Prevents bacterial adhesion. Antifouling surfaces Lack of biocidal activity. [62,64]
Easily soiled.

Contact-killing High efficiency. Antimicrobial surfaces  Easily soiled. [66,76]

Damages the bacterial wall.
Active release High efficiency.
Biocides kill bacteria in short or long range.

Photo-responsive  Potential to generate heat or free radicals.

Inexpensive and effective.

Complex fabrication process.

Antimicrobial surfaces  Uncontrolled release of biocides [71-73,83]
to the environment. Limited
availability of biocide.

Antimicrobial surfaces  Largely unexplored avenue. [131,132]

a micro layer of titanium oxide-amorphous carbon onto
stainless steel. The coating was responsive to visible light
and was able to reduce E. coli population by 3 logs after 4
hours of exposure [123]. Moreover, polydopamine by itself
may contribute to the overall antibacterial effect due to its
capacities to interact electrostatically with the cell wall, to
chelate proteins and bacterial metal molecules, and to pro-
duce reactive oxygen species [120,121].

Besides their biocidal characteristics to protect FTSs,
antimicrobial coatings are expected to satisfy other require-
ments such as affordability, stability, safety by design,
risk management for antibiotic resistance development, and
simplicity of on-site application and use [10,58]. Further-
more, an added benefit is that by enveloping titanium ox-
ide nanoparticles with biocompatible polydopamine shells,
the resultant nanoparticles exhibit higher biocompatibility
and less risk for the environment, which are the core mo-
tivations of safer-by-design materials [125,128]. To form
antimicrobial coatings, these nanoparticles require formu-
lation with a carrier to facilitate their application and at-
tachment to the protected surface. In other words, one
way to make the application of photocatalytic antibacterial
nanoparticles simple and attractive to the end user is the for-
mulation of a hybrid material in the form of a coating or a
paint, as discussed in the next section [112].

2.3 Antimicrobial Nanocomposites

Nanocomposites are hybrid materials in which at least
one component is in the nano scale [129,130]. Antimi-
crobial nanocomposites can be categorized by their main
mechanism of action (Table 3, Ref. [62,64,66,71-73,76,
83,131,132]), including anti-adhesion, contact-killing, and
active release of biocides. A few case studies [133,134]
in real-life conditions have been reported in the literature.
In one case, a nanocomposite coating named Copper Ar-
mour™ was the subject of a 9-week pilot study in 2 rooms
in an adult intensive care unit. Four FTSs were coated, in-
cluding bed rails, overbed tables, bedside tables, and IV
poles. Bed rails and overbed tables demonstrated a signifi-
cant reduction of the microbial burden compared to control
surfaces [133]. In another case, a nano textured top surface
was created onto different FTSs at the Royal Liverpool Uni-
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versity Hospital in the United Kingdom. The copper-based
surface coating, denominated iC-nano™, was applied via
physical vapor deposition. Results demonstrated >99.99%
reduction of S. aureus after 15 minutes [134]. However,
these materials exhibit some important limitations. For in-
stance, the absence of germ-killing properties in antifoul-
ings, the susceptibility of contact-killing surfaces to grime,
or the uncontrolled release of biocides from active release
coatings. In addition, contact-killing and active-release
surfaces depend on reservoirs of biocide, which will ex-
haust with time, thus limiting the product lifespan. For
instance, commercially available paints (PPG Copper Ar-
mor™, BEHR® Copper Force™) based on copper ion-
releasing macroparticles (Corning® Guardiant®), have an
advertised product life of five years. On the other hand,
photoresponsive nanoparticles and their nanocomposites
can circumvent issues related to uncontrolled release and
exhaustion of reservoir simple because the in sifu bioci-
dal effect is consequence of visible/ultraviolet (UV) light-
triggered photocatalysis or near-infrared light induced pho-
tothermal effect. Nevertheless, this promissory approach is
still in its infancy and is largely unexplored.

Photocatalytic nanocomposites formulated as paints
or coatings are very simple to apply [112]. Moreover, the
incorporation of titanium oxide or other types of nanopar-
ticles into polymeric matrices also has the advantage of the
potential contribution of the matrix to the overall perfor-
mance of the nanocomposite [130,135,136]. For instance,
Salvadores et al. [137] prepared photocatalytic paints for
indoor air purification by mixing nano-sized titanium ox-
ide or carbon-doped titanium oxide with commercial acrylic
resins, dispersers, and extenders. The paints were applied
by air spray onto acrylic surfaces and evaluated by mea-
suring the decomposition of acetaldehyde under artificial
illumination. They concluded that carbon-doped titanium
oxide was the most efficent material to remove the contam-
inant [137]. In an additional example, a titanium oxide-
polyvinyl chloride nanocomposite was prepared and dip
coated onto medical devices to prevent biofilm formation.
The material was exposed to ultraviolet light for 11 hours,
and then inoculated with bacteria cultures. Results demon-
strated a very high killing efficacy against E. coli [138].
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Moreover, since the encasing of nanoparticles into the poly-
mer makes the release of the former into the environment
difficult, this kind of material may be less hazardous to the
environment [102]. Additionally, the use of surfactants to
disperse and stabilize the nanoparticle formulation may add
an extra antimicrobial effect, while allowing simpler, one-
pot formulations [139,140].

Photoresponsive nanocomposites specifically de-
signed as antibacterial surface coatings have also been
reported.  For instance, titanium oxide nanoparticles
incorporated in polyurethane were tested as sunlight
activated antimicrobial nanocoatings against E. coli. After
60 minutes of light irradiation, the bacterial population
had a 99.5% reduction as compared to pure polyurethane
[141]. In another example, carbon dots embeddded in
a polyurethane matrix were developed for application
onto FTSs in the nosocomial setting. These materials
demonstrated very high antibacterial efficacy versus E. coli
after 30 minutes of exposure to blue light [131]. Similarly,
a photoreactive antibacterial paint based on silver-titanium
oxide was formulated to reduce HAIs. It was shown that
under visible light exposure, the coating exerted high activ-
ity against E. coli and moderate efficacy against S. aureus
[132]. In another study, modified nano titanium oxide was
coated onto PVC plates and exposed to visible light. The
material killed 99.8% of E. coli, 98.8% of S. aureus, and
99.0 % of P. aeruginosa after four hours [142]. These
studies have shown that photo-responsive nanocoatings
can be used to develop self-cleaning antimicrobial surfaces
that inhibit or exterminate pathogens, showing a promising
potential to limit fomite induced nosocomial infections.
However, their effectiveness in real-life conditions at the
hospital setting is still largely unexplored. Besides the
TITANIC study described in section 2.2.3 [115,116], no
case studies of photoresponsive nanocomposites were
found in an exhaustive literature search. Furthermore,
the antimicrobial capacity of photoresponsive nanocom-
posites still needs to be evaluated beyond the traditional
gram positive and gram negative models. Future studies
should include testing against multi-drug resistant and
clinically relevant pathogens [143]. Additionally, the low
level of photocatalytic activity in low humidity or dry
conditions should be considered when developing new
photo-responsive nanocoatings [144]. Finally, an addi-
tional aspect to consider is the potential degradation of the
polymeric matrix, which may result from the presence of
unreacted ROS. This effect may lead to early degradation of
the coating, reducing its effective lifespan [30]. Therefore,
to ensure the adequate performance and durability of future
photocatalytic antimicrobial coatings, their development
should be paired with the investigation on ROS-resistant
matrices with adequate adhesive properties to facilitate
coating application.
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3. Concerns on Antimicrobial Coatings
3.1 Environmental Toxicity

In general, there is a lack of understanding on the
safety and eco-toxicological effects of antimicrobial coat-
ings due to the absence of comprehensive data [55]. Some
antimicrobial coatings are based on the creation of reser-
voirs of biocidal agents or ion metals, which are subse-
quently released to exert the bactericidal effect. These ap-
proaches show a decrease in their antimicrobial efficacy
over time as the reservoir is depleted. Moreover, as the
coating suffers environmental degradation, superficial de-
terioration can result in environmental concerns. For in-
stance, a previous study on the risk and benefits of antimi-
crobial coatings concluded that metals such as silver, cop-
per, and zinc, release ions and soluble salts that are more
toxic to aquatic organisms than to bacteria, and their exten-
sive use can be a factor in the development of AR [57]. Fur-
thermore, the influence of the interaction of cleaning agents
and antimicrobial coatings in AR development still needs to
be elucidated [55]. In addition, the uncontrolled release of
ROS from photoresponsive antimicrobial coatings has the
potential to cause tissue damage at high concentrations and
may play a role in genotoxicity [145]. Hence, a rigorous as-
sessment of the benefits and risks over the product life cycle
should be performed using standardized techniques [146].

Moreover, new antimicrobial coatings should be de-
veloped with risk mitigation and safer-by-design concepts
inmind [128]. In this sense, photoresponsive coatings using
titanium oxide have demonstrated less environmental risk
when formulated with anti-corrosion features [147]. Fur-
thermore, the potential toxicity of titanium oxide nanopar-
ticles can be reduced by the application of polydopamine
shells, which not only confer photoresponsive properties
to the material but also enhance its biocompatibility [125].
Hence, future developments in photoresponsive antimicro-
bial coatings could be safer to the environment by the ap-
plication of polydopamine coatings or similar materials, but
their environmental safety should be validated with stan-
dard assessments promoted by international agencies, such
as the Organization for Economic Co-operation and Devel-
opment [ 148].

3.2 Antibiotic Resistance Development

The revolutionary improvements in human health and
medical sciences resulting from the discovery of antibiotics
are at risk, due to the emergence of bacterial AR [149]. Bac-
teria can adapt and deal with single-mechanism antibiotics
by modifying, inactivating, or limiting their uptake. Or in
other cases, by simply expelling them using efflux pumps
[150,151]. Hence, a crucial question regarding the use of
photocatalytic antimicrobial coatings is if they may prevent
AR development. Evidence suggests a positive outcome,
but future research in the topic is needed. For instance, it
is known that AR only develops when a specific site is tar-
geted by a single mechanism of action. However, when
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the mode of action works simultaneously through multi-
ple pathways, there is an increased chance of avoiding AR
development [30]. Hence, combinatory therapies or multi-
mechanism approaches have a substantial potential to over-
come the disadvantages of individual therapies by enhanc-
ing the antibacterial performance and limiting AR develop-
ment [152]. Photocatalytic nanoparticle systems are one of
those promissory approaches since their mode of action is
multi-targeted and non-selective. Nanoparticles may min-
imize AR [86,87] by breaking the cell membrane [76-78]
causing lysis and disrupting nucleic acids, protein synthe-
sis, and enzymatic processes [79—-81,85]. Thus, the combi-
nation of antibacterial nanoparticles and polymeric carriers
to form antimicrobial coatings has a high potential to allevi-
ate the crisis of AR development by satisfying specific cri-
teria on safety-by-design, risk management, stability, and
simplicity of application and use [10,58].

3.3 Cost

Because of the advanced materials and technology in-
volved, nanotechnology-based antimicrobial coatings po-
tentially may be more expensive than traditional coatings.
Nevertheless, factors such as function, materials used, coat-
ing application methods, and type of coating, may have a
significant influence in the cost. For instance, higher ini-
tial costs may be upset by extended functionality and dura-
bility. Furthermore, durability may also have a signifi-
cant impact on associated maintenance and long-term costs
[112]. Hence, a key design aspect should be an adequate
carrier selection to facilitate application, increase durabil-
ity, and potentiate the antimicrobial effects from nanocom-
ponents. Overall, potential elevated costs should not hinder
the search for effective antimicrobial coatings that may of-
fer higher long-term benefits by reducing HAI transmission
and associated healthcare costs.

4. Emerging Photo-Responsive Antimicrobial
Nanotechnologies and Future Perspectives

Novel light-activated antimicrobial nanocoatings aim
to reduce fomite-mediated infections by blocking pathogen
adhesion or killing by contact or biocide release. In the case
of photocatalytic metal oxide-based materials, ROS gener-
ation is a major mechanism of action [153]. A different
approach, also based on photocatalysis, is the use of transi-
tion metal carbonyl complexes to release carbon monox-
ide (CO), which has been proven to reduce proliferation
and cause the rapid death of E. coli and S. aureus [154].
This strategy was applied to generate nanofiber-based struc-
tures with integrated photo-responsive carbon monoxide-
releasing molecules that exhibited antimicrobial behavior
when exposed to visible light near the UV light range [155].
Results demonstrated a 70% reduction of S. aureus biofilms
after exposure to visible light (405 nm). Interestingly, the
researchers also determined that the material was able to
produce ROS, thus enhancing the antimicrobial properties

12

of the nanofibers. This technology, originally developed as
a therapy for skin wound infections, could easily be repur-
posed to create antimicrobial coatings by mixing adequate
amounts of nanofibers with an appropriate adhesive carrier.

Another developing approach is based on the pho-
tothermal effect, which occurs by the interaction of elec-
trons with photons, and subsequent generation of thermal
energy by the relaxation of the former [108]. This in turn
results in an antimicrobial effect due to the thermal degra-
dation of bacterial membranes [156—158]. For example, S.
aureus populations were reduced by 3.0 £ 1.1 log;g by the
action of nanocomposites formulated with hyaluronic acid
and polydopamine-coated titanium oxide exposed to near-
infrared (NIR) light (850 nm) [127]. In another example,
graphene oxide (GO) nanosheets were irradiated with NIR
light (808 nm), demonstrating a complete inactivation of E.
coli after 120 seconds [159].

These few examples of emerging technologies in
antimicrobial nanocoatings reflect the sense of urgency
among the infection prevention community to protect the
public health by disrupting an important pathway of dis-
ease transmission [160]. However, any future direction
on antimicrobial coating development should consider the
classification of such materials. In the U.S., the Environ-
mental Protection Agency classify antimicrobial coatings
as non-food use antimicrobial pesticides for noncritical en-
vironmental surfaces in medical premises and equipment.
Hence, future research should include selected studies from
the agency’s guidelines to test antimicrobial efficacy, health
effects, and occupational and residential exposure, among
others [161,162]. Moreover, besides the commonly studied
microorganisms, E. coli and S. aureus, new research should
include clinically relevant pathogens such as K. pneumo-
niae, P. aeruginosa, A. baumannii, Vancomycin-resistant
Enterococci, and C. difficile, as well as Candida spp. and
Aspergillus spp. [8,163,164]. In addition, future work
should include the exploration of enhanced photocatalytic
antimicrobial coatings and their activity against hard-to-
inactivate prions, infective agents that have the potential
to transmit neurodegenerative disorders to humans and an-
imals [165].

5. Conclusions

Antimicrobial coatings and nanocoatings are a
promissory strategy to tackle disease transmission, espe-
cially infections transmitted through the fomite-mediated
pathway. In specific, photoresponsive antibacterial
nanocoatings may have the capacity to fill some of the
gaps existing in other approaches, such as the limited
duration of biocidal reservoirs or the uncontrolled release
of metal ions to the environment. Moreover, owing to
the multiple mechanisms involved in their biocidal effect,
these materials also may be an efficient way to address the
growing issues related to antibiotic resistance development.
Nevertheless, the essential questions posed by Humphreys
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[51] and Butler et al. [52] remain unanswered. There
is still a need to investigate the permanence of biocidal
activity along the life cycle of the materials, the long-term
effect on bacterial resistance development, the safety,
environmental fate, toxicity, and efficacy of antimicrobial
coatings against the most relevant nosocomial pathogens.
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