
65

SNPs and other polymorhisms associated with acaricide resistance in Rhipicephalus microplus

Gabriela Aguilar1, Andrea M. Olvera1, Bertha I. Carvajal2, Juan Mosqueda1

1Cuerpo Academico Salud Animal y Microbiologia Ambiental, Licenciatura en Medicina Veterinaria y  
Zootecnica, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, 2Licenciatura en 
Microbiología, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las 
Ciencias S/N Col. Juriquilla., Qro. Mexico, 76230

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Organochlorates

3.1. Mechanism of action
3.2. Resistance mechanism
3.3. Description of the mutations and polymorphisms

4. Organophosphates
4.1. Mechanism of action
4.2. Resistance mechanism
4.3. Description of the mutations and polymorphisms

5. Pyrethroids
5.1. Mechanism of action
5.2. Resistance mechanism
5.3. Description of the mutations and polymorphisms

6. Amitraz
6.1. Mechanism of action
6.2. Resistance mechanism
6.3. Description of the mutations and polymorphisms

7. Macrocyclic lactones
7.1. Mechanism of action
7.2. Resistance mechanism
7.3. Description of the mutations and polymorphisms

8. Fipronil
8.1. Mechanism of action
8.2. Resistance mechanism

9. Conclusions
10. Acknowledgment
11. References

[Frontiers In Bioscience, Landmark, 23, 65-82, January 1, 2018]

1. ABSTRACT

Ixodicides resistance of ticks is one of the 
most important problems for the livestock industry 
in tropical and subtropical regions, mainly due to the 
increase in cases of multiple resistance in all families of 
the ixodicides used. Molecular markers such as single 
nucleotide polymorphisms (SNPs) has been proposed 
to identify the resistance to ixodicides in Rhipicephalus 
microplus. Many studies have recently been conducted 

using SNPs and other types of molecular markers to 
determine if they are associated with resistance to 
different products in many parts of the world. Knowing 
these changes at the molecular level, will allow to 
establish mechanisms and control strategies for the 
use of ixodicides. In this review, we will discuss and 
describe the different SNPs and other polymorphisms 
associated with resistance in R. microplus.
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2. INTRODUCTION

Tick resistance to acaricides is one of the 
most important problems facing the livestock industry 
of the tropical and subtropical regions, due to the 
multiple resistances to the ixodicides used today. 
The resistance is like a change in the genetic code 
of an organism in response to selection due to toxic 
substances (1). In some populations this can develop 
quickly, while in others it can be relatively slow (2). 
The emergence of tick populations with this type 
of resistance is an evolutionary adaptation due to 
constant pressure of selection because of the constant 
use of pesticides (3). This resistance is due to the 
genetic variability caused by random mutations or 
genetic rearrangements (4).

Cross resistance is the resistance to different 
acaricides that have similar mechanisms of action 
and it has been reported with two Organophosphate 
(coumaphos and diazinon) and a carbamate (carbaryl) 
in different strains of Rhipicephalus microplus (5, 6). 
Multiple resistances have also been described in 
strains of R. microplus with different ixodicides 
(organochlorates, pyrethroids, organophosphates 
and formamidines) (7). The use of molecular markers 
such as single nucleotide polymorphisms (SNPs) has 
been proposed for the identification of the resistance 
to ixodicides in R. microplus. At the molecular level, 
mutations in the III domain of the 6th segment of the 
voltage dependent sodium channel are associated 
with the resistance to pyrethroids (8).

The molecular aspects of the metabolic 
resistance are not well defined in R. microplus, but 
it has generally been attributed to enzymes such 
as cytochrome P450, esterases and glutathione S 
transferase (9). Studies of bioassays and synergists 
have been done in order to provide evidence regarding 
the mechanisms of resistance to organophosphates 
and carbamates, but have been unsuccessful in the 
identification of specific mechanisms, so it has been 
hypothesized that the resistance to these compounds 
is complex and multigenic (10). Little is known about 
the resistance to amitraz, fipronil and ivermectines. 
Given the importance of the resistance to ixodicides, 
this review aims to discuss the recent advances in the 
knowledge of molecular mechanisms of action that 
confer resistance to different ixodicides used today as 
control methods for R. microplus.

3. ORGANOCHLORATES

3.1 Mechanism of action

Organochlorates were comercialized in 
1945 to control different populations of insects. The 
chemical structure corresponds to that of chlorinated 
hydrocarbons, which are insoluble in water, 

non-volatile and highly soluble in organic solvents 
(11). Organochlorates include the ethane-derived 
chlorates, cyclodienes and the compounds related 
to hexachlorocyclohexane (HCH). Among the ethane 
chlorates we can find dichlorodiphenyltrichloroethane 
(DDT); the chlorinated derivatives of cyclodienes 
include chlordane, aldrin, dieldrin, endrin, heptachlor, 
and toxaphene; and the HCH-related compounds such 
as lindane (12).

The most widely researched mechanism of 
action for these organochlorates has been the one 
for chlorinated ethanes, mainly for DDT (13). It has 
a toxic effect on the axon´s Na+ channels, causing 
the deactivation or closing of the channel after the 
membrane has been depolarized, leading to a persistent 
leak of Na+ ions through the neural membrane, 
bringing about a negative destabilization after the 
membrane potential, keeping the channels open for a 
longer period of time than normal. The hyperexcitability 
of the nerve results in repetitive charges after only one 
stimulus (14–16). However the cyclodienes and the 
HCH also affect the nervous system, mainly blocking 
the neuromuscular transmission because of the effect 
on the chlorine channels dependent on gamma amino 
butyric acid (GABA) of the nerve membrane (13). This 
interrupts the ion transfer and the nervous impulses 
between the cells (17), causing the insect to respond 
to external stimuli with violent tremors (18).

3.2 Resistance mechanism

The first hints of resistance in R. microplus to 
organochlorates were described in Brazil in the 1950s, 
in the Alegrete strain, and in the 1970s the first cases 
of organophosphate resistance were reported (19). 
For the control of R. microplus in Mexico, aspersion 
baths with organochlorates and organophosphates 
have been performed historically. Nonetheless, in 
1981, resistance to organophosphates in the tick 
(Tuxpan strain) was first reported due to failures in 
control in the Gulf of Mexico, in the region of Tuxpan, 
Veracruz (20). Likewise, another strain (Tempoal) was 
reported multiple resistance to both organochlorates 
and organophosphates, which was distributed widely 
within the Huastecas of the country and Yucatan 
(21–23). Later, different strains of R. microplus were 
reported with multiple resistances to organochlorates, 
organophosphates and other ixodicides in Mexico 
(22). The mechanisms of resistance can occur either 
because the insecticide does not bind to the target 
site or due to an increase of the detoxifying enzymes 
(esterases, oxidases and glutathione S transferases), 
keeping the insecticide from reaching its target site. In 
the case of DDT, its target is the sodium channels of the 
axons and the resistance can emerge due to a change 
in an amino acid of the binding site of the insecticide 
(24). Similarly, the resistance to cyclodienes is due to 
a point mutation in the same gene that codes for the 



phosphonic and phosphortic acid (11). The 
organophosphates have as target site the enzyme 
acetylcholinesterase (AChES), which is a serine 
esterase enzyme (44); that participates in nervous 
impulses at the cholinergic synapses, as it catalyzes 
hydrolysis of the neurotransmitter acetylcholine (45). 
The organophosphates have an analogue conformation 
to that of acetylcholine, and when they bind to AChES 
the enzyme suffers transphosphorilation (46), that 
is to say, there is a phosphorilation of the hydroxyl 
group of a serine in the active site of the enzyme. The 
transphosphorilated AChES enzyme then is inhibited 
and cannot divide the acetylcholine; this causes 
an increment of acetylcholine in the post-synaptic 
membranes, which then leads to the contraction of the 
muscle and paralysis of the tick (4, 22, 47).

The organophosphates can be mixed with 
water, their toxicity varies considerably, but the 
majority is highly toxic for mammals (11), and generally 
has been used to control larvae, flies, ticks and lice in 
livestock, as well as ticks in dogs and cats (48).

4.2 Resistance mechanism

The resistance to organophosphates is due 
mainly to metabolic changes, and it is also associated 
to a change in the conformation of the AChES that 
turns it insensitive to organophosphates (4), such 
mutated forms of AChES have been characterized 
biochemically and show a wide spectrum of sensibility 
among species and between compounds within the 
species (49, 50).

The insensibility of AChES to 
organophosphates has been reported in insects such 
as the migratory locust, flies, mosquitoes and other 
dipterans (45, 49, 51, 52), as well as arachnids such 
as R. microplus and Tetranychus urticae (53, 54). 
Furthermore, an overproduction of carboxyl esterases 
has been reported against the organophosphatesin 
arachnids, mosquitoes, aphids and cockroaches (28). 
In the mosquito, mainly the genus Culex, it has been 
studied that these enzymes are B esterases that have 
an active site with are a serine residue and these catch 
the organophosphates, protecting the AChES (28, 55). 
In the tick R. microplus, it has been reported an over 
expression of esterases when it is the larva stage, and 
an increase in the metabolism of esterases inside the 
layers of tegument in the tick (56). Lastly, it has also 
been reported a reduction of the penetration of the 
organophosphates in the cuticle (57).

4.3 Description of the mutations and  
polymorphisms

The resistance to organophosphates is 
related mainly to mutations in the gene ace that codes 
for the AChES (4, 51, 58, 59), which can be duplicated, 

GABA receptors (25). The arthropods can synthesize 
enzymes that belong to the alfa/beta hydrolase 
superfamily (esterases, oxidases and glutathione S 
transferases) for the detoxifications of xenobiotics, 
which are transcribed by sever multigenes (24, 26).

The first reported resistance to organochlorates 
was in 1947 in Aedes tritaeniorhynchus, Aedes 
solicitans and more than 100 species of mosquitoes 
have been reported resistant, where the majority is 
anophelines (27, 28). This resistance is caused by the 
presence of DDR dehydrochlorinase, which was first 
recognized as a glutathione S transferase in the Musca 
domestica (29, 30). The glutathion S transferases are 
dimeric multifunctional enzymes that play an important 
role in detoxification, catalyze the nucleophilic attack 
of the reduced glutathione (GSH) in the electrophilic 
centers of the lipophilic compounds (31). They are 
also present as groups of genes that have been mixed 
throughout the genome by recombination (32). In R. 
microplus, the mechanisms of resistance that have 
been reported against organochlorates are due mainly 
to mutations in the active cycle of the chlorine channel 
(33) and the sodium channel (34).

3.3 Description of the mutations and  
polymorphisms

Associations between inversion 
polymorphisms and resistance to insecticides such as 
organochlorates, have been described in the mosquito 
Anopheles gambiae. These inversion polymorphisms 
include three on the right side of the chromosome 
(2Rb, 2Rc, and 2Rd) and one (2La) on the left side, 
and these have been associated when there are 
changes in the weather (35, 36). The 2Rb inversion 
has been proven to cause resistance to DDT (37), as 
well as the 2La investment which causes resistance to 
dieldrin (38, 39). Also, cross resistance to cyclodienes 
and DDT, as well as fipronil, has been shown in Blatella 
germanica, Musca domestica and Anopheles gambiae 
(40–42). Brooke et al. (40) found that there are two 
inversion polymorphisms in Anopheles gambiae, 
2La and 2Rb, which confer resistance, the first is 
associated to resistance to dieldrin, and the second 
one to DDT. In R. microplus, two mutations have 
been described in the gene that codes for the chloride 
channels dependent on GABA, at the 868–9 position, 
where a threonine is changed into a lysine in strains 
resistant to dieldrin (33). Castro et al. (43) showed that 
there is double resistant to fipronil and lindane in R. 
microplus in strains from Brazil and Uruguay.

4. ORGANOPHOSPHATES

4.1 Mechanism of action

The organophosphate compounds are 
esters, amides and thioles derived from phosphoric, 
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to be the principal mechanism of resistance to 
organophosphates. The mechanism of insensibility 
of AChES to organophosphates was first suggested 
by Lee and Bathman (70), and later reported in the 
Tuxpan strain of R. microplus in Mexico (71). Pruett 
(53) confirmed the mechanism of insensibility of 
AChES in different Mexican strains, including the San 
Roman strain. Later, three cDNAs that code for the 
AChES in R. microplus (BmAChE1, BmAChE2 and 
BmAChE3) were identified (64). Temeyer et al. (72) 
identified multiple mutations in the cDNA sequence 
that codes for BmAChEs in the San Roman strain, 
these are 48L, I54V, R86Q, V137I, I492M and T548A. 
The most common mutation is R86Q, which results in 
the change of a glutamine for an arginine at position 
86 of BmAChEs. Moreover, it has been shown 
that this mutation confers insensibility to paraoxon 
organophosphate (parasympatomimetic); however, 
this mutation was also found in susceptible strains, 
suggesting that the mutation contributes to resistance, 
although it isn’t the only factor that has influence on it. 
Later, in another study, the other five mutations were 
genotyped and their frequence was evaluated, finding 
that these mutations were also in susceptible strains, 
showing that none of the mutations by themselves 
are directly responsible for the insensibility of the 
AChE to organophosphates (73). Temeyer et al. (74) 
analyzed the sequence of the genes AChE1, AChE2 
and AChE3 from susceptible and resistant strains of 
R. microplus, detecting substitutions of amino acids in 
these genes in different strains. Gosh et al. (75) found 
four new substitutions in the amino acids (HQ184947, 
HQ184946, HQ184944, HQ184943) in AChE2 in R. 
microplus line IVRI-III. These substitutions replace a 
valine for an isoleucine in position 297, a serine for a 
threonine in position 364, histidine for a tyrosine in 412 
and a lysine for an arginine in position 468. Recently, 
Singh et al. (76) reported six point mutations in the 
gene AChE3 in strains of R. microplus from the state 
of Punjab in India (I48L, I54V, R86Q, V71A, I77M 
and S79P), in which the first three were previously 
associated to resistance against organophosphates 
in the Mexican San Roman strain (72), and the other 
three were reported for the first time. However, these 
mutations must be evaluated, as Li and Han (5) 
demonstrated that the mechanism of resistance of R. 
microplus San Roman strain has two different forms: 
the insensibility of the AChES and the metabolic 
detoxification due to the increase in cytochrome 
P450. However, different studies have reported that 
certain Mexican strains of R. microplus increase the 
esterases as a resistance mechanism against the 
organophosphates (8, 77–80). Saldivar et al. (81) 
reported resistance to organophosphates through 
the glutathione S transferase mechanism in strains 
of R. microplus. Lastly, cross resistance between 
organophosphates and other acaricides such as 
carbamates, has been reported in different strains of 
R. microplus (5, 82).

as is the case for nematodes and arachnids which 
have multiple loci for ace, but insects only have two 
loci for ace (ace1 and ace2), that can code for two 
different AChES; however, there are some insects and 
arachnids that only have one locus (60, 61). Dipterans 
of the suborder of Cyclorrapha such as Drosophila 
melanogaster, Musca domestica, Lucilia cuprina, 
Bactrocera oleae and Bactrocera dorsalis, only have 
one locus for ace, known as ace2 and all of the 
mutations for resistance against organophosphates 
have been associated to this gene. However, in 
Anopheles gambiae and Culex pipiens it has been 
reported the existence of another ace2 gene that gives 
resistance to the organophosphates (58, 60).

The majority of the mutations align in 
the inlet of the cavity of the active site, mainly the 
oxyanion hole, a pocket in the binding site for acyl 
and the anionic catalytic sites that are critical for the 
catalytic activity of the enzyme (59). These mutations 
alter the hydrolysis of the substrate, decreasing the 
speed of enzymatic deacetylation, as well as the 
stability of the enzyme. Furthermore, each point 
mutation confers resistance to an insecticide but it can 
increase the sensibility to another (51). In Drosophila 
melanogaster five resistance mutations have been 
reported against organophosphates (F115S, I199V, 
I119Y, G303A and F368Y), causing a substitution in 
amino acids that alters the conformation of AChES 
(46). Similarly, in Musca domestica there are five 
described mutations (V180L, G262V, F327Y and 
G365A), which are alone or in combination, and 
these confer different spectrums of resistance 
(45). In Bactrocera oleae a point mutation (G488S) 
has been reported to be associated to increased 
resistance to organophosphates (62). However, in 
Chilo supressalis five mutations have been reported, 
A314S, H668P, E101D, F402V and R667Q (63). 
Nonetheless, point mutations are not a synonym 
for resistance since in some insects and arthropods 
(Aphis gossypii, Nephotettix cincticeps, R. microplus) 
mutations have been found in both susceptible strains 
and resistant strains (5, 64, 65). However, resistance 
of insects to the organophosphates are not only 
due to the insensibility of the AChES, but also other 
mechanisms such as an increase in detoxification 
due to the increase in esterases and the glutathione S 
transferase, as it has been reported for L. migratoria 
manilensis and Culex tritaeniorhynchus (66, 67). 
In arachnids, the insensibility of AChES has been 
described mainly for Tetranychus urticae, which has 
only one gene (Tuace) similar to ace1 in insects, in 
which have been detected five point mutations confer 
resistance to organophosphates (G119S, A201S, 
T280A, G328A and F331W) (68, 69).

In R. microplus the insensibility to AChE 
and the metabolic detoxification by the non specific 
carboxyl esterases (CaE) have been considered 
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Pyrethroids can penetrate the insect´s 
organism through the tegument and spread throughout 
the whole organism in solution or diluted in lipid particles. 
Its penetration will depend on the characteristics of 
the insecticide such as the formulation, physical and 
chemical properties, and the nature of the solvent 
(84, 85). Pyrethroids have two types of effects on 
insects: an initial sudden effect of abatement known 
as Knockdown (Kd), loss of movement and a lethal 
subsequent effect (94).

5.2 Resistance mechanism

In R. microplus two mechanisms of resistance 
to pyrethroids have been described: the increase 
in the metabolic activity mediated by enzymes that 
include mainly esterases, and the insensibility at the 
target site (sodium channel) (78, 95–97). However, the 
most common mechanism seen in populations of ticks 
with resistance to pyrethroids in the field are mutations 
present in the gene for the sodium channel (8).

Voltage dependent sodium channels are 
the target site for pyrethroids and the resistance to 
these products is associated to mutations that cause 
insensibility to these compounds. The Knockdown 
resistance (Kdr) to DDT and pyrethrines was first 
identified in the domestic fly (89, 98–100) and has 
been widely studied at the molecular level in numerous 
insects that are resistant to pyrethroids (99, 100).

5.3 Description of the mutations and 
polymorphisms

Mutations at the sodium channel have been 
reported for Blatella germanica, Myzus persicae, Plutella 
xylostella, Anopheles gambiae, Haematobia irritans (99, 
101, 102). The most common cause for resistance is 
the presence of point mutations at the target site of the 
pyrethroids and they have been reported for several 
populations of insects (103). In insects and arthropods 
a mechanism has been discovered that confers them 
resistance to pyrethroids and DDT, which is denominated 
“Knockdown resistance”, and this type of resistance 
causes a reduction in the sensibility to these compounds 
because of the mutations present at the target site of the 
sodium channels (89, 98, 99, 102, 104).

One of the peculiarities that this type of 
resistance presents is that it limits the effectiveness of 
all pyrethroids and DDT, which is of great importance 
out in the field due to the fact that once it is detected, it 
is difficult to keep using these compounds as chemical 
control methods against insects (99, 104). Knockdown 
resistance has been widely researched, and since 
1951 it has been identified and characterized in the 
domestic fly, but in recent years a few mutations have 
been identified in the genes for the sodium channels 
which are responsible for resistance in insects (99).

5. PYRETHROIDS

5.1 Mechanism of action

Among the neurotoxins that alter the 
properties of the sodium channels are the pyrethrins, 
which are natural insecticides derived from the plant 
Chrysanthemum cinerariafolium, which possesses 
an excellent ability to cause sudden death in insects 
and low toxicity in mammals, has been very useful 
in products such as ectoparasiticides; however, the 
discovery of other products similar to pyrethrins have 
replaced them, such as is the case for synthetic 
pyrethroids, which are synthetic analogues to 
pyrethrins, that have the advantage of possessing 
molecules which are more stable in sunlight, dissolve 
better in water and have a residual effect greater that 
pyrethrins (83–86).

Pyrethroids are chlorinated or brominated 
halogenated esters of one of the isomeric forms of 
chrysanthemic acid and a molecule of synthetic alcohol. 
The structure may vary because they possess numerous 
asymmetric carbon atoms, but the characteristic that 
gives them the insecticide activity and toxicity consists 
of isomers of 1RαS and generally the more toxic ones 
are 3-cis in comparison to the 3-trans (87).

Pyrethroids can be classified as type I 
and II, depending on the presence or absence of a 
cyano group at the alcohol part. These two types of 
pyrethroids have a neurophysiologic mode of action 
and different target sites (88).

The type I pyrethroids act upon the peripheric 
nerves, causing repetitive discharges in the nervous 
fibers. This induction of multiple spikes are the result of 
the prolongued entrance of sodium ions; however, this 
depolarization of the membrane blocks the conduction 
of the nervous impulse (85, 89). In the case of type 
II pyrethroids act at the central level and delay the 
closing of the sodium channels (inactivation) for a more 
prolongued period of time than the type I. This delay in 
the closing of the channel causes depolarization of the 
membrane potential, blocking the conduction of the 
nervous impulse (88, 89).

In studies performed to discover the way in 
which pyrethroids act, it has been reported that these 
bind to the alfa subunits of the sodium channels and 
present a greater affinity for the opened state of the 
channel to become fixed and act (90, 91). Once the 
pyrethroids bind to the receptor site of the channel, 
they stabilize the open state (90), causing a delay in 
the closing of the channel after the nervous impulse 
has passed; this prolongued entry of sodium into the 
internal part causes repetitive discharges in the nerves 
and hyperexcitibility, causing paralisis and death in the 
insects (83, 89, 90, 92, 93).
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of vertebrates and invertebrates. One of the findings 
from these studies has been that one amino acid 
affects the selectivity to the toxicity of pyrethroids, 
and vertebrates are less sensitive to pyrethroids. This 
in part is due to the fact that vertebrates possess a 
residue, which confers resistance to acaricides in 
insects. The study performed to find this difference 
in the amino acid consisted in comparing sequences 
of sodium channels of mammals and insects, and 
the results showed that the sites L1014 and T929 are 
highly conserved sites, but they are not associated 
to the selectivity to the pyrethroids. Nonetheless, at 
position 918 of the channels of mammals, if a methione 
replaces a leucine, there is an increase of 100 times 
more sensibility to pyrethroids. These results show 
the importance this amino acid has at that position for 
selectivity, and for a strong interaction to be made with 
the pyrethroid molecule (83, 115).

In arthropods, the resistance to pyrethroids is 
associated to mutations in the domains I, II, III, and IV 
of genes for the voltage dependent sodium channel. In 
R. microplus, known mutations that confer resistance 
are in domain II (C190A) in populations from Australia, 
Africa and South America, and a mutation in domain 
III (T2134A) that only occurs in Mexico and the United 
States (U.S.) (116). In field strains of R. microplus 
from the U.S. and Mexico, SNPs were detected and 
associated to resistance to pyrethroids in domain III 
(T2134A); a SNP C190A in the domain II of strains from 
the U.S. and a new SNP was detected in domain II 
(T170C) in both strains, which correlates to resistance 
in other insects (116). In addition, Hernandez et al. 
(97) in a study of a pyrethroid-resistant strain of R. 
microplus coatzacoalcos (CZ), identified by PCR 
assays a mutant allele G→A substitution at nucleotide 
1120 either on individual tick larvae or hemolymph 
from adults.

6. AMITRAZ

6.1. Mechanism of action

The amidines (amitraz) belong to the group 
of the formamidines, which have a vast biologic 
activity as a bactericide and antiparasitic activity 
against helminths, they also possess activity against 
fitophagous and/or parasitic mites and ticks from 
cattle (117). One of the main advantages of this 
group is the low toxicity when it is used at adequate 
concentrations for insects such as bees and spiders, 
birds, fish and mammals (118, 119). Amitraz is one of 
the most important acaricides for the control of the tick 
R. microplus, and it was introduced to Australia in the 
1970s (120).

Octopamine acts exciting the neurons in the 
abdominal ganglion of larvae, the activity of these 
neurons is related to the increase in motor activity 

Two putative genes have been identified 
in Drosophila melanogaster, DSC1 and Para (105). 
Primers have been made for the gene “Para” which 
codes for the sodium channels in order to isolate 
segments of genes for the sodium channel of other 
species of insects (99). In the fly Haematobia irritans, 
two mutations have been reported in the channel, 
which have been denominated as: Kdr, which causes 
a substitution of a leucine to a phenylalanine at the 
amino acid residue 1014 (L1014F) and super-kdr, 
which causes a substitution of a methionine to a 
threonine at the residue 918 (M918T), and the role that 
these substitutions play in the resistance to pyrethroids 
(101, 106).

The mutations M918T and L1014F reported 
for the domestic fly have been found next to a third site 
(T929) in a wide range of insects (101). The L1014F 
mutation has been found in the domain II of segment 6 
(DIIS6), and M918T is found in the loop that connects 
segment 4 (S4) and segment 5 (S5). It is important 
to mention that the mutation known as super-kdr has 
not been identified in the absence of mutation L1014F 
(99, 106). Mutation L1014F has been identified and 
reported in other species, such as Anopheles gambiae, 
Blatella germanica, Culex pipiens, Musca domestica, 
Leptinotarsa decemlineata, Myzus persicae, Plutella 
xylostella (102, 106–110). Also, when the mutations 
present in DIIS6 of the sodium channel are analyzed it 
is possible to observe a reduction in the sensibility to 
pyrethroids (78, 101, 102, 110–112). In addition, a kdr 
mutation has been reported in the sodium channel of 
the German cockroach in the domain III of segment 6, 
a substitution of phenylalanine to isoleucine at residue 
1519. This mutation has also been identified in the tick 
that infects cattle, R. microplus, conferring it resistance 
to pyrethroids (90, 99, 104).

The site F1519 in the sequence for the sodium 
channel of insects is important for the binding of the 
pyrethroids, as it is in this position that an aromatic 
residue of phenylalanine, tryptophane or tyrosine (F, W 
or Y) is necessary for the pyrethroids to act, however 
when there is a mutation at this site the insects become 
less sensitive towards acaricides (90).

In numerous sodium channels of insects 
the L993F mutation present in the IIS6 domain is 
also associated with the binding of the pyrethroids. 
The specific amino acid residues involved shape 
the receptor site of the pyrethroids in the sodium 
channels of insects (90, 113). The inactivation of 
the sodium channel is also affected when there 
is a substitution of the phenylalanine for several 
hydrophilic residues (114).

At present, some in vitro expression studies 
have been performed using cloned genes and 
mutagenesis of the site directly in the sodium channels 
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the first proposals that was established in reference 
to the existence of resistant strains was that these 
developed due to the existence of point mutations, 
but a series of molecular studies among resistant and 
non resistant R. microplus did not show convincing 
evidence to establish that this resistance to amidines 
was caused by point mutations in the gene that codes 
for octopamine (129). Recent studies have identified 
receptors bound to G protein, more specifically the 
β-adrenergic receptor for octopamine (Rmβ AORs). 
Interestingly, polymorphisms have been found in this 
gene in a certain population of resistant R. microplus 
denominated I61F (130). Additionally, the presence 
of a non synonymous SNP was reported on the first 
membrane domain of RmβAORs, and this SNP has 
been proposed as a marker to detect resistant R. 
microplus. The amino acid isoleucine in the codon 
where the SNP is found is highly conserved in βAORs, 
which suggests that the presence of this amino acid is 
of relevant importance for the structure and function of 
βAOR (130).

7. MACROCYCLIC LACTONES

7.1 Mechanism of action

Glutamate dependent chloride channels 
are the target site for macrocyclic lactones such as 
ivermectins, milbemycin and moxidectin (131). The 
mechanism of action for ivermectins has been studied 
in nematodes and arthropods, focusing on the α 
subunit of the selective chloride channels, which act 
as agonists (83, 131).

In ticks, the mechanism of action of 
macrocyclic lactones is possible due to the interaction 
and high affinity for the glutamate or gamma amino 
acid receptors present in muscle and nerve cells that 
control the entry of ions into the chloride channels 
(132, 133), giving way to an irreversible increase of the 
membrane´s conductance, which leads to muscular 
paralisis and subsequently death (134).

7.2 Resistance mechanism

At present, several states of Mexico use 
MLs (ivermectin, doramectin, and moxidectin) as 
a control method for NGI and ticks. Recently, two 
long-action MLs were introduced (ivermectin 3.1.5% 
and moxidectin 10%). When these are inoculated 
in bovines, they remain more than 70 days in the 
bloodstream, skin and hair, exposing the parasites to 
therapeutic and subtherapeutic doses for a prolonged 
period of time (133).

Resistance against macrocyclic lactones was 
first described in the state of Rio Grande do Sul, Brazil, 
at the beginning of the 21st century. Cross resistance to 
doramectin, ivermectin and moxidectin in R. microplus 

(121). Amitraz is an antagonist of octopamine, and it 
competes for the binding to the receptor of octopamine 
(ROA), causing uncoordinated motor activity or 
hyperexcitability in the larvae using sublethal doses 
that cause paralisis and death of the larvae. The 
hyperexcitability prevents the tick from anchoring to its 
host and so it prevents the tick from biting the host in 
order to feed off its blood. Amitraz is metabolized into 
N2-(2,4-dimethylphenyl)-N1-methyformamidine (DPMF) 
and other polar metabolites such as 2,4-dimethylaniline 
in the larvae of the tick R. microplus (119). Previous 
studies have shown that amitraz and DPMF act upon 
the ROA, increasing the levels of cAMP through the 
activation of cyclase adenylate (122).

6.2 Resistance mechanism

As it was previously mentioned, the 
mechanisms of resistance to ixodicides are common 
and they occur in response to a survival mechanism 
of ticks in order to detoxify, inactivate and/or kidnap 
the ixodicides. These mechanisms of resistance are 
subject to the inactivation of metabolizing enzymes, 
among which is found the receptor for octopamine. The 
first cases of resistance to amitraz were reported in 
Australia (120). In Mexico, the use of amitraz emerged 
as an ixodicide option due to the presence of ticks 
resistant to organophosphates (20, 21, 123). However, 
three years later, the first case of ticks resistant to 
amitraz was reported at the Emiliano Zapata Ranch in 
the state of Tabasco, Mexico (124). In other countries 
like Colombia, Brazil, Australia and South Africa, there 
have also been reported strains resistant to amitraz 
(101, 125, 126).

Different studies have proposed that the 
resistance to amitraz developed because it is used 
as a prophylactic or repellent, preventing the tick from 
infecting treated animals, although this resistance has 
also been suggested to be due to an inherent recessive 
mode for the development of amitraz (127). On the 
other hand, the octopamine receptor has been widely 
studied as a pharmacological target of the group of 
formamidines, of which amidine or amitraz are a part 
of octopamine, which is a biogenic amine that acts as a 
neurotransmitter and it is found in the central nervous 
system and the periphery of ticks, interacting with 
receptors that are bound to the G protein, that transmit 
signals via second messengers (121).

6.3 Description of the mutations and 
polymorphisms

In the genome of some insects such as ticks, 
the gene for octopamine is a member of a superfamily 
of genes that code for proteins with membrane 
domains. In mammals, the gene for octopamine is not 
present, which is why this protein is a pharmaceutical 
target to be used as an ixodicide (121, 128). One of 
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9. CONCLUSIONS

Two main mechanisms of ixodicides 
resistance in R. microplus have been described: 
1) the increase of metabolic activity mediated by 
enzymes that mainly comprise the esterases and 2) 
the insensitivity of the site of action. The insensitivity 
in the binding site of the enzymes is the most common 
ixodicide resistance mechanism and principally it is 
caused by the presence of point mutations. In order for 
these mutations to be favorably selected, it is important 
that amino acid substitution decreases binding with 
ixodicide, without causing loss of primary site-of-action 
function. Thus, amino acid substitutions are limited 
and identical mutations are associated with ixodicide 
resistance in other insects.
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