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1. ABSTRACT

Morbidity and mortality associated with 
diarrheal diseases remain significant burdens on 
global health. In the developing world, the major 
sources of secretory diarrhea are infectious, including 
those caused by bacteria such as enterotoxic 
Escherichia coli, and viruses such as rotavirus. 
In many cases of secretory diarrhea, activation of 
pathways for cyclic nucleotides and/or Ca2+ signaling 
in the apical membrane of enterocytes increases 
the conductance of Cl- channels at the enterocyte 
lumen-facing membrane. Those channels include 
the cystic fibrosis transmembrane conductance 
regulator (CFTR) and Ca2+-activated Cl- channel 
(CaCC). Inhibition of enterocyte Cl- channels is an 
effective strategy for anti-secretory drug therapy. 
Small molecules and natural peptides with Cl- 
channel inhibitory activity have shown efficacy in 
diarrhea models. Screening of natural peptides via 
the patch-clamp technique provides evidence that 
such channel inhibition by an extract of black tea may 
be responsible for its anti-diarrhea benefits.

2. INTRODUCTION

Diarrheal diseases have always been a 
major global health challenge. Secretory diarrhea is 
a leading cause of mortality and morbidity in children 
under age 5 and adults above age 70 (1-3). For 
these susceptible populations, the risk is often further 
enhanced by associated enteric infections (4, 5). In 
developing countries, secretory diarrhea is primarily 
caused by bacteria such as enterotoxic Escherichia 
coli (ETEC), whereas in developed countries the 
leading causes are viruses such as rotavirus (6-
8). By secreting enterotoxins, ETEC activates 
apical membrane cystic fibrosis transmembrane 
conductance regulator (CFTR), a Cyclic Adenosine 
monophosphates(cAMP)-activated Cl- channel, 
resulting in chloride secretion (9-11). In rotaviral 
diarrhea, non-structural rotaviral protein 4 (NSP4) 
induces the Ca2+-activated Cl- channel (CaCC) at the 
lumen-facing membrane of intestinal epithelial cells 
(12-14). Excessive chloride secretion drives fluid and 
electrolytes into the intestinal lumen, thereby causing 
secretory diarrhea (15-19).
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Current anti-diarrheal therapies center 
around prompt improvement of dehydration, such 
as through intravenous fluid replacement and oral 
rehydration solution (20, 21). Although symptomatic 
treatment effectively ameliorates dehydration, it does 
not change the secretion of chloride or electrolyte 
losses, and most contemporary methods for managing 
and treating infectious secretory diarrhea are decades 
old (22-25). In the past five years, CFTR and CaCC 
have emerged as novel drug candidates based on 
greater understanding of the mechanisms of Cl- 
secretion and intestinal electrolyte movement (26). 
Several Cl- channel inhibitors have been identified 
from screening of small-molecule collections or natural 
peptides (14, 27). The latter are often recognized as 
an excellent starting point for drug development and, 
when compared with traditional small molecules, 
peptides are relatively safe, highly selective and 
efficacious, and easy to synthetize (27, 28).

Here, we describe the major pathophysiology 
mechanisms of secretory diarrhea and discuss the 

opportunities that have been revealed from basic 
research to clinical applications for Cl- channel 
inhibitors. We also report that a black tea extract 
containing peptides strongly inhibits intestinal CaCC, 
and we present several ways in which peptide inhibitors 
offer tremendous growth potential as new therapeutic 
strategies.

3. CFTR AND CACC ARE ANTI-SECRETORY 
TARGETS FOR TREATING DIARRHEA

Secretory diarrhea results from excessive 
secretion of fluid and electrolytes into the intestinal 
lumen (24, 29-31). The movement of sodium and 
water between the lumen and blood vessel is driven 
by active trans-epithelial Cl− secretion. This involves 
the activation of chloride channels located on the 
apical (lumen-facing) epithelial membranes (32). The 
electrochemical driving force for chloride secretion 
across the luminal membrane through CFTR and 
CaCC is established by basolateral (circulation-facing) 
membrane transporters (Figure 1). Thus, CFTR and 

Figure 1. Intestinal ion and water transport. Fluid secretion involves active cross-cell Cl− transport from basolateral side via NKCC transporter and apical 
Cl− channels, with corresponding passive Na+ and water flux. 
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CaCC are potential membrane channel targets to 
reduce intestinal fluid and the secretion of electrolytes.

3.1. Targeting CFTR

As a cAMP-activated chloride channel, CFTR 
occurs on the apical surface of many mammalian 
epithelia and fluid-transporting tissues (33-35). In 1989, 
The CFTR gene was unexpectedly identified when 
researchers were searching for the cystic fibrosis gene 
through positional cloning (13, 36, 37). Mutations in that 
gene cause cystic fibrosis, a hereditary, lethal disease. 
This transmembrane regulator contains the ATP binding 
cassette (ABC) transporter structural motif. Members 
of the ABC superfamily have two six-helix membrane-
spanning alpha helices, each followed by a homologous 
nucleotide binding domain (NBD) (38-40). However, 
unlike other ABC proteins, CFTR has a regulatory (R) 
domain linking the first NBD and the second membrane-
spanning domain. Activation of CFTR involves ATP 
binding and hydrolysis at its NBDs, as well as cAMP-
dependent phosphorylation of multiple R-domain sites, 
the details of which remain unknown. 

Under normal physiological conditions, CFTR 
is expressed at the apical epithelial membrane, and 
plays a major role for chloride and, hence, fluid secretion 
into the intestine lumen (9). After ETEC infection, 
enterotoxins up-regulate intracellular cyclic nucleotide 
levels of intestinal epithelial cells, resulting in activation 
of the CFTR channel. Pharmacological inhibition of 
CFTR Cl− conductance has potential therapeutic value 
in secretory diarrhea initiated by ETEC.

3.2. Targeting CaCC

The CaCC is widely distributed in various 
tissues of vertebrates and invertebrates, such as 
neurons, myocardium, skeletal muscle, smooth 
muscle, epithelial cells, olfactory cells, photoreceptor 
cells, uterine muscle cells, breast cells, and 
lymphocytes, where it has a wide range of physiological 
functions, including neuronal and cardiac excitation, 
smooth muscle contraction, trans-epithelial fluid 
secretion, olfactory and sensory signal transduction, 
and oocyte fertilization (34, 41, 42). Therefore, 
investigating the molecular basis of CaCC is of great 
interest to many scientists. The characteristics of 
early candidates are not consistent with endogenous 
CaCC properties (43-45). In 2008, three laboratories 
independently demonstrated that transmembrane 
protein 16A (TMEM16A) is the molecular basis for 
CaCC. Strong evidence for this included the similarity 
of electrophysiological properties between TMEM16A 
and native CaCC, the presence of CaCC currents 
in various transfected cell systems, a decrease 
in CaCC currents after RNAi knockdown, and its 
tissue distribution (46-48). Therefore, identification of 
TMEM16A may be helpful to our discovery of targeted 
inhibitors of CaCC.

Intracellular calcium is a major factor 
influencing CaCC permeability. Chemical, electrical, 
or sensory signals can elevate the level of calcium in 
intestinal epithelial cells and then induce the opening 
of CaCC, causing chloride outflow to produce an 
inward current.

4. MECHANISMS OF INFECTIOUS SECRETO-
RY DIARRHEA

Secretory diarrhea that arises from ETEC 
and rotavirus infections is widespread and prevalent 
in gastrointestinal diseases. In developing countries, 
the incidence of infectious diarrhea leads all 
infectious diseases. Diarrhea is also the main factor 
in malnutrition, stunted growth, and developmental 
disorders in children. Therefore, it is important that 
researchers understand the pathogenesis of infectious 
secretory diarrhea.

4.1. ETEC diarrhea

ETEC secretes specific adhesin and 
enterotoxins (heat-liable and heat-stable) that boost 
the levels of intracellular cyclic nucleotides, resulting 
in activation of apical CFTR Cl- channels and, hence, 
Cl- secretion (10, 49). After ETEC enters the intestine, 
secretory adhesin binds to intestinal epithelial cell-
specific receptors and then colonizes the intestinal 
lumen. Enterotoxins are direct pathogenic factors for 
secretory diarrhea, activating the membrane adenylate 
cyclase by binding to the intestinal epithelial cell 
receptor (50). After cAMP activates cAMP-dependent 
protein kinase, it phosphorylates the CFTR Cl- channel. 
That phosphorylated channel remains open and 
secretes excess Cl- to cause secretory diarrhea (51).

4.2. Rotaviral diarrhea

Enteric rotavirus infection leads to fluid 
secretion as well as morphological changes in the 
intestinal epithelium, resulting in age-related secretory 
diarrhea. The non-structural protein NSP4 is produced 
on the basal side of rotavirus-infected intestinal cells 
and is encoded by the rotavirus gene. This protein 
is thought to act as an enterotoxin that elevates the 
concentration of cytoplasmic Ca2+ by binding to a 
membrane receptor (integrin alpha1 beta2) or the 
neuropeptide galanin, and/or by activating enteric 
nerves (52). When the concentration of cytoplasmic 
Ca2+ increases, the activated CaCC in intestinal 
epithelial cells releases chloride ions to produce 
secretory diarrhea (53).

5. DISCOVERY AND DEVELOPMENT OF 
CFTR AND CACC INHIBITORS

Secretory diarrhea is caused by the activation 
of cyclic nucleotide and/or Ca2+ signaling pathways 
in intestinal epithelial cells, which increase the 
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conductance of Cl− channels at the apical membrane. 
Being able to inhibit those Cl- channels presents an 
attractive strategy for treatment via anti-secretory 
drugs. Screening of small molecule collections and 
natural peptides has identified several classes of 
Cl− channel inhibitors that show efficacy in diarrhea 
models but must still be tested clinically.

5.1. Small-molecule inhibitors

Three chemical types of small molecules 
that show CFTR inhibition have been identified from 
the screening of synthetic small-molecule libraries 
(14). The prototype of CFTR inhibitors includes the 
thiazolidinone CFTRinh-172, which prevents CFTR 
Cl− conductance by binding at or near arginine-347 
on the cytoplasmic side of CFTR and then stabilizing 
the channel in its closed state (54). In mouse diarrhea 
models of heat-stable enterotoxin-induced intestinal 
fluid secretion, CFTRinh-172 has an anti-secretory 
effect. A second type of absorbable CFTR inhibitor 
that targets the cytoplasmic surface is the PPQ/
BPO compound. Such compounds are effective in 
polycystic kidney disease models, but have not been 
tested in models of diarrhea (55). A third chemical type 
of small-molecule CFTR inhibitors (glycine hydrazides) 
binds to the extracellular CFTR surface in the channel 
pore itself, as demonstrated by patch clamp analysis 
(56, 57). However, by locating an external site on the 
intestine, the underlying disorder is the accessing of 
CFTR in the deep intestinal crypts that are resistant to 
a strong convective rinse in secretory diarrhea. 

The initial phenotype-based screen was 
performed with human colonic cell line HT-29. Those 
efforts identified several small-molecule CaCC 

inhibitors, e.g., CaCCinh-A01, which fully inhibits 
CaCC-dependent halide flux in different intestinal cell 
lines. Since then, this inhibitor has been shown to 
prevent secretory diarrhea in a neonatal mouse model 
of rotavirus (58).

5.2. Peptide inhibitors

Protein-protein interactions are the basis of 
cellular functions. Most of these interactions involve 
short peptide motifs, and interest is increasing in the 
use of peptide-based, targeted therapeutics (59). The 
advantages of peptides are their specificity, relative 
safety, ease of production, and their ability to be 
modified through chemical synthesis and molecular 
biology techniques (60, 61). Screening the natural 
peptide inhibitors of Cl− channels represents an 
attractive source of antidiarrheal therapeutics because 
they are generally inexpensive and have the potential 
for rapid translation to the clinic. Various leaf teas, 
especially green and black, manifest a wide range of 
CaCC inhibitory activities. Our laboratory has utilized a 
peptide inhibitor screen with a patch clamp recording 
technique to demonstrate strong CaCC inhibition by 
black tea, which contains numerous natural peptides. 
Because CaCC activation is involved in rotaviral 
diarrhea, we found that the black tea extract prevented 
rotaviral diarrhea in neonatal mice but had no effect 
on the rotaviral infection. Control experiments showed 
that a tea extract with minimal in vitro CaCC activity 
did not prevent rotaviral diarrhea. However, the use 
of black tea extracts for CaCC-dependent diarrhea 
requires more in-depth study. Natural products, with 
a defined mechanism of action, represent a possibly 
inexpensive and readily available therapy for secretory 
diarrhea.

Figure 2. Signal pathways controlling intestinal fluid secretion. Left. CFTR signaling pathway activated by ETEC enterotoxins. Enterotoxins bind to 
membrane receptors that cause increase in cyclic cGMP, resulting in CFTR activation. Right. Activation of CaCC signaling pathway by rotavirus. Rotavirus 
releases NSP4, which causes elevation of cytoplasmic Ca2+ via binding to membrane receptor.
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6. SUMMARY AND PERSPECTIVE

Anti-secretory drug therapy has considerable 
potential to reduce the morbidity and mortality that are 
associated with infectious diarrhea. The identification 
and validation of small molecules and effective natural 
products, as well as repurposed drugs, that can block 
infectious diarrhea through Cl- channels is of great 
importance. Precise regulation of specific protein‒
peptide interactions is a promising new therapeutic 
strategy. The use of peptides as a means of modulation 
represents an exciting path toward this goal. Several 
different technologies have been introduced to aid in 
the discovery of peptide binders that will be suitable for 
use as drug frameworks. Although the development of 
anti-secretory drugs still presents multiple challenges, 
the future for peptide drugs is becoming brighter as 
more candidates are now approved or in clinical trials. 
The next decade may bring the prospect of new drugs 
against secretory diarrhea. 
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