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1. ABSTRACT

Optical Coherence Topography (OCT) is an 
emerging biomedical imaging technology that offers 
non-invasive real-time, high-resolution imaging of highly 
scattering tissues. It is widely used in ophthalmology 
to perform diagnostic imaging on the structure of the 
anterior eye and the retina. Clinical studies are carried 
out to assess the application of OCT for some retinal 
diseases. OCT can provide means for early detection 
for various types of diseases because morphological 
changes often occur before the physical symptoms 
of these diseases. In addition, follow-up imaging can 
assess treatment effectiveness and recurrence of a 
disease. A review in this area is needed to identify the 
results and the findings from OCT images in the field of 
retinal diseases and how to use these findings to help in 

clinical applications. This paper overviews the current 
techniques that are developed to determine the ability 
of OCT images for early detection/diagnosis of retinal 
diseases. Also, the paper remarks several challenges 
that face the researchers in the analysis of the OCT 
retinal images.

2. INTRODUCTION

Optical Coherence Tomography (OCT) is one 
of the fastest developing medical imaging modalities 
in the last decade. It can capture different aspects 
of biological tissues, such as blood flow, polarization 
status, structure data, elastic parameters, and 
molecular content (1). Using OCT can give us accurate 
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knowledge of optical scattering and absorption 
of biological tissues. It helps in some diagnostic 
measurements, such as diagnosis of oral epithelial 
dysplasia, molecular diffusion in epithelial tissues, 
blood oxygenation measurement, blood glucose 
monitoring, plaque detection, and cancer detection 
(2, 3). Therefore, OCT can be used to diagnose 
different diseases by analyzing the change in human 
tissues in the captured images.

OCT is considered as non-invasive, fast, 
and single-cell resolution imaging through several 
millimeters of the biological tissues. OCT is the same 
as ultrasound imaging except for reflections of near-
infrared light that are detected rather than sound. It 
uses infrared light to give high-resolution 3D insight 
into living tissues (4). It is based on low coherence 
interferometry to generate 2D and 3D images. This 
principle obtains high-resolution, cross-sectional, and 
backscattering profiles (5). Therefore, this imaging 
modality became popular due to ease of use, low cost, 
patient comfort, lack of ionizing radiation, and high 
resolution (6).

The first generation of OCT was time-domain 
OCT (TD-OCT). It encodes the location by time 
information about the position of a moving reference 
mirror to the location of the reflection. It can acquire 
up to 400 A-scans (Axial Scan) per second. In 2001, 
the spectral-domain OCT (SD-OCT) was invented. It 
can acquire all the information in a single A-Scan by 
evaluating the frequency spectrum of the interference 
between the reflected light and the reference mirror. 
SD-OCT is 40 to 110 times faster than TD-OCT. For 
example, Swept Source OCT is capable of acquiring 
100000 A-scans per second, which allows 3D data 
collection (7). Recently, OCT has integrated with 
different imaging technologies, such as photoacoustics, 
multi-photon microscopy, fluorescent imaging, 
ultrasound, and adaptive optics, to overcome some of 
its limitations in order to enhance the performance (8).

OCT has been clinically used in 
ophthalmology (9, 10), cardiology (11, 12), endoscopy 
(13, 14), dermatology (15, 16) and oncology (15, 
16). In developmental biology, OCT has been used 
to characterize the morphological and functional 
development of organs, such as eyes (17), brain (18), 
limbs (19), reproductive organs (20), and the heart (11, 
18, 21, 22).

Moreover, OCT can be used for analysis of 
skin surface topography especially with the existence 
of high-definition OCT (HD-OCT). HD-OCT provides 
resolution of 3µm in both axial and “en-face” planes. It 
has fast acquisition time (2–3 seconds) (23). It provides 
non-invasive imaging of sub-surface skin tissues for 
screening skin diseases, such as basal cell carcinoma 
and inflammatory diseases (24). It can also be used 

for fingerprint acquisition as it is capable of providing 
high-resolution 3D scans of the fingerprint skin, which 
contains much information about the fingerprint (25). 
In addition, OCT can help to understand some of the 
pathways influenced by the cardiac function in early 
heart development, such as the rapid beating and the 
complex ultrafine vasculature (26), coronary artery 
disease (27), and the structure of blood vessel wall 
in high details (28). On the other hand, OCT can be 
used to study brain diseases, such as brain tumors 
(29) and stroke (30). The high-resolution extension of 
OCT, optical coherence microscopy (OCM) (31, 32), 
can achieve 1–2 μm resolution in tissue in all three 
dimensions. OCM can resolve individual neurons 
based on the intrinsic optical contrast in rodent brains 
(33, 34, 35) and human brain slices (36, 37).

As demonstrated in the literature, OCT shows 
promising results for diagnosing retinal diseases, which 
motivated us to focus on retina diseases in this short 
review. OCT can be considered as a standard modality 
for imaging the retina. Figure 1 shows an example of 
OCT retinal image for a typical normal person. OCT 
is a non-invasive scan of the retina that shows its 
cross-sectional profile. In other words, OCT is a high-
resolution cross-sectional image of the layers of the 
eye’s biological tissues. It is used to visualize the retina 
to recognize and assess a variety of ocular diseases, 
such as diabetic macular edema (DME), glaucoma, 
and age-related macular degeneration (AMD) (38, 39). 
The morphological features, such as the shape and 
distribution of drusen, cysts, macular holes, and blood 
vessels, can be easily visualized from OCT images 
and can be used as markers for diseases. Therefore, 
processing of OCT images becomes essential to do 
large scale studies for changes in retina’s layers. Many 
of the used techniques rely on the consistency of the 
OCT layer intensities to provide accurate results (40).

2.1. Retina Anatomy in OCT

As it appears on OCT, the retina contains 
several layers with different thicknesses and intensities. 
Segmenting and measuring the thickness of each layer 
are considered as essential markers in assessing the 
health of the retina. The width and shape of individual 
layers may thicken or thin over the course of different 
diseases that indicate the current progress or status 
of a disease (40). Irregularities in images can be used 
to diagnose many retinal diseases, such as AMD, 
retinitis pigmentosa (RP), achromatopsia, glaucoma, 
and cone-rod dystrophy (CRD). The absence of 
certain layer(s) in the retina can be used as a marker 
for diagnosis, disease progression, and treatment 
monitoring (41).

Some studies preferred to define all 
intraretinal layer, whereas other studies preferred only 
to define the most critical retina layers that are needed 
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to identify a disease. For example, Ishikawa et al. (42) 
defined four main layers, which are Nerve Fiber Layer 
(NFL), Ganglion Cell Layer (GCL) + Inner Plexiform 
Layer (IPL), Outer Plexiform Layer (OPL), and Outer 
Nuclear Layer (ONL) + Photoreceptor Layer for healthy 
and glaucomatous eyes. Garvin et al. (43) detected five 
various layers from 3D OCT images for a patient with 
unilateral Anterior Ischemic Optic Neuropathy (AION) 
disease. These five layers were NFL, GCL + IPL, 
Inner Nuclear Layer (INL) + OPL, Photoreceptor Inner 
Segments (PIS), and Photoreceptor Outer Segments 
(POS).

Bagci et al. (44) were able to detect six 
different retinal layers, which are NFL, IPL + GCL, INL, 
OPL, ONL + PIS, and POS from normal healthy eyes. 
Lu et al. (45) identified and measured the thickness of 
six layers extracted from 3D images of healthy subjects. 
These layers were NFL, PIS, POS, Retinal Ganglion 
Cell (RGC), IPL, and OPL. Rossant et al. (46) detected 
eight layers from healthy subjects. Yang et al. (47) 
detected nine boundaries from 3D images of healthy 
and glaucomatous eyes.

Shi et al. (38) were able to segment ten 
retinal layers in 3D images of patients with retinal 
pigment epithelial detachments (PED). Sugrk et al. (39) 
proposed a segmentation method to find the retinal 
pigment epithelium (RPE) layer and to detect a shape 
of drusen in this layer. Then, the RPE layer is used 
to find retinal nerve fiber layer (RFL) and to detect a 
bubble of blood area in RFL complex. ElTanboly et al. 
(48) detected 12 different layers, which are NFL, GCL, 
IPL, INL, OPL, ONL, External limiting membrane 
(ELM), Myoid Zone (MZ), Ellipsoid Zone (EZ), Outer 
Photoreceptor (ORP), Interdigitating Zone (IZ), and 
RPE layers. Figure 2 shows an OCT retinal image with 
its 12 distinctive layers for a typical healthy person.

The focus of this survey is to discuss the 
current findings in OCT retina images with respect to 
the effect of different diseases on the retina layers. We 
will discuss the current studies for each disease and 
how it affects the structure of the various layers in OCT 
images. We will concentrate on the methodologies of 
handling different OCT images for normal and diseased 
retinas. Then, we will discuss the current challenges 
and research topics in this field.

3. RELATED WORK

As previously mentioned, OCT images can be 
used to show the structure of the retina. The detected 
layers in the OCT retinal images can be utilized as 
an indicator for healthy and diseased eyes. Recently, 
there are many studies, which are conducted to 
analyze the OCT retinal images to classify the healthy 
from diseased patients. Each disease can be classified 
depending on some characteristics that can be absent 
or found in the OCT images. In the next subsections, 
we will discuss the current work in normal eyes as well 
as the diseased eyes. We will begin with the detection 
of the retina’s layers in healthy persons. Then, we will 
discuss the characteristics and studies of the most 
common diseases, which can be indicated by the 
analysis of the OCT retinal images.

3.1. Normal healthy eye

As OCT has histological correspondence, 
the interpretation of the OCT image seems to be 
quite intuitive. However, OCT technology depicts 
tissue reflectivity. It is dependent on the tissue 
optical properties, i.e. microscopic variations in the 
refractive index of subcellular structures, and on the 
amount of light signal that the tissues absorb (49, 
50). When analyzing an OCT image for retina, there 

Figure 1. OCT retinal image for a typical normal person in macular region of retina.
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is no standard for the number of layers. Most studies 
estimate four, seven, ten, eleven, or twelve layers. On 
the other hand, normal retinal thickness differs from 
one device to another due to different characteristics, 
such as age, gender, race, and refraction. In addition, 
all measurements using SD-OCT have higher values 
than using TD-OCT due to the higher resolution (51).

Bagci et al. (44) detected six different layers 
(NFL, IPL+GCL, INL, OPL, ONL+PIS, and POS) in 
OCT retinal images. They proposed an algorithm that 
was able to segment retinal layers. This algorithm 
is developed based on 2D edge detection scheme 
that suppresses speckle noise and at the same time 
enhances the edges along the retinal depth. A gray 
level mapping technique was proposed to overcome 
uneven tissue reflectivity and variance across subjects. 
Their system was tested only on normal subjects. The 
tested images were taken by two different OCT devices. 
First, images of 15 normal subjects were taken using 
the Stratus OCT device with the average of their ages 
was (57 ±11) years old. Second, images of 11 normal 
subjects were taken using RTVue OCT device with 
average age equals to (56 ±7) years old. The thickness 
of all the layers was measured and compared with the 
results of 3 manual observers. The mean absolute 
values were between 3–4 µm between the automated 
and manual thickness measurements. Additional work 
is needed to prove the ability of this proposed system 
to deal with images that are obtained from patients with 
different retinal diseases.

Rossant et al. (46) determined eight layers 
(RNFL, ONL, GCL+IPL, INL, OPL, IS, OS, RPE) 
in high-resolution OCT images. They proposed a 
segmentation method for detecting the layers by 
using the knowledge about the relative position of the 
layers. The system used 25 normal subjects with 72 
images. Fourteen images were chosen to be manually 

segmented by five experts. They calculated the 
distance between the manually traced curves and the 
ones obtained by the proposed method. The measures 
that are manually performed by the experts and those 
obtained from the automatic segmentation were very 
close. This algorithm was tested only on normal eyes. 
In addition, it lacked more details about the evaluation 
of the proposed technique. They noticed a change in 
the profile of the fovea with the axial length. When the 
central ONL thickness increased, the foveal thickness 
increased. A significant variability of the OPL/ONL 
complex was noted independently of axial length. The 
maximal retinal thickness was stable over a large range 
of axial length and had a low coefficient of variation. 
Finally, no differences that are related to gender were 
noted.

Lu et al. (45) detected and measured the 
thickness of six different layers (RNFL, IS, OS, RGC, 
IPL, and OPL) in OCT retinal images. The proposed 
segmentation algorithm cut the OCT image into the 
vessel and non-vessel sections. First, the vessel 
section is detected by the polynomial smoothing 
procedure. Then, the non-vessel section was filtered 
using two filters, which were bilateral and median 
filters. The layers were then detected and classified. 
For the layers in the vessel section, they were defined 
using linear interpolation of the layer boundaries that 
were detected in the non-vessel section. The system 
was tested using the images of four healthy subjects. 
There was more error in the thickness measure at the 
vessel section. Errors varied due to different image 
noise level and layer boundary quality. Errors were 
occurred more often in measuring the thickness of 
RNFL. The algorithm measured it thicker than it should 
be. This algorithm needs advanced image interpolation 
techniques to improve the layer boundaries of the 
vessel sections. In addition, it requires other advanced 
image smoothing techniques, which are important to 

Figure 2. OCT retinal image with its distinctive 12 layers for a typical healthy person in macular region of retina.



Classification of retinal diseases based on OCT Images

251 © 1996-2018

be able to segment non-RNFL layers that are often 
much thinner than the RNFL. The algorithm needs to 
be evaluated over a larger dataset.

Kajić et al. (4) detected and built the 
thickness maps for eight intraretinal layers in normal 
eyes. First, they learned the variation parameters 
from the training data that were manually segmented. 
Then, these parameters were used to drive a model 
to able to segment unseen data. The algorithm was 
evaluated against a large set of images that were 
manually segmented. 466 images from 17 eyes were 
manually segmented twice by two different persons 
using Amazon Mechanical Truck workers (AMT). 
This algorithm could produce accurate results even 
in the existence of strong speckle noise. It showed 
only a larger variation around the foveal region. Even 
when they added background noise to the images, 
the algorithm showed robust performance. On the 
other hand, further investigation is needed to test the 
proposed algorithm on patient subjects.

Salarian et al. (52) proposed a method to 
detect certain layers using graph theory and the 
shortest path algorithm. They chose the Regions of 
Interest (ROI) that could be used in normal cases 
and some abnormal ones. They discovered that by 
changing some parts, such as ILM, RNFL, and RPE, 
these layers could be found easily. They applied the 
proposed technique to all B-Scan images of 16 people, 
including low-quality images and some images with 
diseased eyes. The results were accurate based on 
manual segmentation of an expert. In the future, they 
can apply other ways of weighting or use other types 
of information to improve the proposed method. This 
modification can be useful for savior diseased cases.

Lang et al. (40) adapted the N3 framework 
that was originally implemented to correct MRI data for 

intensity inhomogeneity correction in OCT images. To 
create a template intensity profile for each layer, they 
transformed the data to a flattened macular space, 
which afforded an accurate initial estimate of the gain 
field. To correct the data, N3 produced a smoothly 
varying field. Their proposed methodology was capable 
of both recovering synthetically generated gain fields 
and improving the stability of the layer intensities. They 
made manual segmentation for 41 OCT images. They 
delineated nine boundaries on every B-scans.

3.2. Glaucoma

Glaucoma is a set of neurodegenerative eye 
diseases that leads to the loss of vision and blindness. 
It is the second leading cause of blindness in the world 
(53). Both NFL thickness and the Euclidian distance 
between NFL and the Inner Limiting Membrane (ILM) 
can be used as markers for the glaucoma disease. The 
glaucoma patient has a decreased NFL thickness as 
compared to the typical healthy subjects. Recently, it 
has been said that both of the choroid thickness and 
a measure of separation between Bruch’s Membrane 
(BM) and choroid can also be used as a marker of the 
glaucoma disease (54). Figure 3 shows an OCT image 
for a glaucoma patient.

Many studies have been made to diagnose 
the glaucoma disease depending on OCT retinal 
images. For example, Ishikawa et al. (55) detected four 
various layers (macular nerve fiber layer (mNFL), inner 
retinal complex (IRC), OPL, and outer retinal complex 
(ORC)) in OCT retinal images. They applied an 
adaptive thresholding technique to search for borders 
of retinal layer structures on each sampling line. They 
tested their system on normal and glaucomatous 
subjects. They used 16 subjects for training (5 normal 
and 11 affected by glaucoma disease) to assess their 
proposed system. The average ages for normal and 

Figure 3. OCT retinal image for a glaucoma patient.
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diseased subjects were (52.1±14.8) and (62.4±14.5) 
years old, respectively. On the other hand, they used 
64 subjects for testing their proposed system (27 
normal and 37 glaucomatous). The algorithm failed to 
detect the layers with 55.6% in poor quality images and 
failed with 10.2% in good quality ones. The ILM layer 
was the most reliable board, while the IRC layer was 
the least reliable one. From the experimental results, 
they found that in normal subjects the mFNL, IRC, total 
retinal thickness, and cpNFL were thicker. The best-
performing macular segmentation parameter in this 
study was mNFLIRC thickness. To improve the overall 
performance of this system, they need to use better 
methods and procedures for preprocessing, filtering, 
and border detection.

Yang et al. (47) detected the boundaries 
between some retinal layers by proposing an automated 
boundary segmentation algorithm for 3D OCT images. 
First, a customized Canny edge detection was used 
to create a map that showed main local edges. Then, 
a graph was built based on the axial intensity and the 
Canny edge map. Finally, the layers were extracted 
using the shortest path search through the graph. The 
algorithm was able to define nine different boundaries. 
These boundaries were the ILM boundary, the boundary 
between NFL and GCL, the one between GCL and 
IPL, the one between IPL and INL, the one between 
INL and OPL, the ELM boundary, the one between IS 
and OS, the one between OS and RPE, and the one 
between BM and Choroid. The algorithm was tested 
on 19 healthy subjects and 19 with glaucoma disease. 
The results were compared with the results from four 
manual segmentation experts. The difference between 
the measurement of ILM, INL/OPL, and BM/Choroid 
boundaries versus the manual segmentation was very 
close to the different between segmenters. The NFL/
GCL and IPL/INL versus the manual segmenters were 
larger than between segmenters but when the Fovea 
area was excluded the difference was improved. 
The problem in the NFL/GCL boundary was on the 
side where NFL is thin. It was detectable, but it was 
detected thicker. This algorithm, even in the poor 
quality image (low intensity, and low contrast) still able 
to detect the boundary. The algorithm notices that the 
NFL was clearly thinner in the glaucoma patients.

Varmeer et al. (56) worked on 3D images to 
detect six retinal layers (vitreous, RNFL, GCL + IPL, 
INL + OPL, Photoreceptor + RPE, and Choroid). The 
proposed system worked well for both normal and 
diseased eyes with glaucoma. It was able to build 
the thickness maps for single or combined layers. 
The algorithm used ten healthy subjects and eight 
subjects with glaucoma. Two scans held manually 
for the healthy ones, and one scan for the diseased 
one. RMS errors were between 4 and 6 µm for the 
top and bottom of the retina. The errors for intra-retinal 
interfaces were between 6 and 15 µm. The resulting 

total retinal thickness maps corresponded with known 
retinal morphology. They compared RNFL thickness 
maps with GDx (Carl Zeiss Meditec) thickness maps, 
and both were mostly consistent. In OCT-derived 
thickness maps, local defects, which are found in 
temporo-superior and temporo-inferior regions, were 
better visualized. In the two cases of glaucoma, the 
RNFL is thinner than in the normal eye.

Kafieh et al. (5) introduced a segmentation 
technique based on a variant of spectral graph theory, 
which was called diffusion maps. It relied on regional 
image texture in localizing boundaries in situations 
of low image contrast and poor layer-to-layer image 
gradients. Their proposed method was based on the 
application of two sequential diffusion maps. The first 
one segmented the ILM-to-RPE. The second one 
localized the internal layers between the ILM and the 
RPE complexes. To partition the data into important 
and less important sections and to localize the internal 
layer. They applied this method to 2D and 3D OCT 
data sets. In experimental results, they tested the 
proposed technique on 23 images data set from two 
groups (normal and glaucoma patients). The mean 
unsigned border positioning errors (mean ± SD) was 
8.52 ± 3.13 µm for a 2D method and was 7.56 ± 2.95 
µm for the 3D method.

Bogunović et al. (57) proposed an algorithm 
to segment intraretinal layers of OCT images. After 
2D “en-face” alignment, all the fields were segmented 
simultaneously. To penalize deviations from the 
expected surface height differences for each pair of 
overlapping fields, they imposed a priori soft interfield-
entrasurface constraints. They were extracted to be the 
depth-axis shifts, which produced the maximum cross-
correlation of pairwise-overlapped areas. The algorithm 
could segment 11 surfaces, but the evaluation was 
focused on only four surfaces to the ease of manual 
tracing. These surfaces are ILM, the surface between 
NFL and GCL, the surface between IPL and INL, 
and the outer boundary of RPE. These four surfaces 
enabled the algorithm to compute the thickness of NFL, 
GCL + IPL, and total retinal thickness. The method 
was evaluated using 180 images acquired from 10 
glaucoma patients (three severe, five moderates, two 
mild). The obtained average error was (4.58±1.46) 
µm, which was comparable to the average difference 
between different observers (5.86±1.72) µm. The 
overall mean thickness per patient was (1.07±0.35) µm 
for NFL, (0.73±0.31) µm for GCL+IPL, and (1.86±0.35) 
µm for total retinal.

3.3. Central serous chorioretinopathy (CSC)

CSC is a chorioretinal illness, which is not 
understood completely with systemic associations. It 
has a multifactorial etiology with a very complicated 
pathogenesis. Ophthalmoscopic indications of CSC 
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range from mono- or paucifocal RPE lesions with a 
noticeable increase of the neurosensory retina by 
clear fluid (regular in recent onset cases) to shallow 
detachments overlying large patches of irregularly 
depigmented RPE (58). Because of the fluid that is 
accumulated under the retina distortions or visual 
loss may appear. In normal and CSC diseased 
subjects, the 3D configuration of the subretinal fluid 
differs (59). So, detecting these changes in both of 
fluid and RPE can help in diagnosing this disease. 
Figure 4 shows an OCT retinal image for a CSC 
patient.

Some studies were done to diagnose the 
CSC patients by analyzing the OCT retinal images. 
For example, Eandi et al. (60) determined the foveal 
thickness and anatomical changes in the fovea and 
visual acuity in unilateral resolved CSC patients. In 
this study, 20 patients were involved with an age range 
between 31 to 66 years old. They normalized the 
foveal thickness by dividing its value by the uninvolved 
fellow eye value. The best-corrected visual acuity was 
normalized also. Patients with unilateral resolved CSC 
had a decreased central foveal thickness. Therefore, 
there was a correlation between this thickness and 
the visual acuity. In addition, there was the inability to 
observe the ELM layer in most of the diseased eyes. 
There was also difficulty in observing the boundary 
between the photoreceptor bodies and the outer 
segments. All these observations were correlated with 
visual acuity.

Imamura et al. (61) evaluated the choroidal 
thickness in patients with CSC disease. The thickness 
of the sub-foveal choroidal was measured from the 
inner scleral border to the outer border of the retinal 
pigment epithelium. In this study, 19 patients with 28 
eyes were involved. The mean age of them was 59.3. 
The measured choroidal thickness was (505±124) μm, 
which was much greater than the choroidal thickness 
in normal eyes (P ≤ 0.001).

Novosel et al. (41) presented a locally 
adaptive approach based on loosely-coupled level 
sets to segment the fluid and the interfaces between 
retinal layers in eyes affected by CSR. The approach 
exploited the local attenuation coefficient differences 
of layers around an interface. To delineate the fluid, 
the approach introduced auxiliary interfaces. The 
approach could handle abrupt attenuation coefficient 
variations and topology disrupting anomalies. The 
mean absolute deviation for the interfaces was 3.7–
8.9 µm (1–2 pixels), and the Dice coefficient for the 
fluid segmentation was 0.96 compared to a manual 
segmentation. They segmented the retinal layers 
and fluids simultaneously. So, they aided each other 
in retrieving the right segmentation. An error of 3.9 
µm corresponded to one pixel along the A-lines. The 
accuracy showed an RMSE ranging from 4.4 µm to 
13.4 µm and a MAD ranging from 3.7 µm to 8.9 µm. 
The Dice coefficient, TPR, and FPR were 0.96, 95%, 
and 1%, respectively.

3.4. Unilateral anterior ischemic optical  
neuropathy (AION)

AION is causing damage to the optic nerve 
from inadequate blood supply that results in loss of 
vision. There are two main types of AION: Arteritic AION 
(AAION) and Non-arteritic AION (NAION or AION). In 
NAION, the retinal NFL layer thickness is significantly 
increased in the acute stage. Then, it is significantly 
decreased in the resolving stage. In the sequent 
paragraphs, some of the current work concerning both 
types of the AION diseases is discussed.

Garvin et al. (43) detected five layers (NFL, 
GCL+IPL, INL+OPL, IS, OS) in OCT retinal images. 
The layers were identified by finding a minimum-cost 
closed set in a constructed geometric graph. This graph 
is constructed from the edge/regional information 
and a priori determined surface smoothness and 
interaction constraints. This study was conducted on 

Figure 4. OCT retinal image for a CSC patient.
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3D images for 12 patients with AION disease for one 
eye or both. They observed that there were changes 
in both the inner and the outer retinal thickness for 
the affected eye. The inner retinal thickness was 
24.1 µm smaller than unaffected one, and the outer 
retinal thickness was 3.7 µm smaller in the affected 
eye. The results were compared with the results of 3 
manual observers. The border positioning errors and 
thickness differences between the observers were 
very close to those of the results and the reference 
standard. Their algorithm attempted to segment all 
surfaces although sometimes some layers are not 
present. In some images, surface two might not be 
visible, and some images were too noisy to resolve 
the layer boundaries.

Garvin et al. (62) provided two extensions of 
their previous work. The first extension was the ability to 
incorporate varying feasibility constraints and capacity 
to incorporate true regional information. The second 
was that they applied a new method on retinal layers 
in SD-OCT images. Therefore, their proposed method 
extracted seven surfaces from the processed images. 
In addition, they found that the bigger coverage of the 
macular region generated a greater variation of layer 
appearances.

Hedges et al. (63) demonstrated the 
existence of subfoveal fluid, which was associated 
with optic disc swelling from NAION. In this study, 76 
patients were involved. Eight patients had apparent 
subretinal fluid that extended into the subfoveal space. 
The visual acuity was improved in five of these eight 
patients as the subfoveal fluid resolved. However, they 
concluded that the subretinal fluid was developed in 
some patients with NAION. In addition, they found that 
this disease might cause visual acuity loss.

3.5. Diabetic macular edema (DME)

DME can cause vision loss in persons with 
diabetes mellitus. It can be defined as a blood leakage 
pass in RPE layer and photoreceptor inner/outer 
segment (IS/OS) from choroid into the RNFL complex. 
The visual ability is lost by increasing the area of the 
blood or bubble that is found in the RNFL complex. In 
the United States, there are approximately 26 million 
persons suffering from DME (39, 64). OCT modality is 
used to find the presence of the blood area or bubble 
in the RNFL complex. In addition, the diagnosis of the 
DME can be made by measuring the variation of the 
thickness in some retinal layers. Figure 5 shows an 
OCT retinal images for a DME patient.

Due to fluid accumulation that can be intra- 
or extra-cellular, DME increases the retinal thickness. 
Due to the increased fluid intake, the cells are 
enlarged in intra-cellular edema. Otherwise, extra-
cellular edema results from fluid accumulation outside 
the cell. In the second type of edema, hard exudates 
can be structured because of the lipid contents of the 
leakage can agglomerate into an irregular shape. 
Finally, each eye of a DME patient can present regions 
with different characteristics, such as increased ONL 
thickness, cysts, and even areas without any visible 
changes (65).

Current studies have shown that the visual 
acuity can be predicted by the volume of retinal 
tissue within fluid-filled spaces (66). Further, clinical 
studies based on the volume of cystoid fluid and the 
location of the cysts may be used as a metric for visual 
prognosis. Additionally, the presence of diabetic cysts 
may alter the normal pattern of the sub-retinal layers 
leading to sub-retinal disorganization. The extent of 

Figure 5. OCT retinal images for a DME patient.
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disorganization can be estimated using a method of 
localizing these cysts in certain sub-retinal layers (67).

Roychowdhury et al. (67) localized cysts in 
OCT images for patients with DME. In each image, 
Six sub-retinal layers were identified using an iterative 
high-pass filtering approach. Then, dark regions were 
detected as candidate cystoid regions. To estimate the 
area of cystoid regions, each candidate cystoid region 
was analyzed using solidity, mean, and the maximum 
pixel value of the negative OCT image as decisive 
features. This algorithm was capable of determining 
the boundaries of contiguous cysts by breaking down 
large cysts. This system was able to detect cystoid 
area with 4.6% mean and 6.6% standard deviation 
based on 120 OCT images of 25 DME patients. This 
method achieved 100% sensitivity and 75% specificity 
in separating images with no cysts from the ones with 
cysts. In addition, it achieved 90% correlation between 
the manually segmented area and the cystoid area 
defined by the algorithm. This algorithm located the 
cysts in the inner plexiform with an accuracy of 88%, 
in inner nuclear with an accuracy of 86%, and in outer 
nuclear regions with an accuracy of 80%.

Roychowdhury et al. (53) produced 3D 
thickness maps for images of normal subjects and 
patients with DME. The first stage of the proposed 
algorithm was to make de-noising for OCT images. 
Then, they applied the automated segmentation 
method to extract the layers using multi-resolution 
high pass filtering. They extracted only six retinal 
layers (NFL + IPL, INL, ONL, Inner layer, and Outer 
Layer) with their thickness from all the tested images 
to form the thickness maps. They applied this system 
to 203 normal images from 10 healthy subjects 
and 357 images from 15 patients with DME. They 
measured the correlation coefficient (r) between 
the results of the proposed system and the manual 
segmentation. They obtained r>0.8 in normal cases 
and r>0.7 in abnormal ones. They found that the 
thickness of the inner layer with DMA was 1.12 times 
more than normal cases. In DME cases, the INL 
layer appeared relatively thicker, and the ONL layer 
appears irregular and exceeding 200 µm. Therefore, 
the thickness maps of the INL and ONL could be used 
as an indicator of disease severity and for tracking the 
changes in DME patients over time.

Correia et al. (65) identified the changes 
happened to ONL layer in DME patients. The OCT 
images were obtained from healthy subjects as 
controls and patients with DME. The images were 
distributed into three groups. These groups were 
healthy subjects, DME patients where ONL thickness 
was significantly increased, and DME patients with 
normal thickness for ONL. For all processed images, 
the ONL was segmented and processed to produce 
a representative A-scan. They used the optical and 

physical characteristics of the healthy human retina 
as a reference in their proposed system. They used 
a Monte Carlo technique with a model for the ONL 
to simulate an A-scan for each group and compare it 
to the real OCT data. The results showed that there 
were two types of edema, cytotoxic (intra-cellular) and 
vasogenic (extra-cellular). In the DME without changes 
in the ONL group, the most observed feature for the 
real OCT data was the increase in the volume of the 
nucleus. The data of patients with DME with increased 
ONL could be created by increasing ONL thickness 
from the healthy status by the exact increase in ONL 
thickness.

Abhishek et al. (68) segmented the intra-
retinal layers for edema patients and normal subjects. 
The segmented layers were ILM and RPE layers. The 
graph-based segmentation was solely based on pixel 
intensity variation and distance between neighbor 
pixels. They used the weighting scheme and shortest 
path search to identify the neighborhood pixel. In this 
algorithm, the preprocessing step could be considered 
as optional. There were 12 diseased images and 9 
normal images. The algorithm was able to detect ILM 
and RPE layers in 7 out of 9 normal subjects and 11 out 
of 12 DME affected subjects due to expert validation. It 
was found that the range of the thickness of the normal 
subject was less than 50, whereas the range of the 
DME subjects was more than 50. In some cases, it 
even reached 200. So, the thickness could be used as 
a good sign of the presence of edema. In this method, 
if they limit the search regions it can detect the other 
retinal layers. Another advantage of this method is that 
it is less prone to noise.

3.6. Cystoids macular edema (CME)

CME occurs in a variety of diseases like 
diabetic retinopathy, AMD, retinal vein occlusion, 
and intraocular inflammation (69). It affects the full-
thickness of the retinal tissue involving the anatomic 
fovea (70). It appears more often in people over 60 
years old. It affects visual acuity and may lead to loss 
of vision or even blindness. Figure 6 shows an OCT 
retinal image for a CME patient.

There are some current studies that discuss 
the diagnosis of CME disease from analyzing the 
OCT retinal images. For example, Zhang et al. 
(71) determined the volume of CME for the retinas 
with macular hole (MH) in 3D OCT images. Their 
system consisted of three main phases, which 
were preprocessing, coarse segmentation, and fine 
segmentation. The preprocessing phase included 
de-noising, intraretinal layers segmentation and 
flattening, and MH and vessel silhouettes elimination. 
An AdaBoost classifier was used to get the seeds and 
constrained regions for graph cut in the second phase. 
In the last phase, a graph cut algorithm is used to 



Classification of retinal diseases based on OCT Images

256 © 1996-2018

get fine segmentation results. The proposed system 
was evaluated by 3D OCT images from 18 patients 
with CMEs and MH. The true positive volume fraction 
(TPVF) was 84.6%, and the false positive volume 
fraction (FPVF) was 1.7%. The accuracy rate (ACC) 
for CME volume segmentation was 99.7%. For the 
validation, a leave-one-out strategy was used during 
training and testing. Supervised by an experienced 
ophthalmologist, the CME regions were segmented 
manually to work as ground truth. However, a more 
accurate shape model of the MH (includes the 
maximum/minimum diameter of the MH) was needed. 
In addition, the proposed system detected the obvious 
cyst only.

Slokom et al. (72) identified CME regions 
in SD-OCT of the macula. An algorithm was made 
to detect cystoids. First, it identified the borders of 
the cytoids. Then, to obtain surface area of fluid 
in the image, a quantitative analysis of liquid in 
cystoids regions was made. They used data from 
six patients with CME associated with diverse 
retinopathy. In the central part of the retina, two 
patients had a singular cystoids region, and the 
others had multiple cystoids regions. They applied 
the distribution metric for image segmentation that 
appeared as a result from prediction theory to 
detect cystoids in OCT images. Applying level set 
process, an energy model based on the metric was 
incorporated into the Geometric Active Contour 
(GAC) algorithm. The clinical expert classified the 
extracted results from every image as good and 
fair extraction. 95% were classified as good and 
fair extraction cases. The average precision was 
95.02%, and average sensitivity was 88.46%. The 
area of each cystoids region was calculated and 
compared to the manual extraction, which was in 
all cases smaller than those of the clinical expert.

3.7. Age-related macular degeneration (AMD)

AMD is a degeneration of the eye that is 
leading to severe visual impairment and visual loss for 
people who are 55 years old or older. In the United 
States, there are approximately 8 million persons who 
have monocular and binocular AMDs. This disease is 
detected by searching for drusen, which is defined as 
abnormality between the basal lamina of RPE and the 
inner collagenous layer of BM (73, 74). Figure 7 shows 
an OCT retinal image for AMD patient.

Khanifar et al. (75) categorized the drusen 
ultrastructure in AMD using OCT retinal images. A 
sample of 31 eyes of 31 AMD patients was utilized in 
this study. The images were analyzed, and the drusen 
were scored by four categories, which are shape, 
predominant internal reflectivity, homogeneity, and 
the presence of overlying hyper-reflective foci. They 
calculated the spread of each morphologic pattern 
and the combinations of the extracted morphologic 
patterns. 21 images were chosen for the adequate 
quality. 17 drusen were found from 120 drusen in the 
whole images. Most of the found drusen were convex, 
homogeneous, with medium internal reflectivity, 
and without overlying hyper-reflective foci. Non-
homogenous drusen were found in 16 eyes, five of 
them have a distinct hyper-reflective core. Hyper-
reflective foci overlying drusen were in 7 eyes.

Schuman et al. (76) detected the changes 
in the retina using OCT images in AMD patients. 17 
eyes of 12 patients with nonneovascular AMD and 
drusen were used. 17 eyes of 10 age-matched were 
used as a control. Over 97% of drusen, the PRL was 
thinned. The average PRL thickness was reduced by 
27.5% over drusen. They found that difference was 
valid and significant (P=0.004). They observed two 

Figure 6. OCT retinal image for a CME patient.
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types of hyperreflective abnormalities over drusen in 
the neurosensory retina. Finally, they concluded that 
distinct hyperreflective speckled patterns occur over 
drusen in 41% of AMD eyes and never in control eyes.

Oliveira et al. (77) proposed a method to 
integrate sparse higher order potentials (SHOPs) into 
a multi-surface segmentation framework. It was used 
to confront with local boundary variations caused 
by drusen, which was important to evaluate AMD 
progress. The mean unsigned error for the inner 
retinal pigment epithelium (IRPE) was 5.65±6.26 
µm and for BM was 4.37±5.25 µm. The results were 
comparable to those obtained by two experts. Their 
average inter-observer variability was 7.30±6.87 µm 
for IRPE and 5.03±4.37 µm for BM. The IRPE and the 
other boundaries were successfully segmented. Their 
proposed technique was evaluated in a data set of 
20 AMD patients. The data set also included manual 
segmentations of the ILM, IRPE, and BM boundaries 
performed by two expert graders.

3.8. Other different diseases

In this section, we discuss other work that does 
not lay under any of the above diseases or research 
studies that deal with more than one disease. First, 
we discuss the PED, which is considered as a notable 
feature of many chorioretinal disease processes, 
including AMD, polypoidal choroidal vasculopathy, 
central serous chorioretinopathy, and uveitis. It can be 
classified as serous, fibrovascular, or drusenoid.

Shi et al. (38) proposed a framework for 
segmenting the retinal layers in 3D OCT images with 
serous retinal PED. Their framework consisted of three 
main stages. The first stage was the fast de-noising 
and B-scan alignment. The second stage was the 
multi-resolution graph search based surface detection. 
Finally, the third stage was the PED region detection 

and surface correction above the PED region. They 
evaluated their system by using 20 PED patient. 
The experimental results showed that the TPVF was 
87.1%, the FPVF was 0.37%, the positive predicative 
value (PPV) for PED was 81.2%, and the average 
running time was 220s for OCT data of 512x64x480 
voxels.

On the other hand, Sugruk et al. (39) 
proposed a segmentation technique to divide OCT 
images to detect the shape of the drusen in the RPE 
layer. They used the RPE layer to find RFL layer to 
detect a bubble in the blood area. They used binary 
classification technique to classify AMD and DME 
diseases depending on the retrieved characteristics. 
They used only 16 OCT images (10 images for AMD 
and six images for DME) in their experiments. Their 
proposed classification system achieved 87.5% for 
accuracy.

ElTanboly et al. (48) proposed a segmentation 
framework for retinal layers from 2D OCT data. Their 
framework was based on the joint model, which 
included shape, intensity, and spatial information. It 
could segment 12 distinct retinal layers in normal and 
diseased subjects. The shape was built using a subset 
of co-aligned training OCT images, which were initially 
aligned using an innovative method to employ multi-
resolution edge tracking. Then, the visual appearance 
features were described using pixel-wise image 
intensities and spatial interaction features. A linear 
combination of discrete Gaussians was used to model 
the empirical gray level distribution of OCT data. To 
eliminate the noise, they integrated the proposed model 
with a second-order Markov-Gibbs random field (MGRF) 
spatial interaction model. They tested their framework 
on 250 normal and diseased OCT images with AMD, 
and DR. Their proposed segmentation method was 
evaluated using Dice coefficient (DSC = 0.763±0.1598), 
agreement coefficient (AC1 = 73.2±4.46 %), and 

Figure 7. OCT retinal image for an AMD patient.
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average deviation distance (AD=6.87±2.78 µm) metrics. 
Figure 8 shows an OCT retinal image for a patient with 
Diabetic Retinopathy (DR).

4. CHALLENGES AND FUTURE DIRECTIONS

As previously mentioned, the OCT image 
modality provides a great diagnosing aid for many 
organs. It is used in a wide range for diagnosing retinal 
diseases, such as glaucoma, CSC, AION, DME, and 
CME. Many studies were conducted to extract some 
specific features from OCT retinal images to diagnosis 
some diseases. In this section, we will discuss some 
challenges, which are currently facing the analysis of 
OCT retinal images. In addition, some future research 
directions will be discussed briefly in the sequent 
points.

4.1. Automatic segmentation techniques

OCT devices nowadays produce a large 
number of images. This large number of images 
make it difficult for humans to investigate. In addition, 
the existence of speckle noise, low image contrast, 
irregular shapes, morphological features (retinal 
detachment, macular holes, drusen), accurate 
manual segmentation of retinal layers is considered 
as a difficult task (43). So, there is a need to produce 
automatic segmentation techniques to handle this 
large number of images. Automatic segmentation 
techniques can reduce time and effort. Also, they can 
provide repeatable and quantitative results (78). They 
should be accurate and robust to image degeneration 
and low signal to noise ratio. It can allow early diagnosis 
or therapy monitoring. Thickness measurements are 
necessary for detecting pathological changes and 
diagnosing of retinal diseases (44). Nevertheless, a 
few segmentation approaches have been developed, 
which addressed the problem of layers that are either 
invisible or missing (79, 80). The proposed technique 
should be robust with respect to different types of OCT 
scanners from different manufacturers. They also 

should be robust with respect to the presence of blood 
vessel artifacts in the OCT images (5).

4.2. OCT CAD systems

Regarding the current work in OCT CAD 
systems, the experimental results show that these 
systems are used in offline clinical or pathology 
studies. Therefore, additional speed-up is required 
for OCT CAD systems to become suitable for clinical 
practice (38).

4.3. Standard number of layers

As far as we know, there is no standard 
number of detected layers in OCT retinal images. 
Some studies prefer to define all intraretinal layer, 
whereas other studies prefer only to define the most 
critical retina layers that are needed to identify a 
disease.

4.4. Weak layer boundaries

The target layers in the retina lack strong 
boundaries, which are surrounded by tissues with 
similar intensity profile. In addition, many objects are 
laying in a small region (45, 81).

4.5. Artifacts

There are many types of artifacts that are found 
in OCT images. Intensity inhomogeneity is considered as 
an important reason that significantly affects the accuracy 
of the segmentation process of the retina layers (82). 
There are many reasons for intensity inhomogeneity in 
OCT images, such as poor scan quality, after multi-frame 
averaging, opacity of transparent ocular media, off center 
acquisitions, and vignetting due to misalignment. This 
problem negatively affects the performance of the used 
processing techniques, especially the segmentation 
process. Finally, little work had been done to correct this 
issue (40).

Figure 8. OCT retinal image for a DR patient.
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5. CONCLUSION

OCT images have made it more easy to 
identify the structure of normal and diseased retina, 
which can be used for early diagnosis of several 
diseases and monitor the effect of the treatment. 
OCT is one of the fast developing medical image 
modality in the last decade. It uses low coherence 
interferometry to map out back-scattering properties 
from different depths of samples. Varies retinal 
diseases can be detected efficiently by analyzing the 
OCT retinal images. Each retinal disease has some 
specific features, which can be effectively detected in 
OCT images. In this paper, we reviewed how OCT is 
capable of defining the structure of normal eye retinal 
layers as well as the structure of the diseased ones. 
We presented an overview of the current processing 
techniques as well as how can they applied to help in 
the diagnosis and treatment of the diseased eyes. In 
addition, we defined some of the challenges that face 
scientists in analyzing and extracting the necessary 
information from OCT retinal images. The promising 
experimental results for the reviewed techniques in 
a variety of clinical applications suggest that OCT 
is a clinically relevant imaging modality. Promising 
findings and experimental results for the reviewed 
techniques suggest that OCT is an effective imaging 
modality for retina and retinal diseases, which can be 
used for early diagnosis of different diseases.
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