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1. ABSTRACT

Early diagnosis is playing an important role 
in preventing progress of the Alzheimer’s disease 
(AD). This paper proposes to improve the prediction 
of AD with a deep 3D Convolutional Neural Network 
(3D-CNN), which can show generic features capturing 
AD biomarkers extracted from brain images, adapt 
to different domain datasets, and accurately classify 
subjects with improved fine-tuning method. The 
3D-CNN is built upon a convolutional autoencoder, 
which is pre-trained to capture anatomical shape 
variations in structural brain MRI scans for source 
domain. Fully connected upper layers of the 
3D-CNN are then fine-tuned for each task-specific 
AD classification in target domain. In this paper, 
deep supervision algorithm is used to improve the 
performance of already proposed 3D Adaptive CNN. 
Experiments on the ADNI MRI dataset without skull-
stripping preprocessing have shown that the proposed 
3D Deeply Supervised Adaptable CNN outperforms 
several proposed approaches, including 3D-CNN 
model, other CNN-based methods and conventional 
classifiers by accuracy and robustness. Abilities of the 
proposed network to generalize the features learnt 
and adapt to other domains have been validated on 
the CADDementia dataset.

2. INTRODUCTION

The Alzheimer’s disease (AD), a progressive 
brain disorder and the most common case of dementia 
in the late life, causes the death of nerve cells and 
tissue loss throughout the brain, thus reducing the 
brain volume dramatically through time and affecting 
most of its functions (1). The estimated number of 
affected people will double in the next two decades, 
so that one out of 85 persons will have the AD by 2050 
(2). Because the cost of care for the AD patients is 
expected to rise dramatically, the necessity of having 
a computer-aided system for early and accurate AD 
diagnosis becomes critical (3).

This paper focuses on developing an 
adaptable deep learning-based system for early 
diagnosis of the AD. Deep learning helps to solve 
such a complex diagnostic problem by leveraging 
hierarchical extraction of input data features to 
improve classification (4). Several layers of feature 
extractors are trained to form a model being able to 
adapt to a new domain by transferring knowledge 
between different domains and learning distinctive 
properties of the new data (5), (6). It has been shown 
that trained features turn from generality to specificity 
through layers of a deep network (7), which relates 
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to transferability of features. A robust diagnosis 
model of a particular disease should be adaptable 
to various datasets, e.g., MRI scans collected by 
several patient groups, as to diminish discrepancies in 
data distributions and biases toward specific groups. 
Deep learning aims to decrease the use of domain 
expert knowledge in designing and extracting most 
appropriate discriminative features (4).

3. MATERIALS AND METHODS

The proposed AD diagnostic framework 
extracts features of a brain MRI with a source-
domain-trained 3D-CAE and performs task-specific 
classification with a deeply supervised target-domain-
adaptable CNN (3D-DSA-CNN). The proposed 
algorithm for AD classification comprises three steps: 
(i) spatially normalizing brain sMRI and removing the 
skull on source-domain data (Figure 1); (ii) extracting 
feature vector by training 3D-CAE on skull-stripped 
source domain data; (iii) training a 3D-DSA-CNN 
model on target-domain data for AD diagnosis. The 
mathematical details of the last two steps are detailed 
below.

3.1. Data collection

Data used in the preparation of this 
article were obtained from the Alzheimer’s disease 
Neuroimaging Initiative (ADNI) database (adni.loni.
usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI 
has been to test whether serial magnetic resonance 
imaging (MRI), Positron Emission tomography 
(PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to 
measure the progression of Mild Cognitive Impairment 
(MCI) and early Alzheimer’s disease (AD). Performance 
of the proposed 3D-DSA-CNN for AD diagnosis was 
evaluated on 30 subjects of CADDementia, as source 
domain, and 210 randomly selected subjects in the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database, as target domain (demographic information 
mentioned in Table 1), for five classification tasks: four 
binary ones (AD vs. NC, AD+MCI vs. NC, AD vs. MCI, 
MCI vs NC), and three-way classification (AD vs. MCI 
vs. NC). The CADDementia data set contains structural 
T1-weighted MRI (T1w) scans of patients with the 
diagnosis of probable AD, patients with the diagnosis 
of MCI, and NC without a dementia syndrome (3).

3.2. 3D Convolutional Autoencoder (3D-CAE)

Conventional unsupervised autoencoder 
extracts a few co-aligned scalar feature maps for a set 
of input 3D images with scalar or vectorial voxel-wise 
signals by combining data encoding and decoding. 
The input image is encoded by mapping each fixed 

voxel neighborhood to a vectorial feature space in 
the hidden layer and is reconstructed back in the 
output layer to the original image space. To extract 
features that capture characteristic patterns of input 
data variations, training of the autoencoder employs 
back-propagation and constraints on properties of the 
feature space to reduce the reconstruction error.

Extracting global features from 3D images 
with vectorial voxel-wise signals is computationally 
expensive and requires too large training data sets. 
This is due to growing fast numbers of parameters 
to be evaluated in the input (encoding) and output 
(decoding) layers (32), (33). Moreover, although 
autoencoders with full connections between all nodes 
of the layers try to learn global features, local features 
are more suitable for extracting patterns from high-
dimensional images. To overcome this problem, 
we use a stack of unsupervised CAE with locally 
connected nodes and shared convolutional weights 
to extract local features from 3D images with possibly 
long voxel-wise signal vectors (34)–(36). Each input 
image is reduced hierarchically using the hidden 
feature (activation) map of each CAE for training the 
next-layer of CAE.

The 3D extension of a hierarchical CAE 
proposed in (34) is shown in Figure 2. To capture the 
characteristic variations of a 3D image, x, each voxel-
wise feature, hi:j:k associated with the i-th 3D lattice 
node, j-th component of the input voxel-wise signal 
vector, and k-th feature map; k = [1, …, K], is extracted 
by a moving-window convolution (denoted below *) 
of a fixed n × n × n neighborhood, Xi:neib of this node 
with a linear encoding filter specified by its weights, 
Wk = [Wj:k : j = 1, …, J ] for each relative neighboring 
location with respect to the node i and each voxel-
wise signal component j, followed by feature-specific 
biases, [bj:k : j = 1, …, J ] and nonlinear transformations 
with a certain activation function, f(.)

	 hi:j:k = f (Wk * Xi:neib + bj:k)	  (1)

The latter function is selected from a rich set of 
constraining differentiable functions, in particular, the 
sigmoid, f(u) = (1 + exp(–u))–1 and rectified linear unit 
(ReLU), f(u) = max(0,u) (37). Since the 3D image x 
in Eq (1) has the J-vectorial voxel-wise signals, 
the weights Wk define a 3D moving-window filter 
convolving the union of J-dimensional signal spaces 
for each voxel within the window. To simplify the 
notation, let hk = T(x: Wk, bk, f(.)) denotes the entire 
encoding of the input 3D image with J-vectorial voxel-
wise signals with the k-th 3D feature map, hk, such that 
its scalar components are obtained with Eq. (1) using 
the weights Wk and bias vectors bk for a given voxel 
neighborhood. The similar inverse transformation, 
Tinv(…), with the same voxel neighborhood, but 
generally with the different convolutional weights, Pk, 
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Figure 1. Brain sMRI of CADDementia dataset (a) before and (b) after preprocessing depicted in axial, coronal, and sagittal view, by spatially normalizing 
and removing skull based on mutual information-based rigid registration approach (31). Note that the image intensity is normalized to (0,1) after removing 
the skull, and the image looks more bright than before preprocessing.



Table 1. Demographic data for 210 subjects from the target domain, ADNI database (STD – standard 
deviation)

Diagnosis AD MCI NC

Number of subjects 70 70 70

Male / Female 36 / 34 50 / 20 37 / 33

Age (mean±STD ) 75.0.±7.9 75.9.±7.7 74.6.±6.1

Figure 2. Schematic diagram of a 3D-CAE (left) for extracting generic features by convolving and pooling an input 3D image (the encoding feature maps 
are of a larger size, whereas the decoded image keeps the original size), and axial (i,j,k) and sagittal (l) Slices (right) of hierarchical 3D feature maps 
extracted from the source domain, CADDementia brain sMRI at three layers of the stacked 3D-CAE: cortex thickness and volume (i), brain size (j), 
ventricle size (k), and hippocampus model (l). The feature maps are down-sampled at each layer by max-pooling to reduce their size and detect the 
higher-level features.

biases, binv:k, and, possibly, activation function, g(.), 
decodes, or reconstructs the initial 3D image:
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where θ = [wk;pk;bk;binv:k : k = 1,…,K] and ||…||22 denote 
all free parameters and the average vectorial l2-norm 
over the T training images, respectively. To reduce the 
number of free parameters, the decoding weights Pk 
and encoding weights Wk were tied by flipping over 
all their dimensions as proposed in (34). The cost 
function Eq. (3) was minimized in the parameter space 

by using the stochastic gradient descent search which 
computed by error back-propagation.

In order to obtain translational invariance, the 
feature maps, h(i), are down-sampled by max-pooling, 
i.e., extracting the maximum value of non-overlapping 
sub-regions. For entangling shape variations in the 
higher-level feature maps of reduced size, the max-
pooling output is used for training the higher layer 
CAE, as shown in Figure 2(a). Stacking the 3D-CAE’s 
encoding layers (abbreviated 3D-CAES below), known 
as greedy layer-wise training (38), halves the size of 
the feature map at each level of their hierarchy (34).

3.3. Transfer Learning and Domain Adaptation

To achieve good performance, supervised 
learning of a classifier often requires a large training 
set of labeled data. If this set is, in principle, of a too 
limited size, additional knowledge from building a 
similar classifier can be involved via so-called transfer 
learning. In particular, the goal classifier based on a 
deep CNN might employs initial weights, been learned 
for solving similar task (39)–(42).

We focus on domain adaptation (43)–(45), or 
source-to-target adaptation, when a trained classifier 
on a source data, is adapted (fine-tuned) to the 
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by spatially normalizing using rigid registration 
approach (31). Then skull is removed and image 
intensities are normalized to (0, 1), resulting in 
sMRI of size (200×150×150), as shown in Figure 1. 
Classification accuracy for each task was evaluated 
by ten-fold cross-validation. The Theano library (51) 
was used to develop the deep CNN implemented 
for our experiments on the Amazon EC2 g2.8.xlarge 
instances with GPU GRID K520.

4.1. Generic and task-specific feature evaluation

Special 2D projections of the extracted 
features in Figure. 2(b) illustrate generalization and 
adaptation abilities of the pro- posed 3D-DSA-CNN 
(Figure. 3). Selected slices of the three feature maps 
from each layer of stacked 3D-CAE (abbreviated 
3D-CAES below) in Figure. 2(b), indicate that the 
trained generic convolutional filters can capture 
related features of AD biomarkers, e.g., the ventricle 
size, cortex thickness, and hippocampus model. 
These feature maps were generated by the pre-trained 
3D-CAES for the CADDementia database.

According to these projections, different 
convolutional filters of the 3D-CAES can extract the 
cortex thickness, the brain size (related to the patient 
gender), ventricle size, and hippocampus model, as the 
discriminative AD features, in each encoding layers. 
The 3D Convolutional Autoencoder (3D-CAE) tries to 
find the variational factors in dataset (CADDementia) 
without using labels (unsupervised learning). The 
intuition is that the hidden factorial variation in AD 
are related to AD biomarkers. Each 3D-CAES layer 
combines the extracted lower-layer feature maps, in 
order to train a higher-level feature, describing more 
detailed anatomical variations of the brain sMRI. Both 
the ventricle size and cortex thickness features are 
combined in upper layers, to extract a conceptually 
higher-level features at the next layers. Visualized in 
Figure. 4, projections demonstrate the capability of 
the extracted higher-layer features to separate the 
AD, MCI, and NC brain sMRI’s in the low-dimensional 
feature space.

Visualization of the manifold distributions of 
hidden activation of the proposed 3D-DSA-CNN on 
training ADNI sMRIs, shown in Figure. 4, illustrate the 
discriminative abilities of the generic and task-specific 
features. The generic feature-extraction layers (conv1, 
conv2, and conv3 in Figure. 4(a–c)) gradually enhance 
the AD, MCI and NC discriminability along their 
hierarchy. The subsequent task-specific classification 
layers further enhance the discriminability of these 
three ADNI classes, as shown in Figure. 4(d–h). The 
task-specific features are highlighted in Figure. 4(d), 
depicting the distribution of all three classes when the 
AD+MCI subjects are to be distinguished from the NC 
subjects. Obviously, the AD, MCI, and NC cases are 

target data. Unlike usual supervised learning, when a 
classifier is trained from scratch, by minimizing a total 
quantitative loss from errors on the training data, the 
domain adaptation minimizes the same loss over the 
target domain by updating the classifier, which has 
been trained on the source domain. We leverage the 
unsupervised feature learning to transfer features, 
found in the source domain, to the target domain, in 
order to boost the predictive performance of the deep 
CNN models (46), (47).

3.4. 3D Deeply Supervised Adaptive CNN 
(3D-DSA-CNN)

While the lower layers of a goal predictive 
3D-CNN extract the generalized features, the upper 
layers have to facilitate task-specific classification 
using those features (6). The proposed classifier 
extracts the generalized features by using a stack of 
locally-connected (convolutional) lower layers, while 
performing task-specific classification, by fine-tuning 
the parameters of the upper fully-connected layers. 
Training the proposed hierarchical 3D-CNN consists 
of pre-training, initial training of the lower convolutional 
layers, followed by task-specific fine-tuning. At the 
pre-training stage, the convolutional layers for generic 
feature extraction are formed as a stack of 3D-CAEs, 
which were trained in the source domain. Then these 
layers are initialized by stacking the encoding layers 
of the 3D-CAE (5), and finally, the deep-supervision 
based (14) fine-tuning of the upper fully-connected 
layers, which is performed for each task-specific binary 
or multi-class sMRI classification.

Due to the pre-training on the source 
domain data, the bottom convolutional layers can 
extract generic features related to the AD biomarkers, 
such as the ventricular size, hippocampus shape, 
and cortical thickness, as shown in Figure 2(b). We 
use the Net2Net initialization (5), which allows for 
different convolutional kernels and pooling sizes of the 
3D-CNN layers, comparing to those in the 3D-CAE, 
based on the target-domain image size and imaging 
specifications. This is to facilitate adapting the 3D-CNN 
across different domains. To classify the extracted 
features in a task-specific way, weights of the upper 
fully-connected layers of 3D-CNN are fine-tuned, on 
the target-domain data, by minimizing a specific loss 
function. The loss depends explicitly on the weights, 
and is proportional to a negative log-likelihood (NLL) 
of the true output classes, given the input features 
extracted from the target-domain images by the pre-
trained bottom layers of the network.

4. RESULTS

This section addresses the experimental 
results of the proposed framework. To pretrain 
3D-CAES on CADDementia, sMRI are preprocessed 
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Figure 3. Architecture of the deeply supervised and adapTable CNN (3D-DSA-CNN) for AD diagnosis.

Figure 4. Manifold visualization of target domain (ADNI) training data, by t-SNE projection (50), in pre-trained generic (a,b,c) and fine-tuned task-specific 
(d,e,f,g,h) 3D-DSA-CNN layers.

projected at closer distances and well separated in the 
task-specific feature space.

The three-class manifold distribution of the test 
dataset for ternary (AD vs. MCI vs. NC) classification in 
Figure. 5 indicates a sound discriminative ability of the 
trained features, to distinguish between these classes. 
Subjects’ distribution in these manifolds indicate the 
correlation between the disease severity and the 
extracted features. For example, the most severe AD 
cases are distributed at the right-most side of the AD 

manifold, and the most normal (NC) cases are at the 
bottom-left of the NC manifold.

4.2. Classification performance evaluation

Performance of the proposed 3D-DSA-
CNN classifier for each specific task, listed in Section 
4.1, was evaluated and compared to competing 
approaches (19), (22)–(26) by using eight evaluation 
metrics. Let TP, TN, FP, and FN denote, respectively, 
numbers of true positive, true negative, false positive, 

An automated approach for diagnosing Alzheimer’s disease using sMRI

589 © 1996-2018



performance is evaluated by the area under the ROC 
curve (AUC).

Table 2 details the class-wise performance 
of our 3D-DSA-CNN classifier for a selected cross-
validation fold and five specific classification tasks. 
The ROCs / AUCs of these tests in Figure. 6 and the 
means and standard deviations of all the metrics of 
Equation. (4) in Table 3, indicate high robustness and 
confidence of the AD predictions by the proposed 
task-specific 3D-DSA-CNN classifier. Its accuracy 
(ACC) is compared in Table 4 with seven other 
known approaches that use either just the same, or 
even additional inputs (imaging modalities). Table 
4 presents the average results of ten-fold cross-
validation of proposed classifier. Comparing these 
and other aforementioned experiments, the proposed 
3D-DSA-CNN outperforms other approaches in all five 
task-specific cases. This is in spite of employing only 
a single imaging modality (sMRI) and performing no 
prior skull-stripping. Moreover, compared to proposed 
3D-CNN approaches in (28), (29), 3D-DSA-CNN 

and false negative classification results for a given set 
of data items. Then the performance is measured with 
the following metrics (52): accuracy (ACC); sensitivity 
(SEN), or recall; specificity (SPE); balanced accuracy 
(BAC); positive predictive value (PPV), or precision; 
negative predictive value (NPV), and F1-score, 
detailed in Equation. (4):

ACC TP TN
TP TN FP FN

F TP
TP FP FN

SEN TP
TP FN

SPE TN
TN

 
  


 







; ;

;

1 2
2

FFP

PPV TP
TP FP

NPV TN
TN FN

BAC SEN SPE

;

; ;

( )







 1
2

In addition, after building a Receiver 
Operating Characteristic (ROC) of the classifier, its 

(4)

Figure 5. Hidden manifold distribution of the target domain (ADNI) test data (two test folds randomly selected for cross-validation) in the fc2 layer, 
visualized by t-SNE projection (50).

Table 2. Task-specific performance of the proposed classifier on target domain (ADNI) for a selected cross-
validation fold.

Class PPV SEN F1 PPV SEN F1 PPV SEN F1 PPV SEN F1 PPV SEN F1

AD 1.0.0 1.0.0 1.0.0 - - - 0.8.8 1.0.0 0.9.4 1.0.0 1.0.0 1.0.0 - - -

MCI 0.6.0 0.8.0 0.6.9 - - - - - - 1.0.0 1.0.0 1.0.0 0.9.2 0.9.7 0.9.4

AD+MCI - - - 0.9.4 0.9.7 0.9.5 - - - - - - - - -

NC 0.7.0 0.4.7 0.5.6 0.9.3 0.8.7 0.9.0 1.0.0 0.8.7 0.9.3 - - - 0.9.7 0.9.1 0.9.4

Mean 0.7.7 0.7.6 0.7.5 0.9.3 0.9.3 0.9.3 0.9.4 0.9.3 0.9.3 1.0.0 1.0.0 1.0.0 0.9.5 0.9.4 0.9.4
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Table 3. Performance of the proposed 3D-DSA-NCC classifier on target domain (ADNI) [meanSTD ,%]

Task

Performance Metrics

ACC SEN SPE BAC PPV NPV AUC F1-Score

AD / MCI / NC 94.82.6 - - - - - - -

AD+MCI / NC 95.73.1 94.84.1 97.23.8 96.02.9 98.42.2 91.06.8 96.12.9 93.94.4

AD / NC 99.31.6 1000 98.63.1 98.63.1 98.63.1 1000 99.32. 99.41.3

AD / MCI 1000 1000 1000 1000 1000 1000 1000 1000

MCI / NC 94.22.0 97.15.7 91.44.0 91.94.3 91.94. 97.14.5 97.12.0 94.41.7

Table 4. Comparative performance (ACC, %) of the classifier vs. seven competitors on ADNI dataset  
(n/a – non-available).

Task-specific classification meanSTD ,%

Approach Modalities AD/MCI/NC AD+MCI/NC AD/NC AD/MCI MCI/NC

Gupta et al. (20) MRI 85.0.n/a n/a 94.7.n/a 88.1.n/a 86.3.n/a

Suk et al. (22) PET+MRI+CSF n/a n/a 95.9.1.1. n/a 85.0.1.2.

Suk et al. (23) PET+MRI n/a n/a 95.4.5.2. n/a 85.7.5.2.

Zhu et al. (25) PET+MRI+CSF n/a n/a 95.9.n/a n/a 82.0.n/a

Zu et al. (27) PET+MRI n/a n/a 96.0.n/a n/a 80.3.n/a

Liu et al. (24) PET+MRI 53.8.4.8. n/a 91.4.5.6. n/a 82.1.4.9.

Payan et al. (28) MRI 89.4.n/a n/a 95.3.9n/a 86.8.n/a 92.1.n/a

Liu et al. (19) MRI n/a n/a 93.8.n/a n/a 89.1.n/a

Li et al. (26) PET+MRI+CSF n/a n/a 91.4.1.8. 70.1.2.3. 77.4.1.7.

3D-ACNN (29) MRI 89.1.1.7. 90.3.1.4. 97.6.0.6. 951.8. 90.8.1.1.

3D-DSA-CNN MRI 94.8.2.6. 95.7.3.1. 99.3.1.4. 1000 94.2.2.0.

Figure 6. ROCs and AUC performance scores for the 3D-DSA-CNN classifier after fine-tuning to the specific task of distinguishing between (left-to-right) 
AD / MCI / NC; AD+MCI / NC; AD / NC; AD / MCI, and MCI / NC subjects on target domain (ADNI). Note: For each task, ROC curve for each class is 
computed, by assuming other classes as minor.
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Leveraging multi-view MRI, PET, and CSM 
data for trainable feature extraction of AD prediction 
involves various techniques of machine learning 
techniques. In particular, Liu et al. (19) extracted multi-
view features using several selected templates in the 
subjects’ MRI dataset. Tissue density maps of each 
template were used then for clustering subjects within 
each class in order to extract an encoding feature of 
each subject. Finally, an ensemble of Support Vector 
Machines (SVM) was used to classify the subject. 
Deep networks were also used for diagnosing the AD 
with different image modalities and clinical data. Gupta 
et al. (20) employed 2D CNN for slice-wise feature 
extraction of MRI scans. To boost the classification 
performance, CNN was pre-trained using Sparse 
Autoencoder (SAE) (21) trained on random patches 
of natural images. Suk et al. (22) used a stacked 
autoencoder to separately extract features from MRI, 
PET, and CSF images; compared combinations of 
these features with due account of their clinical mini-
mental state examination (MMSE) and AD assessment 
scale-cognitive (ADAS-cog) scores, and classified the 
AD on the basis of three selected MRI, PET, and CSF 
features with a multi-kernel SVM. Subsequently, a 
multimodal deep Boltzmann machine (BM) was used 
(23) to extract one feature from each selected patch 
of the MRI and PET scans and predict the AD with an 
ensemble of SVMs. Liu et al. (24) extracted 83 regions 
of interest (ROI) from the MRI and PET scans and 
used multi-modal fusion to create a set of features to 
train stacked layers of denoising autoencoders. Zhu 
et al. (25) proposed a joint regression and prediction 
model for clinical score and disease group. A linear 
combination of features are used with imposing group 
lasso constraint to sparsify the feature selection in 
regression or classification. Li et al. (26) developed a 
multi-task deep learning for both AD classification and 
MMSE and ADAS-cog scoring by multi-modal fusion of 
MRI and PET features into a deep restricted BM, which 
was pre-trained by leveraging the available MMSE and 
ADAS-cog scores. Zu et al. (27) developed a multi-
modal classification model, by proposing a multi-
task feature selection method. The feature learning 
method was based on several regression models of 
different modalities, where label information is used as 
regularization parameter to decrease the discrepancy 
of similar subjects across different modalities, in 
the new feature space. Then a multi-kernel SVM is 
used to fuse modality based extracted features for 
classification. Payan et al. (28) proposed a 3D CNN for 
AD diagnosis based on pre-training by SAE. Randomly 
selected small 3D patches of MRI scans are used to 
pre-train SAE, where the trained weights of SAE are 
later used for pre-training of convolutional filters of 3D 
CNN. Finally, the fully-connected layers of 3D-CNN 
are fine tuned for classification. Hosseini-Asl et al. (29) 
proposed a 3DCNN model based on pre-training on 
a skull-stripped sMRI images to capture anatomical 

outperforms (28) in accuracy due to better pre-training 
of 3D-CAE layers, by exploiting the whole 3D image 
compared to random patch selection, and improves 
3D-ACNN model (29) by better fine-tuning using deep 
supervision technique.

5. DISCUSSION

Several popular non-invasive neuroimaging 
tools, such as structural MRI (sMRI), functional MRI 
(fMRI), and positron emission tomography (PET) have 
been investigated for developing such a system (8), 
(9). The latter extracts features from the available im-
ages, and a classifier is trained to distinguish between 
different groups of subjects, e.g., AD, Mild Cognitive 
Impairment (MCI), and Normal Control (NC) groups 
(3), (10)–(12). The sMRI has been recognized as a 
promising indicator of the AD progression (3), (13). 
Comparing to the known diagnostic systems outlines 
below in Section 2, the proposed system employs a 
deep 3D Convolutional Neural Network (3D-CNN) pre-
trained by 3D Convolutional Autoencoder (3D-CAE) to 
learn generic discriminative AD features in the lower 
layers. This captures characteristic AD biomarkers 
and can be easily adapted to datasets collected in 
different domains. To increase the specificity of fea-
tures in upper layers of 3D-CNN, the discriminative 
loss function is enforced on upper layers (deep super-
vision). (14).

Voxel-wise, cortical thickness, and 
hippocampus shape volume features of the sMRI are 
used to detect the AD (3). The voxel-wise features are 
extracted after co-aligning (registering) all the brain 
image data to associate each brain voxel with a vector 
(signature) of multiple scalar measurements. Kloppel et 
al. (15) used the Gray Matter (GM) voxels as features 
and trained an SVM to discriminate between the AD and 
NC subjects. The brain volume in (16) is segmented to 
GM, White Matter (WM), and Cerebrospinal Fluid (CSF) 
parts, followed by calculating their voxel-wise densities 
and associating each voxel with a vector of GM, WM, 
and CSF densities for classification. For extracting 
cortical thickness features, Lerch et al. (17) segmented 
the registered brain MRI into the GM, WM, and CSF; 
fitted the GM and WM surfaces using deformable 
models; deformed and expanded the WM surface to the 
GM-CSF intersection; calculated distances between 
corresponding points at the WM and GM surfaces to 
measure the cortical thickness, and used these features 
for classification. To quantify the hippocampus shape 
for feature extraction, Gerardin et al. (18) segmented 
and spatially aligned the hippocampus regions for 
various subjects and modeled their shape with a series 
of spherical harmonics. Coefficients of the series 
were then normalized to eliminate rotation–translation 
effects and used as features for training an SVM based 
classifier.
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are extracted and used as AD biomarkers detection 
in upper layers of a 3D-CNN network. Then, three 
fully-connected layers are stacked on top of the lower 
layers, to perform AD classification on 210 subjects of 
ADNI dataset. To boost the classification performance, 
discriminative loss function was imposed on each 
fully-connected layers, in addition to the output 
classification layers, to improve the discrimination 
between subjects. The results demonstrated that 
hierarchical feature extraction was improved in hidden 
layers of 3D-CNN, by better discrimination between 
AD, MCI, and NC subjects. Seven classification 
metrics were measured using ten-fold cross-validation 
and were compared to the state-of-the-art models. The 
results have demonstrated the out-performance of the 
proposed 3D-DSA-CNN.
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