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1. ABSTRACT

In response to DNA damage, cells have 
evolved mechanisms to halt cell cycle progression, 
activate repair, or initiate apoptosis. These DNA 
damage response (DDR) pathways are critical for 
cellular survival in response to genomic insult, and 
play important roles in growth, development, and 
disease. Historically, mediators of DNA damage 
response signaling have been studied one or a few 
proteins at a time. Advances in mass spectrometry 
instrumentation and enrichment methods now allow for 
more global analysis of the DDR in cells and tissues. 
In this review we will discuss current methods in liquid 
chromatography tandem mass spectrometry (LC-MS/
MS), enrichment strategies, and targeted analyses for 
the study of damage signaling. These methods have 
allowed a greater understanding of the DNA damage 
response and have highlighted the far-reaching effects 
of activation of damage-induced pathways.

2. INTRODUCTION

In order to maintain the integrity of the 
genome, cells have evolved complex mechanisms to 
deal with genomic insult to halt cell cycle progression 
allowing time to repair or bypass the damage, or, if the 
damage is too severe, to induce apoptotic programs 
(1–7). These mechanisms, collectively termed the 
DNA damage checkpoint, involve multiple signaling 
pathways and control of protein levels, localization, 
activity, and post-translational modification. Two PI3 

kinase-like kinases, ataxia telangiectasia mutated 
(ATM), and ataxia telangiectasia and Rad3 related 
(ATR) lie at the center of DNA damage checkpoint 
signaling (8–12). These kinases, through the effector 
kinases Chk1 and Chk2, serve to block cell cycle 
progression through modulation of Cdc25 phosphatase 
interaction with cyclin dependent kinases such as 
cdc2 (3, 13–25). Once activated, ATM/ATR and Chk1/
Chk2 are also known to phosphorylate p53, affecting 
transcription of cell cycle regulating genes, again 
providing blockage of cell cycle progression (15, 16, 
26–32). Canonical DNA damage checkpoint signaling 
at G1/S and G2/M are shown in Figure 1.

ATM and ATR dependent phosphorylation 
of Chk1 and Chk2 are critical regulatory mechanisms 
of these core DNA damage responses. ATM and 
ATR are themselves regulated by phosphorylation at 
multiple sites, most critically S1981 on ATM and S1989 
on ATR (33–39). These sites, along with localization 
of the kinases at or near sites of damage, allow full 
activation of checkpoint signaling. ATM and ATR 
kinases phosphorylate target proteins such as the 
aforementioned Chk1, Chk2, and p53 on serine or 
threonine residues with a glutamine residue at the +1 
position relative to the phosphorylation site (the S*Q/
T*Q motif) (16, 40).

In recent years, liquid chromatography-
tandem mass spectrometry (LC-MS/MS) has become 
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Figure 1. The G1/S and G2/M DNA damage checkpoints. The PI3K-like kinases ATM and ATR are critical regulators of DNA Damage Response signaling 
through Chk1 and Chk2 kinases as well as phosphorylating other substrates to promote cell cycle arrest, DNA repair, and apoptosis.



(parent or MS1 ions) are first measured. In modern 
instruments, this measurement is exquisitely accurate, 
with mass errors commonly less than 10 parts per 
million (ppm), or less than 0.0.1 dalton for a peptide 
with m/z = 1000 dalton. Parent MS1 ions are then 
selected for MS/MS or MS2 analysis. Selected 
ions are fragmented into product or MS/MS ions, 
comprising breakdown products of the original MS1 
parent ion, and the m/z of each of the product ions 
is again measured. Through this process, masses of 
both the intact peptide and many different fragments of 
that peptide are generated (66–68).

Once the m/z measurements of all selected 
parent and product ions have been collected, the 
mass spectrometry data can be matched to peptide 
identifications. The collected parent and product 
m/z values are compared to an in silico digested, 
species-specific protein database (43, 44). Identified 
peptides are scored for quality of the match between 
MS data and peptide sequence. In order to estimate 
the robustness of matches, the in silico digested 
database contains not only peptides corresponding 
to all proteins, but also reverse peptide sequences 
that do not exist in nature (a target-decoy strategy) 
(69–71). MS/MS spectra matching these reverse 
peptides are therefore known to be incorrect, and the 
dataset can be filtered based on scores of the reverse, 
incorrect assignments to a target false discovery rate, 
or FDR. Static cutoffs can be used for filtering data, 
or score filtering can be performed on each dataset 
as it is generated using linear discriminant algorithms 
(72–74).

When multiple samples are run in LC-MS/MS 
the relative abundance of each peptide across samples 
can be measured and compared. Quantification can 
be performed in a number of ways: Samples can 
be compared based on isotopic labeling of proteins 
prior to treatment and digestion using stable isotope 
labeling of amino acids in cell culture, or SILAC (51). 
Likewise, samples can also be labeled post-digestion 
and combined using reductive dimethylation (48). 
Isobaric tags such as iTRAQ or Tandem Mass Tags 
(TMT) can also be used for quantification (56–58, 
75–77). These reagents are used to label peptides 
post-digestion and multiple samples (currently up to 
11, with higher plex reagents on the horizon) can be 
combined. Each tag has a balancer moiety that gives 
the peptides the same m/z in MS1, but during MS/MS 
fragmentation the tag from each sample has a different 
mass, allowing quantification of the relative abundance 
of the peptide in each of the samples.

It is also possible to directly measure the 
relative abundance of each peptide without any 
labeling or special growth conditions. Software is 
available that allows alignment of LC-MS/MS data 
from multiple runs and extraction of peptide relative 

a widely used method to profile both protein levels 
and post translational modifications. In bottom-up or 
shotgun proteomics, samples are digested to peptides 
and purified. Peptides are separated over a reversed 
phase column, and as peptides elute from the column 
they are analyzed for their intact mass to charge ratio 
(m/z). Peptides are then selected for MS/MS analysis, 
involving fragmentation of the peptide and subsequent 
measurement of fragment or product ion m/z (41, 42). 
Peptides in the samples are identified by comparing the 
collected data to a species-specific database of in silico-
digested proteins and scoring the resulting matches (43, 
44). Relative abundance of the same peptide across 
multiple samples can be accurately measured, and 
peptides can be labeled with heavy isotopes or isobaric 
tags for sample multiplexing  (45–58). Synthetic heavy 
isotope labeled peptides can also be added to samples 
prior to LC-MS/MS analysis for absolute quantification 
of peptide abundance (59, 60).

These methods allow simultaneous 
identification and quantification of thousands of 
proteins or sites in a single LC-MS/MS run. Advances 
in instrumentation and bioinformatic tools have 
allowed generation of datasets of ever increasing 
size and confidence in assignment of MS/MS spectra 
to peptide or protein sequences. Instruments can be 
programmed to make on the fly decisions as to which 
species to fragment for identification (data dependent 
analysis), or can be programmed to target specific 
peptides during the run (targeted, or data independent 
analysis) (61–63). In this review we will explore how 
these methods have been used to study the DNA 
damage response and checkpoint signaling, and 
future directions for mass spectrometry-based study 
of critical signaling components and entire networks.

3. PRINCIPLES OF MASS SPECTROMETRY

3.1. Liquid chromatography-tandem  
mass spectrometry (LC-MS/MS)

Liquid chromatography tandem mass 
spectrometry is now widely used for the study of many 
different biological systems including development, 
signaling, and disease. LC-MS/MS can be performed 
top-down, profiling intact proteins and protein 
complexes, or bottom-up, profiling proteins that have 
been digested to peptides. In LC-MS/MS, analytes 
are first separated on a reversed phase column, in 
the case of bottom up peptide analysis usually packed 
with hydrophobic C18 resin. Peptides are eluted off 
the column using increasing concentrations of organic 
solvent such as acetonitrile. As peptides elute off the 
column, they are subjected to electrospray ionization 
(ESI) prior to MS/MS (64, 65).

In tandem mass spectrometry, the 
mass to charge ratios (m/z) of intact peptides 
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4. ENRICHMENT STRATEGIES TO STUDY DNA 
DAMAGE SIGNALING

4.1. PTM/Motif antibodies and PTMScan

Antibodies for research applications are 
typically raised against a single peptide or protein 
injected into animals along with adjuvants. The 
antibodies selected and expanded by the immune 
response in the animal can then be harvested and 
purified. These traditional methods produce antibodies 
that are specific for the original sequence injected into 
the animal, whether an unmodified sequence on a 
protein or a site of post-translational modification, such 
as phosphorylation.

In order to generate antibodies that are more 
broadly reactive and thus of greater utility in enrichment 
of entire classes of peptides or proteins, methods have 
been developed using degenerate peptide libraries 
(Figure 2). To construct these libraries, each peptide in 
the library will contain the post-translationally modified 
residue of interest, or consensus kinase substrate 
motif. The amino acids flanking the modified residue(s) 
are then varied in the library. Instead of a single peptide 
being used as the antigen for antibody development, 
the entire library is used. This strategy produces 
antibodies that are exquisitely specific for the PTM 
or motif of interest but broadly reactive against many 
different primary amino acid sequences (94). PTM/
Motif antibodies can be used for applications such 
as western blotting, immunoprecipitation/western, 
immunofluorescence, or flow cytometry, among others.

PTM/Motif antibodies can also be used to 
enrich peptides prior to LC-MS/MS analysis, known as 
the PTMScan method (Figure 3) (95). This enrichment 
allows the user to simplify the mixture of peptides 
delivered to the instrument, focusing the analysis on the 
peptides of interest. To perform a mass spectrometry 
experiment employing these antibodies, cells, tissues, 
serum, or other biological materials are harvested, 
reduced/alkylated, digested with trypsin (or other 
proteases) to peptides and purified over reversed phase 
columns. Peptides are then re-suspended in IP buffer, 
enriched with the appropriate PTM/Motif antibody, 
purified over reversed phase C18 tips (96), and run 
in LC-MS/MS. Database searching and score filtering 
match mass spectrometry data to peptide sequences, 
provide identification of thousands of post-translationally 
modified peptides in a single LC-MS/MS run. 
Quantitative analysis can be performed using label-free 
methods to measure relative abundance of each intact 
tryptic peptide in the MS1 channel, or using labeling 
methods such as SILAC, reductive dimethylation, or 
isobaric tagging methods such as TMT.

In the case of the DNA damage response, 
antibodies have been produced that enrich for the 

chromatographic peak abundance across all samples 
(45, 46, 49, 50, 55, 78). These label free methods have 
the additional advantage of providing quantitative data 
even if a particular peptide was only MS/MS identified 
in a subset of the samples profiled, due to the 
accuracy of m/z measurement and quality of alignment 
software. Analytical and biological % CVs have been 
calculated for this type of quantitative analysis and are 
typically below 10% for analytical replicates (duplicate 
injections of the same sample) and below 20% for 
biological replicates (independent analysis of the 
same sample type) (79–82).

3.2. Total proteome profiling by LC-MS/MS

The previously described methods for 
performing LC-MS/MS analysis and quantification can 
be used to profile protein levels in cells and tissues. 
These total proteome profiling studies are performed 
by digesting proteins to peptides with trypsin, 
and subjecting them to LC-MS/MS with no further 
enrichment. Using these methods, thousands of 
proteins can be identified and quantified simultaneously. 
The relative abundance of each identified peptide can 
be measured and individual peptide data for each 
protein is combined to give protein-level quantitative 
changes. To increase the number of peptides and 
associated proteins identified in a given experiment, 
samples can be labeled, combined, and fractionated by 
ion exchange or reversed phase chromatography (74, 
83–85). These fractions can then be run individually in 
LC-MS/MS, providing a simplified mixture of peptides 
in each fraction, thus allowing additional opportunities 
for peptide identification.

These total proteome profiling methods have 
been successfully applied to study of the DNA damage 
response across a wide range of cell types and 
damaging agents (86–90). Various cellular functions 
are affected at the protein level by DNA damage. 
These include proteins involved in DNA replication 
and repair, metabolism, cytoskeleton, NOTCH 
signaling, and chaperone proteins. Other studies have 
used subcellular fractionation to track changes in 
both protein abundance and localization in response 
to damage, for example changes between cytosolic 
and nuclear localization, or changes in the chromatin 
associated proteome (91–93). One study assessing 
changes in transcript and protein levels in response 
to alkylation damage of DNA in bacteria expanded 
the known repertoire of damage response proteins 
from four previously known proteins to dozens of 
proteins involved in diverse cellular functions such as 
DNA repair, transporters, chemotaxis, and flagellar 
synthesis (90). In some cases however, there are few 
protein-level changes during an acute DNA damage 
response, necessitating the use of methods that profile 
post- translational modification of proteins rather than 
protein levels.
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Figure 2. PTM/Motif antibodies. Traditional antibody development uses a single peptide or protein as the antigen. To produce PTM/Motif antibodies, 
degenerate peptide libraries are created in which some residues are fixed and present in each peptide in the library while all other amino acids are varied. 
Antibodies can be generated against consensus kinase substrate motifs (middle panel) or PTMs (bottom panel). Antibodies generated in this manner are 
exquisitely specific for the targeted motif or PTM but broadly reactive against many primary amino acid sequences.

consensus ATM/ATR substrate motif, S*Q or T*Q. 
These ATM/ATR substrate motif antibodies have 
been successfully used to identify thousands of 
phosphorylation sites in cells and tissues treated with a 
variety of DNA damaging agents and inhibitor compounds 
(97–101). These studies have greatly expanded the 
known repertoire of proteins that participate in the DNA 
damage response, including proteins that participate in 
cell cycle progression, apoptosis, DNA replication and 
repair, transcriptional regulators, and components of the 
ubiquitin system, among others.

One study (99) identified over 900 S*Q/T*Q 
phosphorylation sites on 700 proteins induced by IR 
damage. A subset of these proteins, including LATS1, 
CSTF2, and DCK were functionally confirmed to be 

important regulators of damage signaling through 
siRNA of the identified proteins and screening for 
defects in H2AX phosphorylation, repair/recombination, 
and checkpoint activation. Another study (98) identified 
nearly 600 S*Q/T*Q sites on over 450 proteins in UV 
damaged cells. Damage responsive sites in this study 
were validated using western blotting and IP/western. 
The site-specific nature of LC-MS/MS data allowed 
confirmation of previously known sites, such as Ser343 
of NBS1 (16), and provided the first localization of 
UV-inducible sites of phosphorylation of other DNA 
damage response proteins such as BAP1 Ser592 and 
Mre11 Ser676. Together, these studies have reinforced 
the notion that damage signaling goes far beyond the 
canonical ATM/R – Chk1/2 – Cdc25 – Cdk signaling 
pathways central to the damage checkpoint.
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including centromere proteins (CENPs) and spindle 
assembly proteins of the HAUS complex. Chemical 
inhibition of the Cullin-RING ubiquitin ligases (115) 
identified hundreds of damage-induced sites whose 
ubiquitination was mediated by these E3 ligase protein 
complexes. Changes in acetylation (both increased 
and decreased) were also observed for known DDR 
proteins such as RPA1, RAD50, NBS1, and Claspin. 
Together, these PTM/Motif antibodies have proven 
to be powerful tools for the study of cellular signaling 
networks, allowing identification of hundreds to 
thousands of new substrates and quantitative changes 
in specific post-translational modifications between 
treatment conditions.

4.2. Multiplexed pathway enrichment  
reagents (PTMScan Direct)

While PTM/Motif antibodies have shown 
great utility in the study of many diverse systems 
including the DNA damage response, enrichments 
that target any site sharing a common PTM or kinase 
substrate motif generate datasets with many new 
sites that may be poorly characterized. Often the goal 
of researchers and clinicians is two-fold: To discover 
novel signaling events regulated by their treatment or 
disease state, and to profile activation and inhibition of 
known signaling pathways in response to treatment/

Post-translational modifications beyond 
phosphorylation have also been implicated in the 
DDR, including acetylation and ubiquitination, such as 
the modification of the DNA replication protein PCNA 
or Fanconi’s Anemia proteins in response to damage 
signals (102–106). To profile ubiquitination, an antibody 
was produced that recognizes the di-glycine remnant 
left behind after trypsin digestion at ubiquitinated 
lysine residues (107–109). This K-GG remnant 
antibody allows identification and quantification of 
thousands of sites of ubiquitin modification, and has 
been successfully used to profile changes in the 
ubiquitinome in response to DNA damage (93, 110). 
Similarly, antibodies have been generated that allow 
enrichment of peptides terminating in the caspase 
cleavage substrate motif (DEXD), to monitor apoptotic 
events regulated by DNA damage or other treatments 
(111–114).

Study of changes in ubiquitination and 
acetylation in response to UV or IR damage (110) 
yielded over 2,000 damage responsive ubiquitinated 
sites and over 200 acetylation sites. DDR proteins 
known to be ubiquitinated including CDC25, DDB2, and 
CDC6 were confirmed in the study. Novel sites on other 
known proteins such as PCNA were found, as well as 
identification of sites on proteins not previously known 
to be regulated by damage-induced ubiquitination 

Figure 3. Antibody-based enrichment of peptides and LC-MS/MS analysis (PTMScan). Cells, tissues, serum, or other biological materials are digested 
to peptides and enriched with a PTM/Motif antibody or a multiplexed cocktail of site-specific antibodies. Enriched peptides are analyzed by LC-MS/MS to 
identify peptides and the relative abundance of identified peptides is then determined. These methods allow identification and quantification of thousands 
of peptides in a single LC-MS/MS run and comparison of quantitative changes across many runs.
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Chromatography) (118–123). The positively charged 
metal ions or metal oxides interact with the negatively 
charged phosphates on peptides, allowing enrichment 
and identification of thousands to tens of thousands 
of phosphopeptides in a single experiment. IMAC or 
MOAC resins can also be used in combination with 
antibody-based enrichments prior to LC-MS/MS 
analysis (124, 125). By sequentially enriching with a 
phospho-motif antibody followed by a metal affinity 
resin, samples will be enriched for the specific motif 
of interest by the antibody while also having the 
high enrichment specificity (percentage of peptides 
identified containing a phosphorylated residue) 
characteristic of IMAC/MOAC.

As with total proteome analysis, samples 
can be labeled, combined, and fractionated prior to 
IMAC or MOAC enrichment to increase the number 
of phosphopeptides identified and quantified. IMAC or 
MOAC enrichments, run in parallel with total proteome 
analysis, have been performed on samples with and 
without DNA damage, and as with antibody-based 
studies, have again demonstrated the far-reaching 
effects of the DNA damage response beyond canonical 
ATM/ATR signaling pathways (86, 91, 110). In a study 
using both total proteome profiling and titanium dioxide 
enrichment of phosphopeptides to profile the response 
to alkylation damage of DNA (91) thousands of non-
S*Q/T*Q sites were identified, including the first report 
of damage-inducibility of sites on DDR proteins such 
as Ser123 of the excision repair protein Rad23A, and 
decreased phosphorylation of Thr722 of the replication 
protein MCM3.

5. TARGETED METHODS FOR THE STUDY 
OF THE DNA DAMAGE RESPONSE

5.1. Multiple Reaction Monitoring (MRM) and 
related methods

In Section 4, antibody-based methods were 
discussed as powerful tools for dissecting the DDR in 
cells and tissues. Whether using PTM/Motif antibodies 
that enrich for peptides sharing common modifications 
or amino acid sequences, or using multiplexed 
cocktails of site and protein specific antibodies to 
enrich for peptides in the same signaling pathway, 
analysis is often performed in data-dependent mode. 
That is to say the samples are run in LC-MS/MS and 
the instrument makes on the fly decisions as to which 
peptides are identified in a given run. Data independent 
methods have been developed that allow the user to 
select proteins/sites to be analyzed either pre- or post-
data acquisition and profile those endpoints across 
many samples (54, 126, 127).

A commonly used method to target specific 
peptides is multiple reaction monitoring (MRM). 
MRM involves selecting product ions from previously 

disease. PTM/Motif antibodies can effectively solve 
the first goal, and to address the second need a novel 
strategy for multiplexed pathway enrichment has been 
employed.

Originally termed PTMScan Direct, this 
method uses multiplexed cocktails of site-specific 
antibodies to enrich for peptides containing critical 
modification sites on proteins that reside in the 
same signaling pathway. The method for this 
pathway-based enrichment is identical to that for 
PTM/Motif enrichment, with the only change being 
the antibodies used. By employing reagents that 
specifically target hundreds to thousands of critical 
signaling nodes from a single enrichment, whole 
signaling networks can be profiled from a single LC-
MS/MS experiment (116, 117).

A collection of multiplexed antibody cocktails 
have been prepared to study diverse signaling 
pathways such as Akt/PI3K, Ser/Thr kinases, or a 
Multipathway reagent targeting key protein/sites 
across many different signaling areas. Of particular 
interest to the study of the DDR are a reagent that 
profiles DNA damage and cell cycle proteins, and one 
that targets apoptosis and autophagolytic pathways 
(117). To date, a number of studies have employed 
these reagents for analysis of cellular signaling. One 
such study proved the utility of the method in profiling 
DNA damage signaling in cells untreated or treated with 
UV damage of DNA. Activation of both ATM and ATR 
signaling pathways was observed upon UV damage, 
as well as activation of stress responsive MAP kinases 
JNK and p38, and the onset of apoptosis, measured 
by an increase in cleaved, activated forms of multiple 
caspases. Interestingly, although Chk1 activation was 
observed upon UV damage, ATR phosphorylation at 
the damage responsive Ser428 site was unchanged. 
This finding indicated that phosphorylation of Chk1 
itself or another residue on ATR such as Thr1989 
may be a better readout of UV damage-dependent 
checkpoint activation. These multiplexed reagents 
allow researchers to profile known components of the 
DNA damage response in cells and tissues, directly 
profiling the activation state and protein level of critical 
DDR regulators.

4.3. Other enrichment strategies  
for LC-MS/MS analysis

PTM/Motif antibodies and multiplexed 
pathway enrichment reagents are valuable tools 
for studying the DNA damage response. Other 
enrichment methods to profile phosphorylation 
changes are also commonly used. In lieu of an 
antibody-based enrichment, positively charged metal 
ions or metal oxides on beads can be used to globally 
enrich for phosphopeptides. (IMAC: Immobilized Metal 
Affinity Chromatography, MOAC: Metal Oxide Affinity 
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employed to profile DNA damage signaling (135, 136). 
DNA damage response proteins/sites were selected for 
analysis, and heavy isotope labeled synthetic peptides 
were produced and added to cellular peptides at known 
quantities. Cocktails of antibodies against known DNA 
damage response proteins were combined on beads 
to make a single reagent capable of simultaneously 
enriching multiple targets. This cocktail, or metal affinity 
IMAC beads were used to enrich for targeted proteins/
sites, and both endogenous and synthetic peptides 
were immunoaffinity purified from the samples. This 
purified material was then run using targeted LC-
MS/MS methods, providing sensitive, reproducible 
quantitative data to profile multiple, critical regulators 
of the DNA damage response.

A DNA damage response antibody cocktail 
containing 69 endpoints (DDR peptide targets) was 
used to profile human breast cancer tissue samples, 
and demonstrated variability in signaling between 
individuals when the tissues were IR damaged. 
The response of wild type and ataxia telangiectasia 
(ATM –/–) lymphoblast cell lines to IR and wild type 
lines to chemical inhibition of ATM was profiled, 
demonstrating differential phosphorylation of known 
ATM substrates such as NBS1 Ser343, BRCA1 
Ser1524, and p53 Ser315. Interestingly, NBS1 Ser343 
was still phosphorylated in ATM (–/–) or ATM inhibited 
cells, though at a slower rate than in wild type cells, 
suggesting compensatory mechanisms. Together, 
these data highlighted the utility of targeted methods 
for profiling the DDR to assess damage checkpoint 
activation and dynamics.

6. CONCLUSIONS

Traditional methods to study the DNA 
damage response have relied on systematic study 
of one or a few proteins/sites at a time, and the 
generation of reagents for each target to be studied. 
With advancements in mass spectrometry-based 
methods for proteomics, researchers are now able to 
generate quantitative data for thousands of endpoints 

collected MS/MS spectra to be targeted in the 
instrument. By limiting the instrument to selection 
of these ions, and including heavy isotope labeled 
synthetic peptides in each sample (stable isotope 
dilution, or SID), the amount of a given peptide across 
all samples profiled can be determined (128–130). A 
related method, termed parallel reaction monitoring 
(PRM) targets precursor peptides for analysis but 
instead of pre-selecting product ions to monitor, allows 
quantification based on any product ion generated by 
fragmentation of the parent ion (131, 132). Whether 
using MRM or PRM methods, the targeted nature of 
the assay allows higher throughput than traditional 
data dependent LC-MS/MS experiments and a fixed 
list of critical targets to profile.

In the case of the DNA damage response, 
as with many other cellular signaling systems, the 
most interesting candidate proteins/sites to target and 
quantify may be present in cells at low abundance or 
low phosphorylation site occupancy. In these cases, 
an MRM or PRM experiment with no enrichment will 
yield poor results, as the noise from all of the other, 
higher abundance peptides present will preclude 
accurate quantification. In order to overcome this 
limitation, some form of enrichment must be used to 
focus the analysis on the targets of interest. Metal 
affinity based enrichment can be used for this purpose, 
though the global nature of IMAC or MOAC resins as 
phosphopeptide enrichment tools can still lead to an 
overly complex mixture of peptides being delivered 
to the instrument. These methods also will not 
enrich for any protein or peptide that is not modified 
by phosphorylation. Antibody-based enrichment, 
for Immuno-MRM or -PRM (Figure 4) (133, 134), is 
therefore the best option to simplify the mixture and 
improve assay sensitivity. Antibodies against target 
proteins or sites can be purchased or produced and 
combined to create a reagent that will specifically 
enrich the desired peptides.

Both metal affinity and immunoaffinity-based 
strategies for targeted analysis have been successfully 

Figure 4. Targeted LC-MS/MS analysis workflow. For immuno-MRM/PRM analyses, endpoints are selected and synthetic heavy isotope labeled peptides 
are added to cells, tissues, or other biological materials to be profiled. Both endogenous and synthetic peptides are immunoaffinity purified and subjected 
to targeted MRM/PRM analysis.
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